
Simulation and Animation of Visual Models of
Embedded Systems
A Graph-Transformation-Based Approach Applied to Petri Nets

Hartmut Ehrig, Claudia Ermel, and Gabriele Taentzer

Theoretical Computer Science – Formal Specification Techniques
Technische Universität Berlin, Germany
{ehrig,lieske,gabi}@cs.tu-berlin.de

Summary. Behavior specification techniques like Petri nets provide a visual de-
scription of software and embedded systems as basis for behavior validation by sim-
ulation. Graph transformation systems can be used as a unifying formal approach to
define various visual behavior modeling languages including different kinds of Petri
nets, activity diagrams, Statecharts etc., and to provide models with an operational
semantics defining simulations of visual models based on graph transformation rules.
Moreover, simulation of visual models can be extended by animation which allows
to visualize the states of a model simulation run in a domain-specific layout which
is closer to the problem domain than the layout of the abstract diagrammatic no-
tation of the specification technique. This kind of model transformation is defined
also within the framework of graph transformation, which allows to show interesting
properties like semantical correctness of the animation with respect to simulation. In
this paper we give an overview of simulation and animation of visual models based
on graph transformation and discuss corresponding correctness issues.

As running example we use a high-level Petri net modeling the basic behavior of
an elevator. We show how Petri nets are mapped to graph transformation systems,
and how the elevator system is extended using an animation view which shows the
movements of an elevator cabin between different floors.

1 Introduction

Visual modeling techniques provide an intuitive, yet precise way in order to
express and reason about concepts at their natural level of abstraction. The
success of visual techniques in computer science and engineering resulted in
a variety of methods and notations addressing different application domains
and different phases of the development process.

Nowadays two main approaches to visual language definition can be dis-
tinguished: grammar-based approaches or meta-modeling. Using graph gram-
mars, visual sentences are described by graphs and visual languages by graph



12 Hartmut Ehrig et al.

grammars. Meta-modeling is also graph-based, but uses constraints instead
of a grammar to define the visual language. While visual language definition
by graph grammars can borrow a number of concepts from classical textual
language definition, this is not true for meta-modeling.

In this paper, we apply the graph grammar-approach to visual language
definition [1]. The concrete as well as the abstract syntax of visual notations
are described by typed attributed graphs. The type information given in the
type graph, captures the definition of the underlying visual alphabet, i.e. the
symbols and relations which are available. A visual language is defined by an
alphabet and a typed attributed graph grammar, the VL syntax grammar.

The behavior of visual models (e.g. Petri nets or Statecharts) can be de-
scribed by graph transformation as well. Graph rules called simulation rules
are used to define the operational semantics of the model. Simulation means
to show the before- and after-states of an action as diagrams. In Petri nets, for
example, a simulation is performed by playing the token game. Different sys-
tem states are modeled by different markings, and a scenario is determined
by a firing sequence of transitions resulting in a sequence of markings. In
the formal framework of graph transformation, a scenario corresponds to a
transformation sequence where the simulation rules are applied to the graphs
representing system states.

However, for validation purposes simulation is not always adequate, since
system states are visualized in simulation runs as diagrams. On the one hand,
these state graphs abstract from the underlying system domain (as modeling
VLs serve many purposes), on the other hand they may become rather com-
plex as complete system states involve auxiliary data and constructs which
are necessary to control the behavior but which do not provide insight in the
functional behavior of the specific model.

In this paper we extend the simulation for a visual model by animation
views which allow to define domain-specific scenario animations in the layout
of the application domain (cf. [7]). We call the simulation steps of a behavioral
model animation steps when the states before and after a step are shown in
the animation view.

To define the animation view, the VL alphabet first is extended to an ani-
mation alphabet by adding symbols representing the problem domain. Second,
the set of simulation rules for a specific visual model is extended, resulting in
a new set of graph transformation rules, called animation rules.

The paper is organized as follows: In Section 2 we introduce our running
example, namely the basic behavior of an elevator modeled as high-level Petri
net, and present a domain specific animation view of the system as motivation
for the further sections. In Section 3 we define the syntax of visual languages
and simulation of visual models, and discuss the correctness of simulation. The
extension from simulation to animation is presented in Section 4 together with
a discussion of the correctness of animation. In the conclusion in Section 5 we
discuss related work and implementation issues.



Simulation and Animation of Visual Models of Embedded Systems 13

2 Example: An Elevator Modeled as Petri Net

Petri nets are a standard modeling technique for reactive and concurrent
systems. In our running example, we use high-level Petri nets to model the
basic behavior of an elevator which could be easily extended to a system of
concurrent elevators.

In high-level Petri nets, structured tokens are used to represent the data
of a system, whereas the Petri net captures the modification of the data. An
Algebraic High-Level net (AHL net for short) [8] consists of a Place/Transition
net for the process description and an algebraic specification SPEC for the
data type description describing operations used as arc inscriptions. Tokens
are elements of a corresponding SPEC-algebra. In order to keep the exam-
ple simple, the AHL net does not model the control mechanism to call the
elevator but only the movements up and down (see Fig. 1 (a)). In general,
the system states show in which floor the elevator cabin is, and whether the
elevator is moving or not. The data type specification SPEC consists of the
specification Nat of natural numbers and the two constants MaxFloor = 4
and MinFloor = 0. Thus, in Fig. 1 (a), a house with five floors is modeled.
The variable f used as arc inscription is holding the number of the current
floor of the elevator cabin. The initial marking specifies that in the beginning
the elevator is in the ground floor, in the state not moving (token 0 on place
not moving).

Fig. 1. A Basic Elevator as AHL Net (a) and Snapshots of its Animation View (b)

A domain-specific animation view of the AHL net is illustrated in Fig. 1
(b). We show two snapshots of the animation view according to two possible
markings of the net in Fig. 1. The elevator is illustrated as part of a building
showing the actual number of floors. The elevator cabin is visualized as box
with doors when moving, and as an open box when the elevator is standing,
The state not moving is visualized in the left snapshot of Fig. 1 (b), where
the cabin is positioned in the respective floor and the doors are open. This
snapshot corresponds to the initial state of the AHL net shown in Fig. 1 (a).
When the elevator is moving between floors (state moving), the cabin doors
are closed. This is shown in the right snapshot of Fig. 1 (b), and corresponds
to a token ”1” on place moving. We will ensure that the actions that can be
performed in the animation view correspond to the transitions in the AHL
net.



14 Hartmut Ehrig et al.

3 Visual Languages and Simulation of Visual Models

We start with a short introduction to graph transformation which is our basis
for modeling visual languages.

3.1 Graph Transformation

The main idea of graph grammars and graph transformation is the rule-based
modification of graphs where each application of a graph transformation rule
leads to a graph transformation step. Graph grammars can be used on the
one hand to generate graph languages similar to Chomsky grammars in formal
language theory. On the other hand, graphs can be used to model the states
of all kinds of systems and graph transformation to model state changes.

Especially for the application of graph transformation techniques to visual
language (VL) modeling, typed attributed graph transformation systems have
proven to be an adequate formalism [3, 4].

The core of a graph transformation rule p = (L, R) is a pair of graphs
called left-hand side L and right-hand side R, and an injective (partial) graph
morphism r : L → R. Intuitively, the application of rule p to graph G via a
match m from L to G deletes the image m(L) from G and replaces it by a copy
of the right-hand side R. A typed graph grammar GG = (TG, P, S) consists
of a type graph TG, a set of rules P , and a start graph S. The language of
a graph grammar consists of the graphs that can be derived from the start
graph by applying the transformation rules arbitrarily often.

Moreover, we use node attributes in our examples, e.g. text for the names of
nodes, or numbers for their positions. This allows us to perform computations
on attributes in our rules and offers a powerful modeling approach. For flexible
rule application, variables for attributes can be used, which are instantiated
by concrete values in the rule match.

An example for a graph grammar with node attributes is the visual syntax
grammar for AHL nets which is explained in Section 3.2. For a formal theory
of typed attributed graph transformation systems we refer to [3].

3.2 Syntax of Visual Languages

A visual language is specified by an alphabet for symbol and link types (the
type graph), and a grammar consisting of a start sentence and a set of syntax
rules. A visual language VL is then the set of all visual sentences that can be
derived by applying syntax rules. The abstract syntax of the alphabet for the
AHL net language is shown in Fig. 2 (a).

At the abstract syntax level, there are symbols as Place, Transition, etc.
in Fig. 2 which are attributed by datatypes like PlName of type String or
Value of type Nat. These abstract syntax items are linked by directed edges.
We distinguish arcs running from places to transitions (type PreArc) and arcs
from transitions to places (type PostArc). The concrete syntax level is shown



Simulation and Animation of Visual Models of Embedded Systems 15

Fig. 2. Abstract Syntax of Visual AHL Net Alphabet (a) and Visual Sentence (b)

in Fig. 7. An example for a visual sentence in its abstract syntax is depicted in
Fig. 2 (b). It shows a part of the abstract syntax of the elevator net in Fig. 1.

Syntax rules for AHL nets define the generation of places and transitions,
and of arcs between them. A sample syntax rule insPreArc(i) the abstract syn-
tax of which is depicted in Fig. 3, defines the operation for inserting an arc
from a place to a transition. Note that graph objects which are preserved by
the rule (the place and the transition), occur in both L and R (indicated by
equal numbers for the same objects). The newly created arc is inserted to-
gether with the arc inscription defined by the rule parameter i (see [6] for more
details.) A suitable rule application control has to ensure that rule insPreArc(i)
is applied only once for a given place and transition.

Fig. 3. Sample Abstract Syntax Rule from the AHL Net Syntax Grammar

3.3 Simulation of Visual Models

As discussed already in the introduction, we can use graph grammars not only
to define the syntax of visual languages, but also for the simulation of visual
models. A visual model is given by the subset of all visual sentences of a given
visual language, which correspond to a specific model, like the AHL net model
of our elevator in Fig. 1. The behavior of the AHL net in Fig. 1 is given by
the well-known token game of AHL nets (see [8]).

In our framework the behavior of a visual model is defined by graph trans-
formation rules based on the abstract syntax of the corresponding visual sen-
tences. These rules are called simulation rules in contrast to the syntax rules
of the visual language. In order to define the simulation rules we use a suit-
able encoding of Petri nets into graph grammars (see also [11]). A very natural
encoding of nets into grammars regards a net as a graph grammar acting on
graphs representing the markings of a net. A Petri net transition is represented
as a graph transformation rule consuming the tokens in the pre domain and



16 Hartmut Ehrig et al.

generating the tokens in the post domain of the transition. Places are repre-
sented as graph nodes which are preserved by the rule. Fig. 4 shows the schema
for the translation of an arbitrary AHL net transition to a graph transforma-
tion rule L → R, where L holds the pre domain tokens to be consumed and
R contains the post domain tokens to be generated.

Fig. 4. (a) AHL Net Transition, (b) Corresponding Graph Transformation Rule

For our elevator net in Fig. 1, we have four simulation rules, one for each
transition of the net. Three of them are shown in Fig. 5 (the rule stop equals
the inverse rule of rule start).

Fig. 5. Simulation Rules for the Elevator Model

If the visual model is given by a specification using a formal specifica-
tion technique like Petri nets, which have already a well-defined operational
semantics, it is important to show that the visual modeling and simulation
using graph grammars is correct w.r.t. the given formal specification tech-
nique. Otherwise, it is problematic to apply formal analysis and verification
techniques. In our case, the formal relationship between AHL nets and graph
grammars has been analyzed in [8], where the semantical compatibility of
AHL nets and the corresponding attributed graph grammar with simulation
rules has been shown as one of the main results.



Simulation and Animation of Visual Models of Embedded Systems 17

4 From Simulation to Animation of Visual Models

In order to bridge the gap between the underlying formal, descriptive spec-
ification as a Petri net and a domain-specific dynamic visual representation
of processes being simulated, we suggest the definition of animation views
for Petri nets. Of course, the behavior shown in the animation view has to
correspond to the behavior defined in the original Petri net.

4.1 Animation of Visual Models

The elevator net as illustrated in Fig. 1 (a), is a visual sentence of our AHL
net language. The animation view of this sentence has been already motivated
by Fig. 1 (b), where an elevator cabin moving between the floors of a house is
visualized. The concrete and abstract syntax of the alphabet of the animation
view is depicted in Fig. 6. It contains a symbol type for the elevator shaft
(House), types for the different states of the elevator cabin (Open Cabin and
LeftDoor and RightDoor, which are positioned within the corresponding symbol
of type Floor). The concrete syntax both for the AHL net elements and for the
new elements of the animation view is described by further graphic nodes and
by graphical constraints between them specifying the intended layout. We use
dotted arrows at the concrete syntax level in order to indicate the graphical
constraints, e.g. that a token value is always written inside the corresponding
Place ellipse, or that the left elevator door is positioned in the left part of the
floor rectangle.

Fig. 6. Animation Alphabet for the Elevator Model

Based on the extension of the visual alphabet for AHL nets in Fig. 2 to
the animation alphabet in Fig. 6, we have to extend now the simulation rules
in Fig. 5 correspondingly. The resulting animation rules for the transitions
start and up are presented in Fig. 7, while those for stop and down are given
by the inverse rules for start and up, respectively. By applying first start and
then up, the left snapshot of the animation view in Fig. 1 (b) is transformed
into the right snapshot.

Moreover, by adding continuous animation operations to animation rules
the resulting scenario animations are not only discrete-event steps but can



18 Hartmut Ehrig et al.

Fig. 7. Resulting Animation Rules for the Elevator Model

show the model behavior in a movie-like fashion. For the elevator, such an-
imation operations are the opening and closing of the cabin doors (for the
animation rules start and stop), and the up- and downward movements of the
cabin doors (for the animation rules up and down).

4.2 General Construction and Correctness of Animation Rules

Now we present the main ideas for a general construction of animation rules
from simulation rules as presented above. This construction is based on a
model transformation from simulation to animation, short S2A model trans-
formation. This S2A model transformation is again given by a typed at-
tributed graph grammar. In general, S2A model transformation rules are non-
deleting and are applied exactly once at each match to the graphs L and R
of each simulation rule. S2A rules do not delete elements from the original
simulation rules but only add elements from the domain specific extension of
the animation alphabet.

For our elevator example, the S2A model transformation rules are given in
Fig. 8. The tokens of the AHL net model the different locations of the elevator
cabin. A token on place not moving corresponds to a cabin graphic with open
doors, whereas a token on place moving is visualized by a graphic showing a
cabin with closed doors. The position of the graphics relative to the elevator
shaft depends on the value of the floor number. The S2A rules first add the
basic elements for the animation view, i.e. the house symbol containing the
elevator shaft. These elements are not changed during animation, and form
the animation background (rule build house in Fig. 8).

After the generation of the animation background, depending on the mark-
ing of a place, an elevator cabin has to be drawn inside the floor corresponding
to the token value on the place. For a marked place not moving, the symbol



Simulation and Animation of Visual Models of Embedded Systems 19

Fig. 8. S2A Rules for the Elevator Model

OpenCabin is generated. For a marked place moving, two doors of type LeftDoor
and RightDoor are added (rules moving and not moving in Fig. 8).

In our paper [5], we give a general construction how to apply the S2A
model transformation rules to simulation rules like those in Fig. 5, in order
to obtain animation rules, like those in Fig. 7. Moreover, we present general
criteria for the semantical correctness of animation w.r.t. simulation in the
following sense, which are satisfied for our running example.
For each simulation step S1 =⇒ S2 via a simulation rule
sr with corresponding animation rule ar = S2A(sr),
there are animation models A1 = S2A(S1) and A2 =
S2A(S2) and a corresponding animation step A1 =⇒ A2

via ar, as depicted in the diagram to the right.

S1
S2A //

sr

��

A1

ar

��
S2

S2A // A2

5 Conclusion

In this paper we have given an overview of concepts for simulation and ani-
mation of visual models based on the formal theory of typed attributed graph
transformation from [3]. This theory allows to show also formal correctness
of visual modeling and simulation, as well as correctness of animation w.r.t.
simulation (see [8, 5]).

The running example for simulation and animation of Petri nets has been
modeled using the GenGED environment for visual language definition, simu-
lation and animation based on graph transformation and graphical constraint
solving [9, 1]. Animation operations are defined by coupling the animation
rules to animations in SVG format (Scalable vector graphics), and can be
viewed using suitable SVG viewers. In contrast to related approaches and
tools, e.g. for the animation of Petri net behavior (like the SimPEP-tool for



20 Hartmut Ehrig et al.

the animation of low-level nets in PEP [10]), the graph transformation frame-
work offers a basis for a more general formalization of model behavior which
is applicable to various Petri net classes and other visual modeling languages.
Recently, the new tool environment Tiger [6, 12] has been developed at TU
Berlin, supporting the generation of visual environments, based on the one
hand on recent MDA development tools integrated in the development en-
vironment Eclipse [2], and on the other hand on typed attributed graph
transformation to support syntax-directed editing and simulation.

References

1. R. Bardohl. A Visual Environment for Visual Languages. Science of Computer
Programming (SCP), 44(2):181–203, 2002.

2. Eclipse Consortium. Eclipse – Version 2.1.3, 2004. http://www.eclipse.org.
3. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic

Graph Transformation. EATCS Monographs in Theoretical Computer Science.
Springer, 2006.

4. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Appli-
cations, Languages and Tools. World Scientific, 1999.

5. H. Ehrig and C. Ermel. From Simulation to Animation: Semantical Correctness
of S2A Model and Rule Transformation. in preparation, 2006.

6. K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of Visual Editors
as Eclipse Plug-ins. In Proc. IEEE/ACM Intern. Conf. on Automated Software
Engineering, IEEE Computer Society, Long Beach, California, USA, 2005.

7. C. Ermel and R. Bardohl. Scenario Animation for Visual Behavior Models: A
Generic Approach. Software and System Modeling: Special Section on Graph
Transformations and Visual Modeling Techniques, 3(2):164–177, 2004.

8. C. Ermel, G. Taentzer, and R. Bardohl. Simulating Algebraic High-Level Nets
by Parallel Attributed Graph Transformation. In H.-J. Kreowski, U. Montanari,
F. Orejas, G. Rozenberg, and G. Taentzer, editors, Formal Methods in Software
and Systems Modeling, vol. 3393 of LNCS. Springer, 2005.

9. GenGED Homepage. http://tfs.cs.tu-berlin.de/genged.
10. B. Grahlmann. The State of PEP. In Proc. Algebraic Methodology and Software

Technology, vol. 1548 of LNCS. Springer, 1999.
11. H. J. Schneider. Graph Grammars as a Tool to Define the Behaviour of Pro-

cess Systems: From Petri Nets to Linda. In Proc. Graph Grammars and their
Application to Computer Science, vol. 1073 of LNCS pp. 7–12. Springer, 1994.

12. Tiger Project Team, Technical University of Berlin. Tiger: Generating Visual
Environments in Eclipse, 2005. http://www.tfs.cs.tu-berlin.de/tigerprj.


