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Abstract. Meta modeling is a wide-spread technique to define visual
languages, with the UML being the most prominent one. Despite several
advantages of meta modeling such as ease of use, the meta modeling
approach has one disadvantage: It is not constructive i. e. it does not offer
a direct means of generating instances of the language. This disadvantage
poses a severe limitation for certain applications. For example, when
developing model transformations, it is desirable to have enough valid
instance models available for large-scale testing. Producing such a large
set by hand is tedious. In the related problem of compiler testing, a
string grammar together with a simple generation algorithm is typically
used to produce words of the language automatically. In this paper, we
introduce instance-generating graph grammars for creating instances of
meta models, thereby overcoming the main deficit of the meta modeling
approach for defining languages.

1 Introduction

With models expressed in the Unified Modeling Language (UML) [13] becoming
widely used in software engineering, also the meta modeling approach to define
the syntax of modeling languages has gained a wide acceptance: Commonly, a
meta model is designed which defines the abstract syntax of the language in a
declarative way. Instantiation of the meta model then yields a concrete model.

The meta modeling approach has several advantages, one of them being that
a visual meta model allows a quick grasp of the concepts being defined. Further,
the meta modeling approach is also beneficial when it comes to defining complex
modeling languages, consisting of several individual models. Nevertheless, there
exists also one disadvantage: Whereas constructing words of a language defined
by a string grammar can easily be done by applying grammar derivations, meta
model instantiation is hard to operationalize.

In common applications of the UML, this does not pose a problem because
the process of instantiation is performed by the software engineer when con-
structing models. However, there are certain applications when an automatic
approach is needed: In compiler testing [4], the generation of a large amount
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of models from a context-free grammar is common practice and a key issue in
being able to test compilers automatically. Whereas until now such a problem
could be neglected in model engineering based on the meta modeling approach,
this situation drastically changes with the idea of model driven architecture [12]
and the more widespread usage of model transformations. For testing model
transformations, a large set of automatically generated instance models must be
available in order to ensure the quality of the model transformation developed.
Another area requiring an operational description of a language defined by a
meta model is automatic editor generation for domain specific languages.

Graph grammars [5] provide a constructive, well-studied approach to lan-
guage definition with a formal foundation that allows to prove important prop-
erties. However, the relationship between meta models and graph grammars
has not been studied in depth so far, but started in [3]. Deriving an instance-
generating graph grammar from an existing meta model is complicated. Here,
one has to ensure that every model that is created by a derivation of the graph
grammar is a valid instance of the meta model and further it is desirable that
for every instance of the meta model there exists a derivation in the graph gram-
mar. This completeness of the instance-generating graph grammar is important
for model transformation testing because it allows a complete coverage of all
possible inputs. For editor generation, it ensures that the language defined by
the meta model is indeed the one supported by the editor.

In this paper, we present our approach for automatic derivation of instance-
generating graph grammars from meta models. We first introduce meta models in
Section 2 and graph transformation in Section 3. In Section 4, we explain how an
instance-generating graph grammar can be derived for a meta model containing
all main features. OCL constraints are not yet considered during the generation
process, but have to be checked afterwards. Section 5 contains the proof that the
derived graph grammar generates exactly those instances induced by the given
meta model. As a consequence, the concept of the instance-generating graph
grammar allows to formally show the completeness of the generated instances.
We conclude by a discussion of related and future work.

2 Metamodels with OCL-Constraints

Visual languages such as the UML [13] are commonly defined using a meta
modeling approach. In this approach, a visual language is defined using a meta
model to describe the abstract syntax of the language. A meta model can be
considered as a class diagram on the metalevel, i. e. it contains meta classes,
meta associations and cardinality constraints. Further features include special
kinds of associations such as aggregation, composition and inheritance as well
as abstract meta classes which cannot be instantiated.

The instance of the meta model must conform to the cardinality constraints.
In addition, instances of meta models may be further restricted by the use of
additional constraints specified in the Object Constraint Language (OCL) [14].
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Figure 1 shows a slightly simplified statechart meta model (based on [13])
which will be used as running example. A state machine has one top Composite-
State. A CompositeState contains a set of StateVertices where such a StateVertex
can be either an InitialState or a State. Note that StateVertex and State are mod-
eled as abstract classes. A State can be a SimpleState, a CompositeState or a
FinalState. A Transition connects a source and a target state. Furthermore, an
Event and an Action may be associated to a transition. Aggregations and compo-
sitions have been simplified to an association in our approach but they could be
treated separately as well. For clarity, we hide association names, but show only
role names in Figure 1. The association names between classes StateVertex and
Transition are called source and target as corresponding role names. The names of
all other associations are equal to their corresponding role names. Since we want
to concentrate on the main concepts of meta models here, we do not consider
attributes in our example. Having an instance at hand, it is straight forward to
generate attribute values in a post processing step.
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Fig. 1. Meta Model for statecharts

The set of instances of the meta
model can be restricted by additional
OCL constraints. For the simplified
statecharts example at least the follow-
ing OCL constraints are needed:

1. A final state cannot have any outgoing
transitions:
context FinalState inv: self.outgoing->size()=0

2. A final state has at least one incoming tran-
sition:
context FinalState inv:
self.incoming->size()>=1

3. An initial state cannot have any incoming
transitions:
context InitialState inv: self.incoming->size()=0

4. Transitions outgoing InitialStates must al-
ways target a State:
context Transition inv:
self.source.oclIsTypeOf(InitialState) implies
self.target.oclIsKindOf(State)

The complexity of generating instances of meta models crucially depends on
the language elements used within meta models. For simple meta models without
any constraints (not even multiplicity constraints) and inheritance, instantiation
is rather straightforward by creating instances of metaclasses and associations.
However, meta models as commonly used in language specification documents
such as [13] make heavily use of multiplicity and OCL constraints as well as
inheritance and abstract classes. For instantiation of such meta models, more
sophisticated techniques are needed. In particular, there is a need for a systematic
derivation of instances of meta models. In the following, we will describe the
concepts of graph transformation which will represent the formal basis of our
approach (inspired by the use of context-free grammars for deriving textual
languages).
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3 Graph Transformation

In this section we present the formal theory of typed graph transformations with
inheritance (see [3]), which will be the basis for the formal background for In-
stance Generating Graph Grammars (IGGG) in Section 5.

In object-oriented modeling, graphs can be used at two levels: the type level
(a class diagram) and the instance level (an instance of the class diagram). This
typing concept has been described by typed graphs [5], where a fixed type graph
serves as abstract representation of the class diagram. As in object-oriented mod-
elling, types can be attributed and structured by an inheritance relation. Types
should be divided into abstract types which cannot have instances and con-
crete types. Instances of a type graph with inheritance (TGI) are object graphs
equipped with a structure-preserving mapping to the type graph. A class dia-
gram can thus be represented by a type graph with inheritance plus a set of
constraints over this type graph expressing multiplicities. For examples of the
following definitions we refer to Section 4.

Definition 1 (type graph with inheritance). A type graph with inher-
itance is a triple TGI = (TG , I, Abs) consisting of a type graph TG =
(TGV , TGE , srcTG, tgtTG) (with a set TGV of nodes, a set TGE of edges, source
and target functions srcTG, tgtTG : TGE → TGV ), an acyclic inheritance rela-
tion I ⊆ TGV × TGV , and a set Abs ⊆ TGV , called abstract nodes. For each
x ∈ TGV , the inheritance clan is defined by clanI(x) = {y ∈ TGV | (y, x) ∈ I∗},
where I∗ is the reflexive-transitive closure of I.

A graph can be typed over the type graph with inheritance by a pair of
functions, from nodes to node types and from edges to edge types, respectively.
This pair of functions does not constitute a graph morphism, but will be called
clan morphism; it uniquely characterizes the type morphism into the flattened
type graph.

Definition 2 (clan morphism). Let TGI = (TG , I, Abs) with TG =
(TGV , TGE , srcTG, tgtTG) be a type graph with inheritance. A clan-morphism
ctp : G → TGI from a graph G = (GV , GE , srcG, tgtG) to TGI is a pair
ctp = (ctpV : GV → TGV , ctpE : GE → TGE) such that for all e ∈ GE the
following holds:

– ctpV ◦ srcG(e) ∈ clanI(srcTG ◦ ctpE(e)) and
– ctpV ◦ tgtG(e) ∈ clanI(tgtTG ◦ ctpE(e)).

(G, ctp) is called a clan-typed graph.

The main ingredients of graph grammars are graph rules which will be defined
in Definition 4. Between clan-typed graphs we use type-refining morphisms (see
also Def. 5 in [15]) where a node with type t can be mapped to a node with a type
in clan(t). In the following, we call a type-refining morphism just morphism. If
each node is mapped to a node with the same type, the corresponding morphism
is called type-preserving.



5

For controlling a rule application, simple negative application conditions
NAC(x) and atomic application conditions P (x,∧i∈Ixi)) are defined which are
needed in Section 4. Although NAC(x) is a special case of P (x,∧i∈Ixi)) with
I = ∅, we introduce both kinds of application conditions, due to more clear
definition of instance generating rules.

Definition 3 (application condition). A simple negative application condi-
tion is of the form NAC(x), where x : L → X is an injective morphism. A
morphism m : L→ G satisfies NAC(x) if there does not exist an injective mor-
phism p : X → G with p ◦ x = m. An atomic application condition is of the
form P (x,∧i∈Ixi) where x : L → X and xi : X → Ci with i ∈ I are injective
morphisms. A morphism m : L → G satisfies P (x,∧i∈Ixi) if for all injective
morphisms p : X → G with p ◦ x = m there does exist an i ∈ I and an injective
morphism qi : Ci → G with qi ◦ xi = p.

Definition 4 (rules). A rule typed over a type graph TGI = (TG , I, Abs) with
inheritance is given by p = (L l←K r→R,Ap), where L,K, R are clan-typed graphs,
l and r are type-preserving injective graph morphisms, ctp−1

R (Abs) ⊆ r(KV ),
and Ap is a set of application conditions of the form NAC(x) or P (x,∧i∈Ixi)
as defined in Def. 3.

Definition 5 (rule matching and application). Given a rule p as in Def. 4
and a clan-typed graph (G, ctpG), then m is a match of p in G if

– m is an injective match of the rule p = (L l←K r→R,Ap) as defined in Def.
4 in the graph G;

– tK(x1) = tK(x2) for tK = ctpG ◦m ◦ l and x1, x2 ∈ KV with r(x1) = r(x2);
– m satisfies all simple negative application conditions and all atomic applica-

tions in Ap.

Given a match m, a direct derivation (G, ctpG)
p,m
=⇒ (H, ctpH) exists if there is

a span of graph morphisms G←D→H and a co-match m∗ : R→H of p in H
that give rise to a derivation in the double-pushout approach of untyped graph
transformation as defined in [5] where pushouts are used to model the gluing of
graphs.

Given a rule set R, (G, ctpG) ∗⇒R (H, ctpH) is a finite sequence of an ar-
bitrary number of direct derivations by rules of R. A derivation (G, ctpG) ∗⇒R

(H, ctpH) terminates, if 6 ∃r ∈ R : (H, ctpH)⇒r (H ′, ctpH′).

4 Generating Instances by Graph Grammars

In this section, we introduce the idea of an instance-generating graph grammar
that allows one to derive instances of an arbitrary meta model in a systematic
way. The corresponding graph grammar requires (1) a start graph that will be
the empty graph, (2) a type graph that is obtained by converting the meta model
class diagram to a type graph and (3) graph grammar rules which are described
below.
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We use the concept of layered graph grammars [6] to order rule applications.
Layer 1 rules create instances of each class. To generate all possible instances we
have to allow an arbitrary number of applications of these rules, meaning that
Layer 1 does not terminate and has to be interrupted by user interaction or after
a random time period. Layer 2 rules deal with generating links corresponding
to associations with at least one 1 -multiplicity. Those rules have to be applied
as long as possible to ensure the multiplicity constraints, requiring that rule
application in this layer has to terminate. Layer 3 creates links corresponding
to associations with 0..n-multiplicities. The rules in this layer can be applied
arbitrarily often because these links are optional.

We use abstract node types (corresponding to abstract classes) leading to the
concept of abstract rules. An abstract rule contains at least one node of abstract
type. For each concrete subtype of the abstract type this induces a corresponding
rule.

Given a concrete meta model, assembling the rules derived, the type graph
created and the empty start graph leads to an instance-generating graph gram-
mar for this meta model. The rules of the instance-generating graph grammar
are determined by the occurrence of specific meta model patterns: The idea is to
associate to a specific meta model pattern a graph grammar rule that creates an
instance of the meta model pattern under certain conditions. In the following,
we describe the rules that we derive for common meta model patterns.

Instance-generating rules: Layer 1 of any instance-generating graph grammar
(see pattern p0 in Figure 2) contains rules of the form createE’ where E’ is
replaced by the name of any non-abstract class. The meta model pattern for
this rule is simply a class. For a concrete meta model, we will get such a create
rule for each non-abstract class within the meta model, allowing us to create an
arbitrary number of instances of all non-abstract classes.

We have three meta model patterns for the rules in Layer 2 (corresponding
to the three possible multiplicity constraints) (see Fig. 3 and 4). The first rule
for each pattern creates a link between existing instances. The NACs ensure,
that the created link does not violate the multiplicity constraints (e.g. the two
instances are not already connected by such a link, or the instance of A is not
already connected to an instance of E).

To ensure the to one multiplicity on the specified association ends in-
sertE’ a ANewObj resp. insertE’ a ANewObj2 creates a new instance of any con-
crete E’ ∈ clan(E) resp. A’ ∈ clan(A) if no application condition holds. In case
of a 1 to * relation (see pattern p1) a new instance of E’ ∈ clan(E) is created if
no concrete instance of E is present, which is ensured by NAC1. In case of a 1
to 0..1 or 1 to 1 relation (see pattern p2 and p3) the rule can only be applied if
any match of an instance of E is already connected to an instance of A, which
is ensured by the application condition. NAC2 of the rules insertE’ a ANewObj
resp. insertE’ a ANewObj2 requires that the instance of A is not connected to an
instance of E yet.

We also have three meta model patterns for the rules of Layer 3 (correspond-
ing to the three possible multiplicity constraints) (see Fig. 5). The rules for these
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Fig. 3. Rules for graph grammar derivation: Layer 2

patterns create links between existing instances. The NACs ensure, that the cre-
ated link does not violate the upper multiplicity constraints as in the first rules
of the corresponding pattern in Layer 2. The graph grammar derivation rules in
layer 3 can be applied arbitrarily often, they are terminating as described above.

Generating Statechart Instances: We now discuss an instance-generating graph
grammar for the meta model of statecharts (see Figure 1). Due to space limita-
tion we do not show the details of all rules. The example rules shown in Figure
6 - 8 construct a simple instance graph consisting of a state machine with its
top CompositeState containing three state vertices and two transitions between
them. In the application conditions shown in Figures 6 - 8 the node types are
abbreviated (CS for CompositeState etc.).
First, we get Layer 1 rules for all concrete classes occurring in the class diagram.
These are createStateMachine, createCompositeState, createSimpleState, createFi-
nalState, createInitialState, createTransition, createEvent, and createAction.
For association source between StateVertex and Transition (corresponding to an
instance of pattern p1), we derive four rules: one rule creates a link source between
an existing StateVertex and an existing Transition. Further, for each concrete class
that inherits from class StateVertex one rule is derived that creates the StateV-
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ertex, an InitialState, a CompositeState, SimpleState or a FinalState, and the link
source. Note that the abstract class StateVertex could be matched to any of its
concrete subclasses InitialState, CompositeState, FinalState, and SimpleState. For
association target between StateVertex and Transition, similar rules are derived.
For association top between StateMachine and CompositeState, an instance of
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pattern p2, we derive the corresponding two rules. One of them is shown in Fig-
ure 6, creating a CompositeState to a StateMachine if no CompositeState exists
in the instance graph.
We further get instances of pattern p4 (association between Transition and Ac-
tion) and p5 (association between Transition and Event as well as association
between CompositeState and StateVertex).

Extensions: So far, we considered a generation of meta model instances that is
somewhat simplified: First of all, we have not explicitly dealt with generating at-
tribute values. There are (at least) two possible solutions for this: One possibility
is to perform a postprocessing step which generates arbitrary attribute values. A
set of predefined values is specified for each attribute, to be used within attribute
assignment. Another approach would be to explicitly include attributes in the
graph grammar rules and assign attributes already while deriving the instance
of the meta model. Also properties of associations like navigation directions, role
names, etc. can be included in certain attributes.

Then, associations being loops as well as associations with arbitrary car-
dinality constraints (i. e. m..n) can be achieved by extending the rule set of
the instance generating graph grammar. Moreover if the meta model contains
singleton classes, the create rule for the corresponding class has to have an addi-
tional application condition that ensures that at most one instance of this class
is created.

Ensuring OCL constraints can be done by a constraint checker, once the
overall derivation of an instance model has terminated. The instance generation



10

Grammar Rule Example GraphLayer Application Conditions
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and the translation of simple OCL constraints are described in [6,7] in more
detail.

5 Formal Background for Instance Generating Graph
Grammars

In this section we present the formal background for Instance Generating Graph
Grammars (IGGG) based on the formal theory of typed graph transformations
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with inheritance (see [3]). As the main result of this paper, we present the equiv-
alence of instance sets generated by an instance-generating graph grammar on
the one hand, and induced by a type graph with multiplicities on the other hand.

Definition 6 (multiplicities). A multiplicity is a pair [i, j] ∈ N × (N ∪ {∗})
with i ≤ j or j = ∗. The set of multiplicities is denoted Mult. The special value
∗ indicates that the maximum number of nodes or edges is not constrained. For
an arbitrary finite set X and [i, j] ∈ Mult, we write |X| ∈ [i, j] if i ≤ |X| and
either j = ∗ or |X| ≤ j.

Now we define an induced graph language over a type graph with multi-
plicities TGImult. As usual, we use multiplicities to decorate the edges of type
graphs. The multiplicities express the number of incoming, respectively outgoing
edges for each target, respectively source instance.

Definition 7 (Type graph with multiplicities). A type graph with mul-
tiplicities (see [15]) is a tuple TGmult = (TGI ,msrc ,mtgt) consisting of a type
graph with inheritance TGI and additional functions msrc ,mtgt : TGI E → Mult,
called edge multiplicity functions.

Considering the meta model in Figure 1, it can be formalized to a type graph
with multiplicities in a straight forward way. The node types are given by classes,
the edge types by associations. In contrast to the associations, edge types have
to be always directed. For each edge type a direction can be arbitrarily chosen.

Definition 8 (TGImult-induced graph language). Given a type graph
TGImult with multiplicities as defined in Def. 7, the induced graph language
is defined by:
L(TGImult) = {(G = (GV , GE , srcG, tgtG), ctpG : G→ TGI) |
∀e ∈ TGIE∧∀v ∈ ctp−1

G (t) with t ∈ clan(src(e)) : |ctp−1
G (e)∩src−1(v)| ∈ mtgt(e)

and
∀e ∈ TGIE ∧ ∀v ∈ ctp−1

G (t) with t ∈ clan(tgt(e)) : |ctp−1
G (e) ∩ tgt−1(v)| ∈

msrc(e)}, where ctpG is a clan morphism.

Example 1. Considering e.g. the example graph in Fig. 8, the multiplici-
ties for edge type subvertex are fulfilled: For the only composite state c
|ctp−1(subvertex) ∩ src−1(c)| = 3 ∈ [0, ∗] and for all state vertices s
|ctp−1(subvertex) ∩ tgt−1(s)| ≤ 1 ∈ [0, 1]. The composite state is not subver-
tex of any vertex and all other state vertices are subvertex of the composite
state.

Having formalized a meta model given by a class diagram through a type
graph with multiplicities, we are now ready to define the language of an instance-
generating graph grammar. Based on a given type graph with multiplicities, we
mainly formalize the set of rules needed for instance generation. The rules are
already given in Sec. 4. Please note that rules insertE a A and insertE’ a ANewObj
differ dependently on the source and target multiplicities of the corresponding
patterns.
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Since all given rules are intended to be matched injectively, they do not
capture the case of patterns with loops as edge types, which would be translated
to loops in the type graph. That’s why loops are excluded in the following.

Definition 9 (instance-generating graph grammar and language).
Given a type graph TGImult with multiplicities as in Def. 7 without loops, an
instance generating graph grammar is denoted by IGGG = (TGI, ∅, R), where
R is the union of the following sets of rules. The rules are depicted in Figures 2
- 5 and are formalized in the obvious way according to Def. 4.

– R1 = {createE’ | ∀E′ ∈ TGIN ∧ E′ 6∈ Abs} with rules createE’ as in Fig. 2
– R2 = R21 ∪R22 ∪R23 with

R21 = {insertE a A | ∀A,E ∈ TGIN , a ∈ TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1])}
R22 = {insertE’ a ANewObj | ∀A,E ∈ TGIN , a ∈ TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1]) ∧ E′ ∈ clan(E) ∧ E′ 6∈ Abs}
R23 = {insertE a A’NewObj2 | ∀A,E ∈ TGIN , a ∈ TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1]) ∨A′ ∈ clan(A) ∧A′ 6∈ Abs}
with rules insertE a A, insertE’ a ANewObj, and insertE’ a ANewObj2 as in
Fig. 3 - 4

– R3 = {insertE a A | ∀A,E ∈ TGIN , a ∈ TGIE with msrc(a) 6= [1, 1] ∧
mtgt(a) 6= [1, 1]} with rules insertE a A as in Fig. 5

R is layered, i.e. there is a function rl : R→ N with rl(r) = i for all r ∈ Ri for
i = {1, 2, 3}. Function rl is called rule layer function.
The generated graph language is defined by the following set of concrete typed
graphs: L(IGGG) = {(G, ctpG) | ∅ ∗⇒R1 (H, ctpH) ∗⇒R2 (K, ctpK) ∗⇒R3

(G, ctpG) ∧ 6 ∃r ∈ R2 : (K, ctpK)⇒r (K ′, ctpK′)}.

The following lemma states that the rule application of rules in R2 to any
graph created by rules of R1 always terminates. This property is needed in the
following theorem.

Lemma 1 (termination of rule layer 2). Given an instance generating graph
grammar IGGG(TGI, ∅, R) where TGI does not contain any loop as edge type,
let L1(IGGG) = {(H, ctpH) | ∅ ∗⇒R1 (H, ctpH)}. All derivation sequences
(H, ctpH) ∗⇒R2 (G, ctpG) with (H, ctpH) ∈ L1(IGGG) terminate.

Proof. See [6].

As one main result the following theorem states that the instance sets gen-
erated by an IGGG and those induced by a type graph with multiplicities are
equivalent.

Theorem 1 (equality of languages). Given a type graph TGImult with mul-
tiplicities and without loops and an instance generating graph grammar IGGG =
(TGI, ∅, R) for TGImult, we have L(IGGG) = L(TGImult).
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Proofidea. We have to proof that
(1) (G, ctpG) ∈ L(TGImult) holds for any derivation ∅ ∗⇒R1 (H, ctpH) ∗⇒R2

(K, ctpK) ∗⇒R3 (G, ctpG). This is true, since Layer 1 creates nodes of valid types
only, the NACs prohibit the exceeding of the upper bound, and the rules in Layer
2 are applied until the lower bounds are fulfilled.
(2) For a given graph (G, ctpG) ∈ L(TGImult) there exists a derivation sequence
∅ ∗⇒ (G, ctpG) over IGGG. We create the sequence by first creating all nodes by
rules of Layer 1, and then creating the edges for each pattern. For the complete
proof see [6].

6 Related Work

One closely related approach is the one by Alanen and Porres [2]: They describe
two algorithms, one to derive a context-free grammar from a meta model and
another one for deriving a meta model from a context-free grammar. However,
their algorithm for grammar derivation can only deal with composite associ-
ations between metaclasses, restricting it to tree-like meta models which is a
severe limitation for practical usage. Further, the algorithm does not support
ordinary associations with arbitrary cardinalities. This limitation is not surpris-
ing given the properties of context-free grammars and represents one reason for
the approach to use graph grammars instead of context-free grammars.

Another related problem is the one of automated snapshot generation for
class diagrams for validation and testing purposes, tackled by Gogolla et al. [9].
In their approach, properties that the snapshot has to fulfill are specified in
OCL. For each class and association, object and link generation procedures are
specified using the language ASSL. In order to fulfill constraints and invariants,
ASSL offers try and select commands which allow the search for an appropriate
object and backtracking if constraints are not fulfilled. The overall approach
allows snapshot generation taking into account invariants but also requires the
explicit encoding of constraints in generation commands. As such, the problem
tackled by automatic snapshot generation is different from the meta model to
graph grammar translation.

Formal methods such as Alloy [1] can also be used for instance generation:
After translating a class diagram to Alloy one can use the instance generation
within Alloy to generate an instance or to show that no instances exist. This
instance generation relies on the use of SAT solvers and can also enumerate
all possible instances. In contrast to such an approach, our approach aims at
the construction of a grammar for the metamodel and thus establishes a bridge
between metamodel-based and grammar-based definition of visual languages.

In the area of pattern recognition, there have been several approaches to
grammatical inference: Given a finite set of sample patterns, a grammar should
be deduced such that the language generated by the grammar contains the sam-
ple patterns. Originally, this problem has been tackled where patterns are en-
coded as strings and regular grammars are generated [8]. In the context of graph
grammars, Jeltsch and Kreowski [11] describe how a hyperedge replacement
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grammar can be derived from a finite set of graph samples. Our problem setting
is slightly different because we are given a meta model to describe all instances
and not only a finite set of samples.

Further (complementary) related work can be seen in the area of model-
driven testing [10] where the aim is to use a model of the system to produce
suitable test data. The problem of generating those instances from the grammar
that provide a suitable coverage for testing can possibly benefit from existing
research in this area.

7 Conclusion and Future Work

Currently, the widespread approach of defining visual languages has one main
disadvantage: The systematic generation of instances of meta models is difficult
to automate which poses limitations for e. g. automated testing of model trans-
formations. In this paper, we have introduced the idea of instance-generating
graph grammars which is basically the equivalent to a Chomsky grammar for
textual languages.

On the basis of meta model patterns and corresponding derivation rules, our
approach allows the construction of an instance-generating graph grammar for
meta models without OCL constraints. This construction is based on a type
graph with inheritance. As running example, we have constructed an IGGG for
a simplified statechart meta model. Using the theory of typed graph transfor-
mation with inheritance, we have shown that the instance sets generated by an
IGGG and those induced by the corresponding type graph with multiplicities
are equivalent.

Automatic derivation of instances from meta models is a complex task which
needs tool support. So far, we have automated the construction of an IGGG by
providing a model transformation that automatically derives an IGGG from a
meta model. For a complete description of this implementation we refer to the
URL http://tfs.cs.tu-berlin.de/agg/MM2GraGra. Although the current model
transformation does not support all features of meta models yet, it nevertheless
shows the feasibility of our approach.

Future work should extend the automatic instance generation by meta models
with OCL constraints. Ensuring OCL constraints can be done in two ways: One
is to check constraints once the overall derivation of an instance model has
terminated. However, this leads to the generation of a large number of non-valid
instances. An approach avoiding the generation of invalid instances is presented
in [6,7].

Further work is needed to apply our approach to testing model transfor-
mations: For that, techniques are needed that allow the generation of selected
instance models that represent a suitable diversity of all possible models. Further-
more a syntax graph grammar could be generated from a meta model providing
the basis for automatical generated visual editing rules.
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