
Categorical Foundations
of Distributed Graph Transformation

Hartmut Ehrig1, Fernando Orejas2, and Ulrike Prange1

1 Technical University of Berlin, Germany
{ehrig, uprange}@cs.tu-berlin.de

2 Technical University of Catalonia, Spain
orejas@lsi.upc.edu

Abstract. A distributed graph (N, D) consists of a network graph N
and a commutative diagram D over the scheme N which associates local
graphs D(ni) and graph morphisms D(e) : D(n1) → D(n2) to nodes
n1, n2 and edges e : n1 → n2 in N .

Although there are several interesting applications of distributed
graphs and transformations, even the basic pushout constructions for
the double pushout approach of distributed graph transformation could
be shown up to now only in very special cases.

In this paper we show that the category of distributed graphs can
be considered as a Grothendieck category over a specific indexed cate-
gory, which assigns to each network N the category of all diagrams D
of shape N . In this framework it is possible to give a free construction
which allows to construct for each diagram D1 over N1 and network mor-
phism h : N1 → N2 a free extension Fh(D1) over N2 and to show that
the Grothendieck category is complete and cocomplete if the underlying
category of local graphs has these properties.

Moreover, an explicit construction for general pushouts of distributed
graphs is given. This pushout construction is based on the free construc-
tion. The non-trivial proofs for free constructions and pushouts are the
main contributions of this paper and they are compared with the special
cases known up to now.

1 Introduction

When modelling computation by means of (standard) graph transformation,
a graph is supposed to denote the (centralized) state of a given system, and
computation steps are modelled as transformations of this graph by means of
some productions. To model distributed computation, where the state of the
given system is not monolithic, G. Taentzer [1] introduced an extension of graph
transformation called distributed graph transformation. The idea is to consider
that, on one hand, a graph N (the network graph) describes the topology of the
given system and, on the other, that the global state is, in some sense, partitioned
along that graph. In particular, this is done associating to every node n in N a
graph Gn that denotes the local state at this node, and to every edge e : n → n′

in N a graph morphism he : Gn → Gn′ . These graph morphisms allow one

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 215–229, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 H. Ehrig, F. Orejas, and U. Prange

to describe the shared parts of the local states. Formally, then, a distributed
graph is just a functor from the network graph into the category of graphs. In
this context, (distributed) graph transformation is defined adapting the double-
pushout approach to the (functor) category of distributed graphs.

The practical relevance of distributed graph transformation has been demon-
strated in [2, 3], where this approach is used to keep coherence between models
of different views. This allows an integrated management of modifications in the
code and in the global UML model underlying a software artifact. Using dis-
tributed graph transformation we can define in a uniform way different kinds
of computation steps. For instance, we can describe not only computations that
occur in a single location (i.e. in the graph associated to a given node), but com-
putations that occur simultaneously in several locations that are synchronized
through the shared parts of the states involved. Moreover, we can also define
transformations on the network, for instance allowing us some forms of refactor-
ing. In some sense, this approach is related to Community (see, e.g. [4]), where
the local states are tuples rather than graphs, and Goguens General Systems
Theory [5].

Unfortunately, the basic constructions for defining distributed graph trans-
formation as presented in [1] depend on some ad-hoc conditions that, on one
hand, limit the power of the approach and, on the other hand, make it difficult
to generalize the approach to cases where the states are not modelled as ba-
sic graphs, but as attributed graphs or some other kind of arbitrary structures
[6, 7]. In particular, even the basic pushout constructions for the double pushout
approach of distributed graph transformation could be shown up to now only in
very special cases.

In this paper we provide categorical foundations for distributed graph trans-
formation that allow us to provide the basic constructions with full generality.
In particular, we generalize distributed graphs to distributed objects, where the
local diagrams are not necessarily graphs, but consist of objects and morphisms
in a certain category C. Then we show that the category of distributed objects
can be considered as a Grothendieck category over a specific indexed category,
which assigns to each network N the category of all diagrams D of shape N in
C. In this framework it is possible to give a free construction which allows to
construct for each diagram D1 over N1 and network morphism h : N1 → N2 a
free extension Fh(D1) over N2 and to show that the Grothendieck category is
complete and cocomplete if the underlying category of local objects has these
properties. Moreover, an explicit construction for general pushouts of distributed
objects is given. This pushout construction is based on the free construction. The
non-trivial proofs for free constructions and pushouts are the main contributions
of this paper and they are compared with the special cases known up to now.

The paper is organized as follows. In section 2 we study the category of dis-
tributed objects and present the free diagram extensions. Section 3 is dedicated
to the category of distributed objects as a Grothendieck category. In section 4 we
show the explicit construction of pushouts of distributed objects and, through
an example, how these pushouts are used in distributed graph transformation. In

Categorical Foundations of Distributed Graph Transformation 217

section 5 we introduce persistent morphisms and discuss their role with respect
to strongly componentwise pushouts as considered in [1]. Finally, in section 6 we
draw some conclusions.

We assume the reader to be familiar with the basic notions of category theory,
as presented in, e.g., [4, 8, 9].

2 The Category DisC and Free Diagram Extensions

A distributed graph representing the distributed state of a system can be de-
scribed, on one hand, by a graph N (the network graph) defining the topology
of the object and, on the other, associating to every node n in N a graph D(n)
that denotes the local state at this node, and to every edge e : n → n′ in N a
graph morphism D(e) : D(n) → D(n′). In particular, it is assumed that these
graph morphisms describe the shared parts of the local states (see example 1).

Formally, in categorical terms, this means that a distributed graph (N, D)
consists of the network graph N and a diagram D : N → Graph which asso-
ciates local graphs D(ni) and graph morphisms D(e) : D(n1) → D(n2) to nodes
n1, n2 and edges e : n1 → n2 in N . However, if we consider that states are not
specifically modelled by basic graphs, but by some other kind of structure (as,
e.g., typed attributed graphs) then we can easily generalize this definition. In
particular, we can consider that a distributed object is a diagram D : N → C,
where C is an arbitrary category. Obviously, we may require C to satisfy some
specific properties.

In addition, we require that a diagram D : N → C is commutative. We believe
that this should be a consequence of assuming that the morphisms associated
to the edges (or to the paths) in N denote the shared parts of the distributed
states. In particular, suppose that we have two paths p1 and p2 from a node n
into n′. According to our intuition, this means that we can consider that for the
state at node n, D(n), there is a (not necessarily injective) image D(p1)(D(n)) of
D(n′), and similarly for D(p2). Now, if D(p1) would denote a different morphism
from D(p2), then, it would mean that we could also identify D(p1)(D(n)) and
D(p2)(D(n)), which are different parts of the state at n′.

A graph G = (V, E, s, t) consists of a set of nodes (or vertices) V and a set
of edges E, with functions s, t : E → V assigning a source and target node to
each edge, respectively. This concept has been extended to many different kinds
of graphs, like hypergraphs, labelled graphs, typed and/or attributed graphs,
which we do not define explicitly. Instead, we assume to have some category C
and present the theory of distributed objects on the categorical level, which can
be instantiated by various graphs and graph-like structures.

Given a graph G = (V, E, s, t), it can be interpreted as the scheme of a
category. This means, the reflexive and transitive closure of G is a category with
objects V . Vice versa, a category C can be seen as a (possibly infinite) graph.
In the following, we switch between both concepts as needed in the particular
context. As a consequence, we use the terms functor and diagram as synonyms
in this context.

218 H. Ehrig, F. Orejas, and U. Prange

Definition 1 (path morphism and commutative functor). Given a graph
N , a functor D : N → C (interpreting N as a category) and a path p : n

e1→
...

ek→ n′ in N , we define the path morphism D(p) : D(n) → D(n′) of D along p

as D(p) = D(ek) ◦ ... ◦ D(e1). For the empty path εn : n
0→ n, D(εn) = idD(n).

A functor D : N → C is commutative, if for any two paths p1, p2 : n
∗→ n′ in

N we have D(p1) = D(p2).

Remark 1. If D is commutative, we obviously have D(c) = idD(n) for each circle

c : n
∗→ n in C. For paths p : n

∗→ n′, p′ : n
∗→ n′ f→ n′′ and p′′ : n′′ f ′

→ n
∗→ n′ it

follows that D(p′) = D(f) ◦ D(p) and D(p′′) = D(p) ◦ D(f ′).

We can now define the category of distributed objects:

Definition 2 (distributed object and distributed morphism). Given a
category C, a distributed object (N, D) over C (or just a distributed object, if C
is implicit in the given context) consists of a graph N , called network graph, and
a commutative functor D : N → C, called diagram functor.

A distributed morphism over C (or just a distributed morphism, if C is im-
plicit in the given context), f = (fN , fD) : (N1, D1) → (N2, D2), consists of a
graph morphism fN : N1 → N2 and a natural transformation fD : D1 → D2◦fN .

Distributed objects and distributed morphisms over C form the category DisC.

In particular, we may notice that our previous definition implicitly associates to
every network graph N a category consisting of all the commutative functors
from N to C. This construction can be extended to a functor.

Definition 3 (functor Diag). The functor Diag : Graphsop → Cat is de-
fined by

– for a graph N , Diag(N) = comFunct[N,C], the category of commutative
functors (diagrams) D : N → C,

– for a graph morphism f : N → N ′ in Graphs, Diag(f)(D′ : N ′ → C) =
D′ ◦ f : N → C and Diag(f)(t : D′

1 → D′
2) = t ◦ f .

In order to construct pushouts and colimits in DisC in section 3 and 4 we
need to show that each commutative diagram D1 : N1 → C has a free extension
D2 : N2 → C for each network morphism h : N1 → N2. In fact, if C is cocomplete
then each network morphism has an associated free construction (extension),
leading to a free functor left adjoint to Diag(h). Note, that we only need finite
cocompleteness of C if all network graphs N are finite.

Theorem 1. If C is cocomplete then for all network morphisms h : N1 → N2
there is a functor Fh : comFunct[N1,C] → comFunct[N2,C], that is free with
respect to Diag(h).

Construction. We have to show that there is a free construction (D2, u
D1
h) with

D2 : N2 → C and uD1
h : D1 → Diag(h)(D2) for each diagram D1 : N1 → C.

Categorical Foundations of Distributed Graph Transformation 219

For n2 ∈ N2 define N1(n2) as the full subgraph of N1 induced by the node
set V (N1(n2)) = {n1 ∈ N1 | ∃ path p : h(n1)

∗→ n2 ∈ N2}.
The restriction D1|N1(n2) : N1(n2) → C is a functor. Let (Col(n2),

(in2
n1

)n1∈N1(n2)) be the colimit of D1|N1(n2), with in2
n1

: D1(n1) → Col(n2) and
in2
n′

1
◦ D1(e1) = in2

n1
for all e1 : n1 → n′

1 ∈ N1(n2).
For an edge e2 : n2 → n′

2 we have N1(n2) ⊆ N1(n′
2) and therefore (Col(n′

2),
(in

′
2

n1)n1∈N1(n2)) is a cocone of D1|N1(n2). This means that there exists a unique

morphism ce2 : Col(n2) → Col(n′
2) with ce2 ◦ in2

n1
= i

n′
2

n1 for all n1 ∈ N1(n2).

D1(n′
1)D1(n1)

Col(n2)

Col(n′
2)

D1(e1)

i
n2
n1

i
n2
n′
1

i
n′
2

n1
i
n′
2

n′
1

ce2

Define Fh(D1) = D2 : N2 → C by D2(n2) = Col(n2) and D2(e2) = ce2 , and
uD1

h = (ih(n1)
n1)n1∈N1 . ��

Proof idea. From the construction it follows that D2 is a commutative functor
and uD1

h is a well-defined natural transformation.
For a distributed object (N2, D

′
2) and a natural transformation t : D1 → D′

2◦h
we have to show that there is a unique natural transformation t∗ : D2 → D′

2
with (t∗ ◦ h) ◦ uD1

h = t.
For a node n2 ∈ N2 and n1 ∈ N1(n2), by construction there exists a path pn2

n1
:

h(n1)
∗→ n2 in N2. Since D′

2 is commutative, D′
2(p

n2
n1

) is independent from the
chosen path (if there is more than one). Then (D′

2(n2), (D′
2(p

n2
n1

)◦tn1)n1∈N1(n2)) is
a cocone of D1|N1(n2) and there exists a unique morphism t∗n2

: D2(n2) → D′
2(n2)

with t∗n2
◦ in2

n1
= D′

2(p
n2
n1

) ◦ tn1 for all n1 ∈ N1(n2).
t∗ = (t∗n2

)n2∈N2 is a natural transformation, and the uniqueness follows from
the uniqueness of its components.

D1(n′
1)D1(n1)

Col(n2)

D′
2(h(n1)) D′

2(h(n′
1))

D′
2(n2)

D1(e1)

i
n2
n1

i
n2
n′
1

tn1

D′
2(h(e1))

tn′
1

t∗
n2

D′
2(pn2

n1) D′
2(pn2

n′
1
)

220 H. Ehrig, F. Orejas, and U. Prange

For n1 ∈ N1 we have t∗h(n1) ◦ i
h(n1)
n1 = D′

2(p
h(n1)
n1) ◦ tn1 = tn1 , therefore (t∗ ◦ h) ◦

uD1
h = t, because p

h(n1)
n1 : h(n1)

∗→ h(n1) implies D′
2(p

h(n1)
n1) = id (see [10] for

more detail). ��

Example 1. Consider the network graphs N1 and N2 shown in Fig. 1 on the left
hand side, the inclusion h : N1 → N2 and the diagram D1 : N1 → Graphs
shown in Fig. 1 on the right hand side. In the figure on the right, the thick lines
represent the network structure, and the diagram morphism is indicated by the
small numbers.

u v

w

u v

w

xe e f

g

N1 N2

1 2 1 2

h
D1(u) D1(v)

D1(w)

Fig. 1. Two network graphs and a diagram

From the construction we get for each node n2 ∈ N2 the corresponding sub-
graphs N1(n2) of N1, where N1(u) contains only the node u, N1(v) contains the
nodes u and v and the edge e, N1(x) = N1(v) and N1(w) contains the nodes u
and w. The corresponding colimit constructions lead to the following free con-
struction diagram D2 : N2 → Graphs over D1 : N1 → Graphs with D2(u) =
Colim(D1|N1(u)) = D1(u), and similarly D2(v) = D1(v), D2(x) = D1(v) and

D2(w) = D1(u)
·
∪ D1(w) as shown in Fig. 2.

1 2 1 2

1 2

1 2

D2(u) D2(v) D2(x)

D2(w)

Fig. 2. The corresponding free construction

In section 4 we will use the following decomposition.

Proposition 1. A distributed morphism f = (fN , fD) : (N1, D1) → (N2, D2)
can be decomposed into the following diagram, where f∗

D : FfN (D1) → D2 is the
adjunction morphism associated to the morphism fD : D1 → Diag(fN)(D2).

Categorical Foundations of Distributed Graph Transformation 221

(N2, D2)(N1, D1)

(N2, FfN (D1))

(fN ,fD)

(fN ,u
D1
fN

) (id,f∗
D)

Proof. This follows directly from the free construction (Theorem 1). ��

3 DisC as a Grothendieck Category

In this section we show that the category DisC can be considered as a Grothen-
dieck category, because there are general categorical results how to construct
limits and colimits in Grothedieck categories [4, 11, 12]. We start by defining
indexed categories.

Definition 4 (indexed category). Given a category I, called index category,
an indexed category is a functor F : Iop → CAT, where CAT denotes the
category of all categories.

Definition 5 (Grothendieck category). The Grothendieck category Gr(F)
of an indexed category F has as objects pairs (i, A) with i ∈ I and A ∈ F (i).
A morphism (i, A) → (i′, A′) is a pair (f, g) with f : i → i′ ∈ I and g : A →
F (f)(A′) ∈ F (i).

Given morphisms (f, g) : (i, A) → (i′, A′) and (f ′, g′) : (i′, A′) → (i′′, A′′), the
composition is defined by (f ′ ◦ f, F (f)(g′) ◦ g). For an object (i, A), the identity
id(i,A) is given by (idi, idA).

According to [11] we have:

Fact 1. Let F : Iop → CAT be an indexed category with Grothendieck category
Gr(F). If I and F (i) are complete for all i ∈ I, and F (f) is continuous for all
f : i → j ∈ I then also Gr(F) is complete. If I and F (i) are cocomplete for
all i ∈ I, and F (f) has a left adjoint for all f : i → j ∈ I then also Gr(F) is
cocomplete.

Remark 2. As shown in the proof in [11], limits are constructed componentwise
on the index and the functor level. However, this componentwise construction
does not work for colimits, where the free construction has to be taken into
account.

As a consequence, we can also form the category of distributed objects as the
Grothendieck category associated to the indexed category Diag as defined in
Def. 3.

Theorem 2. The category DisC is a Grothendieck category over the indexed
category Diag : Graphsop → Cat.

Proof. This is a direct consequence of the definitions of distributed objects and
morphisms, the given functor Diag and the construction of a Grothendieck cat-
egory. ��

222 H. Ehrig, F. Orejas, and U. Prange

Theorem 3. If C is (co)complete, then also DisC is (co)complete.

Proof idea. According to Fact 1, if C is (co)complete, DisC being (co)complete
follows from the facts that Graphs is (co)complete, comFunct[G,C] is
(co)complete for all G ∈ Graphs and Diag(h) is continuous (has a left ad-
joint) for all h : G → G′ ∈ Graphs by Theorem 1 (see [10] for more detail).
Note that Theorem 1 shows that Diag(h) has a left adjoint Fh. This means that
Diag(h) is a right adjoint and hence continuous. ��

4 Graph Transformation in DisC

In this section, we define graph transformations on distributed objects in the
double pushout (DPO) approach based on [8]. In particular, we present explicit
pushout and pullback constructions in DisC and discuss the gluing condition.

Definition 6 (distributed transformation system). A distributed transfor-
mation system TS = (DisC, S, P) consists of a category DisC over some cate-
gory C, a start object S and a set of distributed productions P , where

1. a distributed production p = L
l← K

r→ R consists of distributed objects L,
K and R and distributed morphisms l : K → L and r : K → R,

2. a direct distributed transformation (N, D)
p,m
=⇒ (N ′, D′) of a distributed object

(N, D) via the production p and a match m : L → (N, D) is given by the
following diagram, where (1) and (2) are pushouts in DisC,

L

(N, D)

K

C

R

(N ′, D′)

(1) (2)

l r

m n

3. a distributed transformation is a sequence (N0, D0) ⇒ (N1, D1) ⇒ ... ⇒
(Nn, Dn) of direct distributed transformations, written (N0, D0)

∗⇒ (Nn, Dn),
4. the language L(TS) consists of all distributed objects (N, D) in DisC deriv-

able from the start object S by a transformation, i.e. L(TS) = {(N, D) | S
∗⇒

(N, D)}.

i

c
String name

s
String name

m
String from

String to
String text

i
c1 : c

name=C1
i i

s1 : s
name=S1

i

i
s2 : s

name=S2
ii

c2 : c
name=C2

Fig. 3. The type graph and an example of a distributed network

Categorical Foundations of Distributed Graph Transformation 223

p1 :

⇒

c1 : c
name=x

c1 : c
name=x

m1 : m
from=x

to=y
text=z p2 :

⇒

i c1 : c
name=x

m1 : m
from=x

to=y
text=z

i

i s1 : s

i c1 : c
name=x

m1 : m
from=x

to=y
text=z

i

i
s1 : s

m1 : m
from=x

to=y
text=z

p3 :

⇒

i s1 : s m1 : m
from=x

to=y
text=z

i

i
s2 : s

i s1 : s m1 : m
from=x

to=y
text=z

i

i
s2 : s

p4 :

⇒

i s1 : s m1 : m
from=x

to=y
text=z

i

i

c1 : c
name=y

i s1 : s m1 : m
from=x

to=y
text=z

i

i

c1 : c
name=y

Fig. 4. Example communication productions

Example 2. In the following, we model a small client-server system with asyn-
chronous communication using typed attributed graph transformation. In this
case C is the category AGraphsATG of typed attributed graphs (see [8] for more
detail) leading to distributed graphs in DisC over typed attributed graphs. The
type graph of the local graphs is shown in Fig. 3 on the left hand side. Each client
(c) and server (s) has a name and can be connected to an interface connector
(i). Messages (m) can be assigned to clients and servers, and they contain the
sender (from), the receiver (to) and the message itself (text).

On the network level, clients and servers can be connected to other servers
via the interface connectors. An example of a distributed graph is given in Fig.
3 on the right hand side, where two clients c1 and c2 are connected to different
servers s1 and s2, which themselves are connected.

The communication between the clients is modeled by graph transformation
using communication productions p1 - p4 in Fig. 4, that do not change the
structure of the underlying network. As usual, only the left- and the right-hand
side of the productions are shown - the gluing object is their intersection. First,
a client may create a message using the production p1. Then the message is sent
to the server with production p2. Between different servers, the message can be
transmitted using production p3. If the receiver of the message is connected to
the current server where the message is stored, this client can receive the message
using production p4.

Fig. 5 shows some productions for network administration. With production
q1, a new server is added, and q2 adds a new client.

q1 :

⇒

i s1 : s i s1 : s

i

i
s2 : s

name=x q2 :

⇒

i s1 : s i s1 : s

i

i
c1 : c

name=x

Fig. 5. Example network productions

224 H. Ehrig, F. Orejas, and U. Prange

The result of an application of the production q2 with c1 replaced by x = c3
and s1 = s2 to the distributed graph shown in Fig. 3 is depicted in Fig. 6, where
a new client c3 is added, changing the network graph.

i
c1 : c

name=C1
i i

s1 : s
name=S1

i

i
s2 : s

name=S2
ii

c2 : c
name=C2

i
c3 : c

name=C3
i

Fig. 6. Application of the distributed production q2

From Theorem 3 it follows that if C is cocomplete the pushout over arbi-
trary distributed morphisms f and g exists. Since pushouts are the underly-
ing structure of transformations, we want to characterize them more explicitly.
The following construction has been introduced as generalized amalgamation in
[13, 14].

Theorem 4. Given distributed morphisms f = (fN , fD) : (N0, D0) → (N1, D1)
and g = (gN , gD) : (N0, D0) → (N2, D2) in DisC. According to Proposition 1
these morphisms can be decomposed. Then the diagram in the upper part of Fig.
7 is a pushout over f and g in DisC, where (1′) is a pushout in Graphs with
g′N ◦ fN = hN = f ′

N ◦ gN and (4′) is a pushout in comFunct[N3,C].

Proof idea. It can be shown that the squares (1), (2), (3) and (4) are pushouts
in DisC. Then by pushout composition also the complete diagram is a pushout
in DisC (see [10] for more detail). ��

Remark 3. It may be noted that Prop. 1 and the above Theorem are formulated
for the category DisC, but they hold for any Grothendieck category with free
constructions, as shown for a similar general framework in [13, 14].

Example 3. Fig. 8 shows an example pushout construction, as defined above in
Fig. 7. The network morphisms can be obtained from the relative positions of the
nodes. Square (1) shows the pushout on the network level, and the free exten-
sions of the diagram D0. Squares (2) and (3) show the corresponding extensions
for diagrams (D2) and (D1), respectively. Square (4) gives the componentwise
pushout on the diagram level.

We also have an explicit construction of pullbacks in DisC with complete C.

Theorem 5. Given distributed morphisms f = (fN , fD) : (N1, D1) → (N3, D3)
and g = (gN , gD) : (N2, D2) → (N3, D3) in DisC. Then the diagram (1) is a
pullback over f and g in DisC, where (2) is a pullback in Graphs with gN ◦f ′

N =
hN = fN ◦ g′N and (3) is a pullback in comFunct[N0,C].

Categorical Foundations of Distributed Graph Transformation 225

(N2, FgN (D0))(N0, D0)

(N1, FfN (D0)) (N3, FhN (D0))

(gN ,u
D0
gN

)

(fN ,u
D0
fN

)

(g′
N ,u

FfN
(D0)

g′
N

))

(f ′
N ,u

FgN
(D0)

f′
N

))(1) (2)

(N2, D2)

(N3, Ff ′
N

(D2))

(id,g∗
D)

(id,Ff′
N

(g∗
D))

(f ′
N ,u

D2
f′

N

)

(3)

(N1, D1) (N3, Fg′
N

(D1))

(id,f∗
D) (id,Fg′

N
(f∗

D))

(g′
N ,u

D1
g′

N

)

(4)

(N3, D3)(id,s)

(id,t)

Ff ′
N

(D2)FhN (D0)

Fg′
N

(D1) D3

Ff′
N

(g∗
D)

F
g′

N
(f∗

D)

s

t(4′)

N2N0

N1 N3

gN

fN

g′
N

f ′
N(1′)

Fig. 7. Explicit pushout construction in DisC

(N0, D0) (N2, D2)

(N1, D1) (N3, D3)

(f ′
N ,f ′

D)

(g′
N ,g′

D)

(fN ,fD)

(gN ,gD)(1)

N0 N2

N1 N3

f ′
N

g′
N

fN

gN(2)

D0 D2 ◦ f ′
N

D1 ◦ g′N D3 ◦ hN

f ′
D

g′
D

fD◦g′
N

gD◦f ′
N(3)

Proof. Follows from the proof of Fact 1 in [11] and Remark 2.

5 Persistent Morphisms and Componentwise Pushouts

In [1], the author does not study the construction of general pushouts of dis-
tributed graphs. Instead, the paper concentrates on studying when it is possible
to build strongly componentwise pushouts. Intuitively, if the network morphisms
involved are injective, a componentwise pushout of distributed graphs (1) can
be seen as the gluing of two distributed graphs (with respect to the common
subgraph (N0, D0)), where for each node n3 in N3, if n3 = g′N (fN(n0)) then the
graph at this node, D3(n3), is the gluing of the graphs D0(n0), D1(fN (n0)), and
D2(gN (n0)) with respect to the corresponding morphisms defined by fD and
gD. In the following, we call this ”componentwise pushouts”. But in [1], strongly
componentwise pushouts are considered with the following additional property:
if n3 is not the image of any node in N0, but just of a node n1 in N1 (respectively
n2 in N2) then D3(n3) is equal to D1(n1) (respectively D2(n2)).

(N0, D0) (N2, D2)

(N1, D1) (N3, D3)

(gN ,gD)

(fN ,fD)

(g′
N ,g′

D)

(f ′
N ,f ′

D)(1)

226 H. Ehrig, F. Orejas, and U. Prange

1 2 1 2 3

4

1 2 1 2 3 1 2 3

1 2 4

12 12 3 123 5

124

∅

1 2 1 2 3 4

4
∅

1 2 1 2 3 4 1 2 3 4

1 2 4
∅

12 124 3 1234 5

124

1 2 6 1234

6 4 4

1 2 6 1234 6 1234

1 2 6 4 4

12 6 1234 6 1234 5

6 124 4

D0 D2

D1 D3

FgN (D0)

FfN (D0) FhN (D0) Ff ′
N

(D2)

Fg′
N

(D1)

(1) (2)

(3) (4)

Fig. 8. Example of an explicit pushout construction

This means, in [1], Taentzer provides properties for an if-and-only-if charac-
terization of the existence of strongly componentwise pushouts. Unfortunately,
these properties are quite ad-hoc and depend not only on the span of network
morphisms, but also on the diagrams, and thus are difficult to generalize to
categories of distributed objects over a category C different than Graphs.

We think that it is important for several applications to have componentwise
pushouts, but not necessarily stronlgy componentwise as in [1]. Fig. 8 is an
example of a componentwise pushout, which is not strongly componentwise.
The upper right node in D2 has no preimage in D0, but the local graph is
different from the corresponding local graph in D3. However, in general, arbitrary
pushouts of distributed graphs will not be componentwise. The key property
to ensure in Proposition 4 componentwise pushouts is that the given network
morphisms are persistent in the following sense:

Definition 7 (persistent network morphism). If C is cocomplete, a mor-
phism h : N1 → N2 is persistent if for every D in comFunct[N1,C] the unit of
the adjunction, uD

h : D → Diag(h) ◦ Fh(D), is an isomorphism.

For a characterization of persistent morphisms, we need the following property
of colimits.

Proposition 2. Given a commutative functor D : N → C with colimit object
Col(D) of D, then we have for any n ∈ N :
If for all n′ ∈ N there is a path pn′ : n′ ∗→ n in N then D(n) ∼= Col(D).

Proof idea. Since path morphisms are unique, (D(n), (D(pn′))n′∈N) is a cocone
of D leading to a unique morphism x : Col(D) → D(n). Using the properties of

Categorical Foundations of Distributed Graph Transformation 227

colimit Col(D) and commutative D it can be shown that x is an isomorphism
(see [10] for more detail). ��

Taking into account the construction of free functors in Theorem 1, we are now
able to characterize persistent network morphisms for cocomplete categories C.
Intuitively, a morphism h : N1 → N2 is persistent if for a path from h(n1) to
h(n2) in N2 there is already a path from n1 to n2 in N1.

Proposition 3. A morphism h : N1 → N2 is persistent if we have for all nodes
n1, n

′
1 ∈ N1 the following property:

If there exists a path h(n1)
∗→ h(n′

1) ∈ N2 then there exists a path n1
∗→ n′

1 in
N1.

Proof. Given D : N1 → C. For n1 ∈ N1 we have Diag(h) ◦ Fh(D)(n1) =
Fh(D)(h(n1)) = Col(D|N1(h(n1))) as defined in the construction of Theorem 1.
If n′

1 ∈ N1(h(n1)) then there is a path h(n′
1)

∗→ h(n1) in N2. The above condition
makes sure that there is also a path n′

1
∗→ n1 in N1. Applying Proposition 2 with

F = D|N1(h(n1)), this means that Col(D|N1(h(n1)))
∼= D|N1(h(n1))(n1) = D(n1)

and hence Diag(h) ◦ Fh(D)(n1)
∼= D(n1). ��

Remark 4. This property is also necessary for persistency for all categories C,
where the colimits of an arbitrary F : → C and of its restriction F | :

→ C are in general not isomorphic.

Then, using the construction of pushouts in Theorem 4 we can show that if the
associated network morphisms are persistent then the pushouts of the interface
graphs are componentwise.

Proposition 4. If fN and gN are persistent, then the pushout in DisC is a
componentwise pushout on the interface network, i.e. D3(hN (n0)) is the pushout

of D1(fN (n0))
fD,n0← D0(n0)

gD,n0→ D2(gN (n0)) for all n0 ∈ N0.

Proof idea. In Graphs, pushouts can be shown to be closed under persistent
morphisms. This means that also f ′

N , g′N are persistent and we have Diag(hN) ◦
FhN (D0)

∼= D0, Diag(g′N)◦Fg′
N

(D1)
∼= D1 and Diag(f ′

N)◦Ff ′
N

(D2)
∼= D2. Since

pushouts in functor categories are constructed componentwise, this means that

D3(hN (n0)) is the pushout of D1(fN (n0))
fD,n0← D0(n0)

gD,n0→ D2(gN (n0)) for all
n0 ∈ N0 according to the pushout (4) in Fig. 7. ��

6 Conclusion

In this paper we have presented categorical foundations for distributed graph
transformation that, in our opinion, considerably improve [1]. In particular, we
have seen that the category of distributed objects has free constructions and is
complete and cocomplete (provided that the underlying category is so). More-
over, we have shown how to explicitly build pushouts using the concept of gener-
alized amalgamation introduced in [13, 14] and we have characterized the class of

228 H. Ehrig, F. Orejas, and U. Prange

morphisms (persistent morphisms) that ensure that in a pushout the interfaces
will be glued componentwisely and discussed the relationship with [1].

6.1 Towards a Theory of Distributed Graph Transformation

We have provided the basic constructions for defining transformations. However,
this is just a first step for fully studying distributed graph transformation in a
general setting.

According to Theorem 3, DisC is complete and cocomplete provided that C is
complete and cocomplete. Since the categories Graphs of graphs, GraphsTG of
typed graphs and AGraphsATG of typed attributed graphs satisfy both prop-
erties [8, Thm. 11.3], DisGraphs, DisGraphsTG and DisAGraphsATG are
complete and cocomplete. This means especially that we are able to construct
pushouts and pullbacks, which are needed in the DPO approach. The key ques-
tion is, whether there is a suitable class M for DisC such that (DisC, M)
becomes a (weak) adhesive HLR category. This would allow to instantiate the
corresponding theory in [8] to distributed graph transformation over C. Unfortu-
nately, for the most obvious choices M1 = Monos × Monos, M2 = Persistent
Monos×Monos and M3 = Persistent Monos×MorC, (DisC, Mi), i = 1, 2, 3
is in general not (weak) adhesive HLR, where persistent morphisms are defined
in section 5. In order to obtain a (weak) adhesive HLR category, M-morphisms
have to be monomorphisms (this rules out choice M3), pushouts along M-
morphisms have to be pullbacks (this rules out choice M1) and M-morphisms
have to be closed under pullbacks (this rules out choice M2).

But we can show that (injective) persistent network morphisms are closed
under pushouts, which implies that at least M3 is closed under pushouts. This
means that we can obtain the Local Church-Rosser Theorem [8, Thm. 5.12] for
(C, M3), provided that we require a stronger notion of independence including
the M3 PO-PB decomposition property for the given pair of direct transforma-
tions in the corresponding proof.

Moreover we obtain a weaker version of the Embedding Theorem [8, Thm.
6.14], which usually requires an initial pushout (1) over a morphism f .

B G

C G′

f(1)

It is an interesting open question under which conditions initial pushouts
over distributed morphisms exist and how they can be constructed for suitable
C. This would immediately lead to a necessary and sufficient gluing condition
[8, Thm. 6.4], which is important for the construction of direct transformations.
If we do not have initial pushouts, we can also take some other pushout (1)
over f , including the trivial case B → C = G → G′, and replace the notion of
consistency based on pullback-constructions and the boundary object B in (1)
by B-consistency depending on the chosen B. In fact, the proof in [8] only uses

Categorical Foundations of Distributed Graph Transformation 229

the pushout property of (1) and not the initiality, which, however, is used for
the Extension Theorem [8, Thm. 6.16].

Acknowledgements. This work has been partially supported by the Research
Network SEGRAVIS (HPRN-CT-2002-00275) and by the Spanish project
GRAMMARS (ref. TIN2004-07925-C03-01).

References

[1] Taentzer, G.: Distributed Graphs and Graph Transformation. Applied Categorical
Structures 7(4) (1999) 431–462

[2] Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Specifying Integrated Refactoring
with Distributed Graph Transformations. In Pfaltz, J., Nagl, M., Böhlen, B., eds.:
Proc. of AGTIVE 2003. Volume 3062 of LNCS., Springer (2004) 220–235

[3] Bottoni, P., Parisi-Presicce, F., Taentzer, G., Pulcini, S.: Maintaining Coherence
between Models with Distributed Rules: From Theory to Eclipse. In Bruni, R.,
Varró, D., eds.: Proc. of GT-VMT 2006. ENTCS, Elsevier (2006) 81–91

[4] Fiadeiro, J.: Categories for Software Engineering. Springer (2006)
[5] Goguen, J.: Sheaf Semantics for Concurrent Interacting Objects. Mathematical

Structures in Computer Science 2(2) (1992) 159–191
[6] Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement

Categories and Systems. In Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G., eds.: Proc. of ICGT 2004. Volume 3256 of LNCS., Springer (2004) 144–160

[7] Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graph Transformation. In Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G., eds.: Proc. of ICGT 2004. Volume 3256 of LNCS., Springer (2004) 161–177

[8] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

[9] Mac Lane, S.: Categories for the Working Mathematician. Volume 5 of Graduate
Texts in Mathematics. Springer, New York (1971)

[10] Ehrig, H., Orejas, F., Prange, U.: Categorical Foundations of Distributed Graph
Transformation: Long Version. Technical report, TU Berlin (2006)

[11] Tarlecki, A., Burstall, R., Goguen, J.: Some Fundamental Algebraic Tools for the
Semantics of Computation: Part 3: Indexed Categories. Theoretical Computer
Science 91(2) (1991) 239–264

[12] Goguen, J.: Information Integration in Institutions. In Moss, L., ed.: Jon Barwise
Memorial Volume, Indiana University Press (2006) to appear.

[13] Ehrig, H., Baldamus, M., Orejas, F.: New Concepts for Amalgamation and Ex-
tension in the Framework of Specification Logics. Technical Report 91/05, TU
Berlin (1991)

[14] Ehrig, H., Baldamus, M., Cornelius, F., Orejas, F.: Theory of Algebraic Module
Specification including Behavioural Semantics, Constraints an Aspects of Gener-
alized Morphisms. In Nivat, M., Rattray, C., Rus, T., Scollo, G., eds.: Invited
Lecture Proc. of AMAST’91, Springer (1991) 145–172

	Introduction
	The Category DisC and Free Diagram Extensions
	DisC as a Grothendieck Category
	Graph Transformation in DisC
	Persistent Morphisms and Componentwise Pushouts
	Conclusion
	Towards a Theory of Distributed Graph Transformation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

