
GT-VMT 2006

A typed attributed Graph Grammar with
Inheritance for the Abstract Syntax of UML

Class and Sequence Diagrams

Frank Hermann 1,2 Hartmut Ehrig 3 Gabriele Taentzer 4

Research Group TFS, Faculty IV
Technical University of Berlin

Berlin, Germany

Abstract

According to the UML Standard 2.0 class and sequence diagrams are defined in
a descriptive way by a MOF meta-model and semi-formal constraints. This pa-
per presents a formal and constructive definition of the abstract syntax of UML
class and sequence diagrams based on the well-defined theory of typed attributed
graph transformation with inheritance and application conditions. The generated
language covers all important features of these parts of UML diagrams and is shown
to satisfy all of the corresponding constraints by construction. An explicit model
transformation demonstrates the close correspondence between the graph grammar
and the MOF definition of UML class and sequence diagrams. The graph grammar
is validated by well-established benchmarks showing that all important features of
the MOF definition of UML are covered.

This formal constructive syntax definition of UML class and sequence diagrams
is the basis for syntax directed editing, formal analysis, formal operational and
denotational semantics and correctness of model transformations.

Key words: graph transformation, typed, attributed, inheritance,
UML, sequence diagrams, class diagrams, abstract syntax

1 Introduction

Meta-modeling of visual languages, particularly the UML [10] defined by MOF
[9], facilitates the definition of general structure elements and relations on

1 Email: frank(at)@cs.tu-berlin.de
2 Supported by the German Research Society (DFG)
3 Email: ehrig@cs.tu-berlin.de
4 Email: gabi@cs.tu-berlin.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hermann, Ehrig, and Taentzer

the one hand and the implementation of specific properties by constraints
restricting the amount of valid instances on the other hand.

Due to the non-constructive nature of the MOF approach, i.e. there is no
systematic method to generate all language elements, there exist well-known
limitations, which are avoided by a constructive approach. Using typed at-
tributed graph transformation with node type inheritance and application
conditions as in [6] and [7] for defining a visual language allows the construc-
tion of elements of the language by applying rules of the corresponding graph
grammar. The concept of inheritance allows creating an abstract rule, which
defines an equivalent set of concrete rules, and therefore notably reduces the
total amount of rules. The graph grammar GGCSD for class and sequence
diagrams, defined in [12], additionally uses a simple version of transformation
units in the sense of [16] allowing to specify the construction of complex el-
ements. This constructive definition shall not replace the original one, but
build up a formal basis for certain applications.

Proving the correctness of GGCSD relating the original specification of
UML is not possible, because most of the constraints of the original definition
of sequence diagrams are only informal. In contrast the formal definition
eliminates some problems in the original definition (see 3.4). The explicit
model transformation in Subsection 3.2 demonstrates the close correspondence
to UML defined with MOF. Restrictions by multiplicities and constraints are
already followed and argued at the corresponding rules.

A related approach for defining visual languages constructively is realized
in [17] via an EBNF grammar. The application to UML is shortly sketched but
not executed till now to our knowledge. In contrast to our visual specification
this textual form includes many similarities to Java code as even the authors
mention (p. 140). Previous applications of graph transformation describing
the abstract syntax of UML diagrams used very simplified and restricted ver-
sions of the diagram types. The correspondence between the meta model for
class diagrams and an implicit type graph is sketched in [15], but does not
take advantage of a graph grammar to create the example diagrams needed
for the described transformation. GGCSD supports all important features of
the current UML specification for class and sequence diagrams. Moreover an
extension of the graph grammar to state machines was finalized in December
2005.

While UML class diagrams are widely known, the current version of UML
sequence diagrams, which are special UML interactions and correspond to Life
Sequence Charts as in [3], contain new and revolutionary features. Combined
fragments as in Figure 1 offer the possibility to use control structures for
managing the message flow in a sequence diagram. This leads to a compact
notation for complex behaviors. The shown example specifies that a student
is assigned to a class, if all previous costs were paid by him. Therefore the
two scenarios of having a balanced account or having an unbalanced one are
covered in one diagram by using the operator “opt” with its condition. Ad-

256

Hermann, Ehrig, and Taentzer

register : RegisterOffice ar : AccountsReceivable drama : Class

getPastDueBalance(studentID)

pastDueBalance

sd newStudent

opt
[pastDueBalance=0] addStudent(studentId)

getCostOfClass()

classCost

chargeForClass()

Fig. 1. Example of an UML Sequence Diagram (in [2] p. 9 fig. 9)

ditionally a variety of other operators together with multiple operands are
available offering for example to specify parallel or alternative operands. A
further new feature is the reuse of existing sequence diagrams in other se-
quence diagrams. Messages may cross the border of a used sequence diagram
and lead into the using one. More details on sequence diagrams can be found
in Chapter 14 of [10].

Implemented features of the grammar are validated by benchmarks as de-
scribed in Subsection 3.3. Example diagrams in concrete syntax, originating
from the IBM Rational Library [2] as shown in Figure 1, were recreated by ap-
plying the necessary rules leading to a graph representing the abstract syntax
of the diagrams.

In a further step transformations into semantic domains shall be possible
including operational and denotational semantics. These semantic representa-
tions may allow detecting internal and viewpoint conflicts as well as simulat-
ing the modeled system. Alternatively to sequence diagrams a specification by
message sequence diagrams (MSCs) describes sequences of messages between
objects. A formal semantics for MSCs was defined by Petri nets in [13] and al-
lows simulation as well as analysis. Simulation and analysis of the graph gram-
mar GGCSD is possible using AGG (URL: http://tfs.cs.tu-berlin.de/
agg/), a development environment for graph transformation systems, where
transformation units can be simulated by using the command line input.

2 Graph Grammar for Class and Sequence Diagrams

The graph grammar GGCSD for class and sequence diagrams generates in-
stances of the corresponding parts of UML. It is defined by typed attributed
graphs in the sense of [7], which integrate the graph structure and the at-
tributes, which are elements of an algebra. Graph morphisms deliver the
basis for typing and the definition of rules and transformations. All graphs
of a language are typed over a given type graph via a type morphism. Rules

257

Hermann, Ehrig, and Taentzer

(r : L ← K → R) are specified using the double pushout approach, where
L defines the pattern, that shall be found in a graph, K shows all remaining
elements after deleting some elements of L, and finally R contains all pre-
served plus added elements. Application conditions in positive, negative, and
general form restrict the application of a rule to graphs, which either have to
contain a demanded pattern or are not allowed to. A rule is applicable, if the
match from L to the graph G fulfills the gluing condition and all application
conditions. The type graph includes an inheritance graph, which defines all
generalization relations between the node types. This leads to a more compact
definition of rules, as one abstract rule specifies a set of corresponding rules
for all specialized node types. A language Lang is then defined by a type
graph TG with inheritance, a start graph S ∈ Lang, and a set of abstract
rules. Its elements are generated by applying rules to S and the relationship
between graph grammar languages with abstract rules and inheritance on the
one hand and with concrete rules on the other hand is used in the sense of [1].
Using transformation units [16] for creating complex language elements by a
graph grammar is defined as controlled graph grammar in [12] and replaces
the set of rules by a set of transformation units and the start graph by a set
of start graphs.

2.1 Class Diagrams

The general structure of class and sequence diagrams is defined by the type
graph TGCSD. Figure 2 shows the important parts of it for class diagrams
containing classes, their features, associations and inheritance relations. The
gray marked node ConnectableElement connects this type graph component
with the main part for sequence diagrams in Figure 5. A simple version of

Generalization

DataType

Class

Classifier

AssociationClass

AssociationEnd

Association
Attribute

Operation

Parameter

parent

child

feature

feature

type

participant
connection

parameter

general

ConnectableElement

role

TypedElement

Signal

parameter

Fig. 2. Part of the type graph TGCSD: main elements of class diagrams

transformation units of [16] combines different rules and imported units with
the control structures ”;” for sequential application and ”!” to demand, that
a rule or unit has to be applied as long as possible. For example the simple
transformation unit ”InsertGeneralization()” specifies, that a class transmits
its features to another class and is shown in Figure 3. It imports the rules

258

Hermann, Ehrig, and Taentzer

”Generalization()” and ”General()”. After creating a new generalization the
second rule is applied as long as possible to achieve again a transitive closed
structure.

RHSLHS

2 : Classifier

1 : Classifier

Generalization()

 : Generalization

child

parent

2 : Classifier

1 : Classifier

2 : Classifier

1 : Classifier

general
NAC2

1,2 : Classifier

NAC1=
RHS

NAC3

stu InsertGeneralization()

Generalization();
!(General())

name : string = n
isRoot : bool = r
isLeaf : bool = false
isAbstract : bool = a

1 : Classifier

PAC

Fig. 3. Simple transformation unit for inserting a generalization

The node type Generalization connects a parent node with its child and is
created via the rule ”Generalization()” in Figure 3. As the inheritance relation
shall be acyclic, a generalization relation in the opposite direction is strictly
prohibited by the negative application condition NAC3, where application
conditions are used in the sense of [5]. The positive application condition
PAC ensures, that the super class is not a leaf - a class, which is not allowed
to transmit to further classes. Prevention of a double defined connection or a
generalization link from one class to itself is handled by the other conditions
NAC1 and NAC2. As Classifier is a generalization of Class, Datatype, and
Signal this abstract rule implies nine concrete rules for each combination of
the specializations.

Edges of type general supply the transitive generalization relation of all
inheritance connections. These edges are created via the rule ”General()” in
Figure 4, where the positive application condition PAC2 is used for inserting
transitive links. Parallel edges are prevented by NAC and the condition PC
allows to generate an edge because of a direct connection or a transitive one.

PAC1
RHSLHS

2 : Classifier

1 : Classifier

General()

 : Generalization

child

parent

2 : Classifier

1 : Classifier

2 : Classifier

1 : Classifier

general

PAC2

2 : Classifier

1 : Classifier

 : Classifier

general

general

PC=
PAC1 xor
PAC2

NAC=
RHS

Fig. 4. Rule for creating transitive generalization relations

The simple transformation unit ”InsertGeneralization()” in Figure 3 com-
bines the two rules and allows multiple inheritance without cycles. The acyclic
structure is demanded by the following constraint for Classifiers in the UML
specification. It is mentioned exemplary to show how we argue that our graph
grammar generates well-formed instances only.

259

Hermann, Ehrig, and Taentzer

[2] Generalization hierarchies must be directed and acyclic.
A classifier cannot be both a transitively general and transitively
specific classifier of the same classifier.
not self.allParents()->includes(self)

2.2 Sequence Diagrams

The main part of the type graph for sequence diagrams is shown in Figure 5,
where arrows with closed arrow heads define inheritance realtions. Interacting
objects are specified as ConnectableElements, which are already contained in
the previous shown type graph component for class diagrams in Figure 2, and
represents a role of a Classifier. A Lifeline is connected to anchor points of
type OccurrenceSpecification on which elements like Messages can be attached.
CombinedFragments are container structures to define control structures, like
alternatives, loops, and parallel regions. Their content is structured in Inter-
actionOperands, whose choice may be restricted by Constraints.

Lifeline

Interaction

messageKind : MessageKind
messagSort : MessageSort

Message

sendEvent

receiveEvent

covered

interactionOperator : InteractionOperator
CombinedFragment

isPrimary : bool
InteractionOperand

InteractionConstraint

expression : string
ValueSpecification

m
essage

lifeline

fragment

operand

guard

minint maxint

next

InteractionFragment

GeneralOrdering

before

OccurrenceSpecification

after

fragment

represents ConnectableElement

eventorder

Event

MessageOccurenceSpecification

specification

Constraint

MessageEnd Gate

Synchronization
begin

end

InteractionUse

refersTo

actualGate

1

Fig. 5. Part of the type graph TGCSD: main elements of sequence diagrams

Messages of sequence diagrams may be sent synchronously implying that
the sender is not allowed to send other messages before receiving a reply.
But the UML specification for interactions does not define a relation between
these two message types. For this reason the language LCSD additionally
includes the node type Synchronization, which marks the beginning and the
end of a synchronized interval. InteracitionUses allow to reuse existing sequence
diagrams.

GGCSD is fully presented by the two components GGCD and GGSD in [12]
and contains more than 70 rules. Figure 6 shows a simple rule, which creates
a Lifeline for an object and connects it to the ConnectableElement specifying
the role this object executes in the interaction. Additionally it is linked to
the enclosing interaction and a first anchor point is inserted. The negative

260

Hermann, Ehrig, and Taentzer

createLifeline(objectName:string)

RHSLHS

1 : Interaction

represents2 : Class

1 : Interaction

name : string = objectName
 : ConnectableElement : Lifeline

lifeline

 : OccurrenceSpecification

covered

fra
gm

en
t

2 : Class

role

NAC1

1 : Interaction

 : InteractionUse

refersTo

NAC2

1 : Interaction

 : InteractionUse

fragment

293647796

Fig. 6. Rule for creating a lifeline

application conditions NAC1 and NAC2 prevent an application of the rule, if
the interaction is connected to an interaction use. They ensure, that hierar-
chical structured interactions remain consistent. This restriction in the order
of the editing steps could be eliminated by a transformation unit including
more complex rules.

3 Validation of the Graph Grammar

3.1 Testifying Multiplicity, OCL and General Constraints

Multiplicity constraints are respected by the rules of the graph grammar,
which is argued at each relevant part of the UML meta-model in Chapter
3 of [12]. The implementation of the multiplicities into the rules is handled
mainly by application conditions and well-formedness rules are also argued to
be valid, independently of their formulation by natural language only or OCL.

3.2 Model Transformation: LCSD → UML

The abstract syntax of class and sequence diagrams is defined by GGCSD and
strongly corresponds to the definition of UML. As the rules of the graph gram-
mar follow the UML well-formdeness rules, which was described before, the
model transformation from each element of LCSD to the corresponding dia-
gram in UML syntax is simple and short. Some additional elements are deleted
and bidirectional edges, which are redundant in their grade of information, are
added and it is shown, that the transformation terminates and is confluent.
The validation of the existing OCL constraints by a formal transformation
and check will be available in the future.

3.3 Validation by Benchmarks

To show the coverage of UML features by GGCSD common examples have
been selected and its abstract syntax was generated by the grammar. The
examples mainly belong to a paper of the IBM Rational Library [2] and are
therefore independent benchmarks. They are concretely presented in Chapter
7 of [12] including the shown example in Figure 1 and the sequence of applied
rules leading to the instance is given for every diagram. Covered features are
for instance InteractionUses to reuse existing sequence diagrams an concurrent

261

Hermann, Ehrig, and Taentzer

ExecutionSpecifications for defining that an object calls a method which calls
a subroutine. Scenarios with parallel or alternatively occuring fragments are
other examples.

3.4 Eliminated Problems

The UML specification contains some inconsistencies and mistaken definitions.
For example the following constraint occurring on page 476 in [10] is equivalent
to true:

[2] The selector for a Lifeline must only be specified if the referenced
Part is multivalued.
(self.selector->isEmpty() implies not self.represents.isMultivalued()) or
(not self.selector->isEmpty() implies self.represents.isMultivalued())

Instead of the junction ”or” it should contain ”and”. Furthermore the speci-
fication of arguments for messages and interaction uses in the meta model is
inconsistent. On the one hand a ”ValueSpecification” is possible, on the other
hand an ”Action”. GGCSD defines typed Elements as possible argument for
both, including the specializations: ”ValueSpecification”, ”Parameter”, and
”Attribute”. A last example is the gap of information for the relation of a
synchronous message and its reply mentioned in Subsection 2.2. All detected
problems are solved in the graph grammar. Besides changing the text of OCL
constraints also some connections and nodes in the meta-model had to be
rearranged or inserted to cover the information of a diagram correctly.

4 Future Work and Conclusion

The abstract syntax of a visual model specifies all its semantic relevant prop-
erties in a very granular structured way leaving out all layout information.
LCSD with its non-descriptive but constructive definition GGCSD offers pos-
sibilities to generate well defined specifications of UML in abstract syntax,
which can be used directly in the following ways.

4.1 Model Transformation

The generated graphs by GGCSD provide a formal basis to define transfor-
mations from LCSD to some target language L2 using graph transformations
as described in [4]. As the source elements were created constructively no
constraints have to be checked to ensure the syntactic correctness. Therefore
the grammar can also be used for automatic generation of test cases used for
model transformations from sequence diagrams.

4.2 Semantics, Simulation, and Animation

A formal semantics of LCSD is planned to be applied, for example using Object-
Oriented Transformation Systems (OOTS), where OOTS are an object-oriented
variant of transformation systems of [11,14]. Simulation of a specification can

262

Hermann, Ehrig, and Taentzer

be realized by a transformation to an operational semantics, which also allows
animation. All or a selection of possible sequences, defined by sequence dia-
grams, can be tested to show on the one hand the behavior of the modeled
component and on the other hand liveliness, safety, and security properties.

4.3 Editor

In a next step the grammar shall be extended to deliver enough editing rules
to automatically generate a syntax directed editor. The TIGER project [8] de-
velops an Eclipse plug-in, which allows defining a graph grammar, connecting
the abstract syntax with concrete layout information and generating a syntax
directed editor for the language as new Eclipse plug-in. This editor can be used
for modeling in the common concrete syntax but generating automatically the
precise structured abstract syntax.

References

[1] R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling
with Graph Transformation for Efficient Visual Language Definition and Model
Manipulation. In M. Wermelinger and T. Margaria-Steffens, editors, Proc.
Fundamental Aspects of Software Engineering 2004, volume 2984. Springer
LNCS, 2004.

[2] Donald Bell. “UML’s Sequence Diagram”. URL: http://www-128.ibm.com/
developerworks/rational/library/3101.html, 4(th) August 2005.

[3] Werner Damm and David Harel. “LSCs: Breathing Life into Message Sequence
Charts”. Number 19(1):45-80 in Formal Methods in System Design. 2001.

[4] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-
Gyapay. Termination criteria for model transformation. In M. Wermelinger
and T. Margaria-Steffen, editors, Proc. Fundamental Approaches to Software
Engineering (FASE), volume 2984 of Lecture Notes in Computer Science, pages
214–228. Springer Verlag, 2005.

[5] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Constraints and
application conditions: From graphs to high-level structures. In F. Parisi-
Presicce, P. Bottoni, and G. Engels, editors, Proc. 2nd Int. Conference on Graph
Transformation (ICGT’04), LNCS 3256, pages 287–303, Rome, Italy, October
2004. Springer.

[6] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. EATCS Monographs in TCS. Springer, 2006. to appear.

[7] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors,
Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), Rome, Italy.
LNCS 3256, Springer, 2004.

263

Hermann, Ehrig, and Taentzer

[8] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual
editors as eclipse plug-ins. In Proc. 20th IEEE/ACM International Conference
on Automated Software Engineering, IEEE Computer Society, Long Beach,
California, USA, 2005.

[9] Object Managment Group et al. Meta Object Facility (MOF) 2.0 Core
Specification, available specification (ptc/04-10-15). Object Managment
Group, August 2005. URL: http://www.omg.org/cgi-bin/apps/doc?ptc/
04-10-15.pdf.

[10] Object Managment Group et al. “Unified Modeling Language: Superstructure
version 2.0, Specification (formal/05-07-04)”. Object Managment Group,
August 2005. URL: http://www.omg.org/cgi-bin/apps/doc?formal/
05-07-04.pdf.

[11] M. Grosse-Rhode. Semantic Integration of Heterogeneous Software
Specifications. In W. Brauer, G. Rozenberg, and A. Salomaa, editors,
Monographs in Theoretical Computer Science, An EATCS Series, 2003.

[12] Frank Hermann. “Typed Attributed Graph Grammar for Syntax Directed
Editing of UML Sequence Diagrams”. diploma thesis, Technical University
of Berlin, Department for Computer Science, 2005. URL: http://
tfs.cs.tu-berlin.de/Diplomarbeiten/TFSdipl/05-F-Hermann.pdf.

[13] Olaf Kluge. Compositional Semantics for Message Sequence Charts based on
Petri Nets. PhD dissertation, Technical University of Berlin, Department of
Electrical Engineering and Computer Science, May 2002.

[14] Andreas Kniep. “Object-Oriented Transformation Systems”. diploma thesis,
Technical University of Berlin, Department for Computer Science, 2005.

[15] Oliver Köth and Mark Minas. Abstraction in Graph-Transformation Based
Diagram Editors. In Graph Transformation and Visual Modeling Techniques -
GT-VMT 2001, volume 50 of Electronic Notes in Theoretical Computer Science.
Elsevier Science, 2001.

[16] Sabine Kuske. Transformation Units - A Structuring Principle for Graph
Transformation Systems. PhD dissertation, University of Bremen, Department
of Mathematics and Computer Science, February 2000.

[17] Yong Xia. A Language Definition Method for Visual Specification
Languages. PhD dissertation, University of Zürich, Department of Economics,
January 2005. URL: http://www.ifi.unizh.ch/ifiadmin/staff/rofrei/
Dissertationen/Jahr 2005/thesis xia.pdf.

264

