
E
le

ct
ro

ni
c 

C
om

m
un

ic
at

io
ns

 o
f 

th
e 

E
A

SS
T

ELECTRONIC COMMUNICATIONS OF THE EASST

Volume 1

Proc. of 3rd International Workshop on Graph Based Tools

ISSN 1863-2122

Evolutionary Layout of Graph Transformation Sequences

Susanne Jucknath-John and Dennis Graf and Gabriele
Taentzer

12 pages, 2006

Guest Editors:
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
Homepage ofELECTRONIC COMMUNICATIONS OF THE EASST: http://www.easst.org/eceasst



ELECTRONIC COMMUNICATIONS OF THE EASST

Evolutionary Layout of Graph Transformation Sequences

Susanne Jucknath-John * and Dennis Graf * and Gabriele Taentzer *
*Technical University of Berlin, Germany

Abstract. Graph transformation is used in various different research areas and has been im-
plemented in several tool environments. However, the layout of graph transformation sequences
is often perceived as not optimal and remains to be a difficult task. This is partly due to the
slightly different requirements for layouting graph transformation sequences compared to stan-
dard graph sequences. In this paper, we clearly define these special requirements and present
a layout algorithm which fulfills them. This layout algorithm allows the user to keep track of
changes during transformation steps by introducing a concept of node aging and protection of
senior node positions in the layout. Furthermore, this layout algorithm introduces a concept of
layout patterns. We extended the well-known spring embedder layout algorithm by these new
concepts and implemented the new algorithm in AGG, an environment for Attributed Graph
Grammars. The layout algorithm has been tested with various graph grammars. A brief outlook
describes how this layout algorithm can also be used for different kinds of graph sequences, e.g.
sequences of successively developing class diagrams.

Keywords: graphs, graph layout, graph transformation

1 Introduction

The motivation for this work arose in two different areas. We started with the problem to preserve the
mental map [1] of sucessively developing class diagrams. Available IDEs like Eclipse with an UML
plugin by Omondo usually layout each class diagram separately which makes it hard to realize the areas
of the graph which have changed, vanished or were newly introduced. Our approach here is to consider
sequences of class diagrams not sequences of single diagrams, i.e. to consider the evolution of one initial
diagram over time. Such an evolution can be naturally described by a graph transformation sequence.
The next problem arose to layout graph transformation sequences adequately. A problem which also
has not been sufficiently handled by the available tools. Usually graph transformation sequences can be
considered as incomplete graph sequences in the sense that new graphs can be added as long as rules are
applicable. Thus, special layout problems arise also here. Since graph transformation is a research area
by its own with a wide range of applications, we focus on layouting of graph transformation sequences
in this paper and present an implementation of a new layout algorithm in AGG [2] (an environment for

VOLUME 1 1



EVOLUTIONARY LAYOUT

Attributed Graph Grammars).
The common requirements for layouting a graph sequence include the highest single layout quality and

the lowest difference between two successive layouts. We extended this set of requirements by taking
also the layout of transformation rule into account and by the option for future extensions of graph
sequences without ruining the layout. Existing layout algorithms fulfill the common requirements, but
not the additional requirements for layouting graph transformation sequences. Therefore, we extended an
existing layout algorithm, the well-known spring embedder [6], by two new concepts: First, the concept
of node aging during the sequence with the protection of senior nodes, and second, the concept of layout
patterns have been incorporated. The persistence of node positions throughout a sequence is most helpful
to preserve the mental map. Especially the concept of aging was the reason to name our algorithm an
evolutionary layout algorithm. The second concept presents layout patterns as a visible representation of
a transformation rule.
The paper is organized as follows: In Section 2, we give a short overview on an integrated development

environment for graph transformation system, called AGG, and review the main graph drawing concepts
as far as needed to present our new layout algorithm. The evolutionary layout algorithm itself is explained
in Section 3. The implementation of this algorithm as well as its evaluation along two sample graph
grammars are presented in Section 4. The conclusion and outlook follow in Section 5.

2 Background

First, we give a short overview on the graph transformation environment AGG which function as platform
for the implementation of our new layout algorithm. Thereafter, we focus on the necessary background
for presenting the new layout algorithm, including the offline graph drawing problem, layout quality
metrics and the original spring-embedder layout.

2.1 Graph Transformation Environments

Several graph transformation environments, like Progres [2], AGG [3], Fujaba [4], Groove [5], have
been developed with diverse functionality offered. Although these environments differ in the kinds of
graphs and their manipulation, they all have to present graphs resulting from transformations. Therefore
they meet similar problems in layouting graph transformation sequences. We have used AGG as a case
study on requirements for a layout on graph transformation sequences and integrated our resulting layout
algorithm into this tool.
AGG [3] is an integrated development environment for algebraic graph transformation systems. It

consists of several visual editors to develop graphs and rules, an interpreter, and a set of validation
tools for graph transformation systems. The editor provides a visual layout of AGG graphs similar
to UML object diagrams. For a first impression of AGG see the screen shot in Fig. 1. The visual
interpreter supports transformation of graphs in two different modes: stepwise and as long as possible.
AGG supports the algebraic approach to graph transformation [7]. Its graphs may be typed and attributed
by Java objects. Note that in AGG, the positions of nodes and edges do not store any syntactic or semantic
information, i.e., the layout of a graph is just a matter of presentation for the sake of readability. But the
layout is of considerable importance for a user, although it does not bear any relevant information in the

2



ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 1: AGG - Attributed Graph Grammar Environment

first place. Due to the fact that the problem of automatically computing a reasonable layout of graph
transformation sequences is hard, it has been solved in AGG in a quite simple way up to now.

2.2 Offline Graph Drawing Problem

The offline graph drawing problem [8] describes the following trade-off for a given graph sequence
G0...Gn and their corresponding layoutsL0...Ln:

• The qualityρLi of every single layoutLi should be as optimal as possible.

• The mental distanceδLi,Li+1 from one layoutLi to its successor layoutLi+1 should be small.

VOLUME 1 3



EVOLUTIONARY LAYOUT

• The resulting quality Q of the whole sequence results in the sum of everyρLi minus everyδLi,Li+1 ,

QL0..Ln =
n∑

i=0

ρLi −
n∑

i=1

δLi−1,Li (1)

Approaches to measureρ (the single graph layout quality) andδ (the mental distance between two
graphs) have been described in several articles beforehand [9, 10, 11, 12, 13]. We present and discuss a
specific definition forρ andδ in our example in Section 4.
The offline graph drawing problem has been solved for complete sequences of graphs by foresighted

graph layout [14]. Foresighted graph layout offers a number of different approaches as e.g. to use a super
graph which includes every graph of the sequence as subgraph. Thus the layout of every subgraph is part
of the super graph layout. The position of a single node is very steady this way and the chance to find
a compromise between the requirements for single layouts is rather good. But this compromise layout
works only as long as no new graphs are added to the sequence. This is the reason, why this solution
does not fit well for incomplete graph sequences.

2.3 Spring Embedder Layout

The spring embedder layout[6] is a force-driven layout which is based on an energy model. Every node in
this energy model contains attractive forcesfa and repulsive forcesfr. Therefore, the edges are modeled
as springs which have a preferred length, but which may be stretched or compressed to serve the node‘s
attracting or repulsive forces. Attracting forces occur between incident nodes, while nodes which are not
connected by edges, are separated by repulsive forces. The attracting forcesfa are described by

fa(d) =
d2

k
(2)

and the repulsive forcesfr are described by

fr(d) = −k2

d
(3)

whered describes the current distance of two nodes andk denotes the minimal space around a node
which should be empty. The algorithm computes the layout in an iterative way. In each iteration step,
the sum of all attracting and all repulsive forces is computed for each node. Then, each node gets a new
position such that the overall energy is reduced. The aim is a system which is as balanced as possible,
i.e. each node has as little energy as possible. The next idea is to give nodes a higher flexibility to move
around in first iterations and to restrict this general flexibility with each further iteration until the nodes
reach a stage where they can barely move. This process can be compared with a cooling down process,
thus the function to describe this process is called thecooling function. That means nodes is given a
temperature which defines a maximum velocity at each iteration step.

3 Evolutionary Layout of a Graph Transformations Sequence

This section includes the problem definition, our new layout algorithm and its implementation.

4



ELECTRONIC COMMUNICATIONS OF THE EASST

3.1 Problem definition

The requirements for layouting instance graphs can be described by the offline graph drawing problem
as discussed in the previous section. We extend this problem description by additional requirements
for incomplete graph sequences: For a given graph sequenceG0...Gn with their corresponding layouts
L0..Ln:

1. The qualityρLi of every single layoutLi should be as optimal as possible.

2. The mental distanceδLi,Li+1 from one layoutLi to its successor layoutLi+1 should be small.

3. The graph sequence may have future extensions, without losing the layout‘s quality.

4. The changes between two graphs should be easily recognizable in the layout of two subsequent
graphs, e.g. the layout of the corresponding transformation rule should be taken into account.

The original graph drawing problem covers only the first and the second topic.

3.2 Evolutionary Layout Algorithm

None of the existing graph layout algorithms we have considered beforehand, fulfilled all the require-
ments given above. This is not to say that they are doomed to produce a non-optimal layout, but it
depends on the specific data how good the layout turns out to be. Especially changes by transformation
rules can or cannot be recognizable in the layout, dependent on if they are part of the algorithm spec-
ification. We wanted to improve the situation by introducing these requirements to a layout algorithm
and decided to adapt an existing algorithm. A spring-embedder layout [6] is easily extensible, since its
energy model suits very well for integration new requirements. Even if the requirements are rivals (best
single layout vs. least mental distance between two layouts), each requirement can get a certain amount
of impact on the whole layout. A further requirement concerns the specification of graphs based on rules.
To support the user‘s recognition of changes by a transformation rule in the instance view, we relate each
transformation rule to a specific layout and call this combination a layout pattern.

Iterative Layout Computation The first graph of a sequence is taken as an initial graph and its layout
is not to be altered by other layouts. Usually, the layout of graph transformation sequences does not
distinguish between different node types, thus attracting forcesfa are the same for all nodes and repulsive
forcesfr exist as soon as two nodes are placed nearby. Thus, attracting and repulsive forces are computed
as in the spring embedder layout.
The original spring embedder layout algorithm uses the metaphor of a temperature to express the po-

sition flexibility of each node and a cooling function to reduce this temperature in each iteration of the
algorithm. This asymptotic cooling function of the temperaturet is described by

t(i) = t(i− 1)− t(i− 1)
i + 1

(4)

for the iterations withi > 0, and by an initial temperaturet(0) = 100 for the initial layout. An
alternative asymptotic function could also be used to describe the cooling process.

VOLUME 1 5



EVOLUTIONARY LAYOUT

Protection of senior nodes The mental difference between two layouts can be reduced, if the same
node has similar positions in both layouts. To fulfill this requirement, we introduced the concept of
aging where a node gets older if it is included in the next graph. The older a node is, the less it should
be moved. If possible, a younger node is moved instead. This can be realized by extending the cooling
function by a specific temperaturetN (i) for each nodeN in iteration stepi by integrating its ageaN :

tN (i) = tN (i− 1)− tN (i− 1)
i− aN + 1

(5)

This way, the older nodes have less movement flexibility. Since the nodes contained in the initially
layouted graph, are the eldest ones, they hardly do not have any move flexibility.

Shock-aging The move flexibility of a single node depends highly on its age, but even more on the
adjacent nodes with their attractive forces to their neighbors. If one node is taken away, its former
neighbors have abruptly much more move flexibility. This can cause dramatic changes in the layout of
this graph area. On the one hand, these changes draw attention which is good. On the other hand, it
can ruin the viewer’s mental map. Thus an extension was integrated not to stop, but to slow down the
general development of occupying the space left behind by deleted nodes. This process can be realized
by giving adjacent nodes some extra age, by so-called shock-aging. Of course, this can only be useful in
later layouts, not in the first layout after the initial layout. The actual effect would come later, but this is
acceptable, since also the mental map has to be built up in the first layouts.

Layout patterns Besides the general limitation by the temperature, special layout patterns can limit
the flexibility of individual nodes. A layout pattern is defined as a smaller graphGLP with its layout
LLP . If GLP can be recognized as a pattern in a larger graphG, then layoutL of G is influenced by
LLP . For example,GLP may be defined by a pair of parent and child nodes andLLP can be defined by
placing a child node always below its parent node. This layout pattern forces a graph to grow downward,
and the typical appearance of a tree evolves over time.

3.3 Implementation

To integrate the new layout algorithm into AGG, the first adjustment concerns the graph structure model
in AGG which originally contained very simple layout information only. For the new layout algorithm,
this layout data has been enriched by the following items: node age, preferred edge length, edge-binding
force (resulting from the node forces), and a kind of bounding box around each node to indicate where
other nodes may not be placed.
To set transformation rules into relation with the layout of graph transformation sequences, a general

analysis has to take place to determine new nodes, deleted nodes and constant nodes. The analysis results
are used to define the age of nodes: the age of constant nodes is raised, while new nodes are given an
age of 1. Deleted nodes are treated differently, because they change the layout quality metric and have
an effect on the layout of their neighbors (shock-aging).

6



ELECTRONIC COMMUNICATIONS OF THE EASST

The implemented quality metrics are described in detail by an example in Section 4 which was gener-
ated by AGG after integrating the new layout algorithm. Other details of the integration need a deeper
knowledge about the internals of AGG and thus, are not part of this paper, but they are presented in [15].

4 Examples

In this section, we evaluate the new layout algorithm by two examples. A number of quality metrics for
layout are implemented in AGG and discussed for one of the examples presented.

Example: Tree Generation The first example presents the evolution of a tree (see two graphs of the
corresponding sequence in Fig. 2). The layout pattern for this graph grammar forces every child node
being placed below its parent node. Furthermore, child nodes have a similar distance to each other which
is caused by the spring embedder layout. This effect is not described by a pattern itself, but fits very well
into the common picture of a tree with a half-radial layout.

Figure 2: Tree Generation: Graphs 17 and 23

Example: Model Transformation The second example presents the layout of a standard model trans-
formation problem [16] which occurs in several variants. The source language consists of simple class
diagrams, a sample diagram (in abstract syntax format) is presented in the main view of Fig. 1. The target
language consists of schemes for database tables, one sample schema is presented in Fig. 5. A reference
structure is established as helper structure for the model transformation which relates classes with tables
and attributes with columns. On top of Fig. 1 a transformation rule is presented which creates a table
for each top level class. Other transformation rules insert a column for each attribute and finally foreign
keys (FKey) for associations.
The graph transformation sequence presented consists of 26 graphs and besides the first one (Fig. 1),

we decided to present explicitly the second and third as well as the last one (Figs. 3 - 5). If the start
layout is easy to understand and the following layout differences are small, then a user may keep track

VOLUME 1 7



EVOLUTIONARY LAYOUT

even if the graph (and its layout) gets more and more complicated. To discuss this in more detail, please
take a look at Table 1.

A B C D E F G H I J K
age #n #e nov neov exing edif nmov δsingle δmental δresult

0 10 10 45 0 27 9 N/A 0.2 + 20 + 0.3 = 20.5 N/A N/A
1 12 12 0 0 1 142 0 12 + 24 + 12 = 48 11.8 36.2
2 14 15 0 3 2 82 13 14 + 7.2 + 5 = 26.2 6.4 19.8
3 14 16 0 3 2 83 8 14 + 7.5 + 5.3 = 26.8 5.8 21
4 16 18 0 2 2 81 11 16 + 11.3 + 6 = 33.3 5.2 28.1
5 19 24 0 10 6 109 80 19 + 3.9 + 3.4 = 26.3 8.7 17.6
6 22 30 0 8 6 103 75 22 + 5.8 + 4.3 = 32.1 6.8 25.3
7 24 33 0 12 16 92 100 24 + 4.4 + 1.9 = 30.3 6.9 23.4
8 25 35 0 11 15 104 185 25 + 5 + 2.2 = 32.2 10.4 21.8
9 25 36 0 11 16 101 55 25 + 5.1 + 2.1 = 32.2 5 27.2
10 24 35 0 11 15 84 77 24 + 4.9 + 2.2 = 32.1 5.6 26.5
11 23 33 0 6 15 86 76 23 + 8 + 2 = 33 6 27
12 22 31 0 15 7 84 127 22 + 3.3 + 3.9 = 29.2 8.5 20.7
13 21 27 0 5 7 52 99 21 + 8 + 3.4 = 32.4 6.6 25.8
14 20 25 0 5 6 85 116 20 + 7.5 + 3.6 = 31.1 9.2 21.9
15 19 23 0 4 4 54 115 19 + 8.4 + 4.6 = 32 8.3 23.7
16 18 21 0 1 0 28 63 18 + 19.5 + 21 = 58.5 4.8 53.7
17 17 21 0 0 0 23 44 17 + 38 + 21 = 76 3.6 72.4
18 16 19 0 3 0 36 64 16 + 11.7 + 19 = 46.7 5.9 40.8
19 15 18 0 0 0 15 104 15 + 33 + 18 = 66 7.7 58.3
20 14 17 0 1 0 45 116 14 + 15.5 + 17 = 46.5 10.9 35.6
21 13 16 0 0 0 23 115 13 + 29 + 16 = 58 10.2 47.8
22 12 15 0 2 0 29 124 12 + 9 + 15 = 36 12.2 23.8
23 11 15 0 0 0 14 183 11 + 26 + 15 = 52 17.5 34.5
24 10 14 0 0 0 12 45 10 + 24 + 14 = 48 5.3 42.7
25 9 13 0 0 0 11 86 9 + 22 + 13 = 44 10.3 33.7
26 8 12 0 0 0 12 49 8 + 20 + 12 = 40 7.1 32.9

Table 1: Quality Metrics for Example 2

Figure 3: CD2DB-Example: Graph 2

8



ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 4: CD2DB-Example: Graph 3

Figure 5: CD2DB-Example: Graph 26

Columns A, B, and C describe some statistical data. Column A holds the graph position in the sequence
which can be described as graph age. Columns B and C hold the number of nodes and edges, respectively.
Undesired effects for a single layout are described in columns D, E, F and for the mental distance in
columns G, H, the conclusions follow in columns I, J, K. The semantics of table entries is described in
more detail below. These metrics are weighted according to the graph drawing problem:

1. Weighting of single layout qualityδsingle:
A node overlapping (D) is worse than a node-edge-overlapping (E) which is itself worse than a
edge crossing (F). In an ideal layout, overlapping nodes would not occur, but they cannot always
be prevented, given a large number of edges with strong coupling. Every overlapping must be seen

VOLUME 1 9



EVOLUTIONARY LAYOUT

in relation to the number of elements:

δsingle =
B

D + 1
+

(B + C)
E + 1

+
C

F + 1
(6)

2. Weighting of mental distanceδmental:
Normally, movements of nodes (H) and edges (G), both values given in pixels, are undesirable for
a stable mental map. Again, a movement of elements must be seen in relation to its number:

δmental =
H

B
+

G

C
(7)

3. Resulting layout qualityδresult:
To summarize these effects, we give the quality of a single layout in column I, in column J the
mental distance to the previous layout and in column K the resulting quality as described by (1)
are shown.

It turns out that node-overlappings do not occur after the first transformation step, a small number of
node-edge overlappings do occur, and so do a larger number of edge crossings. But this is only the
situation for the first 15 layouts, the next 11 layouts contain no node-overlappings, no edge-crossings
and very few node-edge overlappings. It is recognizable that the general single layout qualityρ does
not differ much in these first 15 layouts. This is caused by a balance of a bonus for placing more nodes
without overlapping and a malus for getting more edge-crossings with more edges involved. But the
increase of edge-crossings is also due to the stronger coupling in these graphs and cannot always be
avoided.
First, we can summarize that the disturbance is comparatively small given the number of edges and

their coupling. Second, the layout algorithm is able to turn back to a better layout in the end, given a
small number of nodes. Many layout algorithms tend to stick to bad layouts, once a bad layout has been
reached. This is not the case for the evolutionary layout presented. The evolutionary layout can come
back to better layout, as shown e.g. in Fig. 5.

5 Conclusion

In this paper, we discussed the difficulties for layouting incomplete graph transformation sequences. We
stated the requirements for a good layout of graph transformation sequences and tested several existing
layout algorithms according these requirements. Although a number of solutions exist already to handle
complete (e.g. non-evolving) graph sequences, all of them would have to be adapted for incomplete
sequences, if possible. We have chosen to adapt the spring-embedder layout algorithm, because it suits
best to serve the different requirements, even if they are contrary to each other. This is already the case
if we want to get the best layout for a single graph on the one hand, and a minimal distance to the
previous layout on the other hand. Our adapted algorithm can also include layout pattern to optimize
future sequence expansion.

10



ELECTRONIC COMMUNICATIONS OF THE EASST

The basic idea of the new layout algorithm was to consider a graph sequence not as a series of inde-
pendent graphs, but as an evolution of one graph. In this context, every node has the concept of aging,
restricting the flexibility of node positions. Older nodes which exist already for several graph genera-
tions, should move less than younger nodes. One effect of this aging concept is the support of a mental
map, since the viewer’s mind gets used to the former graph and can easily recognize longer living parts
in later successors. The conflict between the requirements, i.e. to keep a position for an older node and to
have an optimal layout for the actual graph, has been expressed by an adapted spring-embedder layout.
This layout algorithm implements a compromise between the best single layout for a graph and the least
mental distance of a graph to its predecessor. This compromise gets more fuzzy, if additional require-
ments arise given by layout patterns. On the one hand, the concept of layout patterns is important to make
transformation rules more recognizable in the layout. On the other hand, if a layout pattern becomes too
complex, e.g. more than the one-node to two-nodes-plus-edge relation given in our example in Section 4,
it may behave contrary to the user’s mental map. For this reason, the usage of layout patterns is optional
in our prototype implementation.
We sketched how the new layout algorithm has been integrated into AGG and discussed the value of

this layout algorithm by two examples. Our algorithm produces readable layouts and can be used for a
graph transformation sequence as well as for incomplete sequences of class models [17] or other graph-
like diagrams which are converted to the AGG graph format. Although we motivated that existing layout
algorithms are not well suited to layout incomplete graph sequences, because they do not fulfill all the
requirements, it would be interesting to compare the practical results produced by different layouters
for graph sequences in future work. Future work concerns improved layout patterns for class diagram
sequences. Furthermore, we also like to consider developer dependency graphs [18] and to layout them
adequately.

References

[1] K. Misue, P. Eades, W. Lai, and K. Sugiyama, Layout Adjustment and the Mental Map,Journal
of Visual Languages and Computing 6, 183-210, 1995.

[2] A. Scḧurr, A. Winter, A. Zündorf: PROGRES: Language and Environment, inHandbook of
Graph Grammars and Computing by Graph Transformation, volume 2: Application, Languages
and Tools, World Scientific, 1999.

[3] C.Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Language and environment,Hand-
book of Graph Grammars and Computing by Graph Transformation, volume 2: Application,
Languages and Tools, World Scientific, 1999.

[4] T. Fischer, J̈org Niere, L. Torunski, and Albert Z̈undorf, Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language, in Proc. of the 6th International Workshop
on Theory and Application of Graph Transformation (TAGT), Paderborn, Germany (G. Engels
and G. Rozenberg, eds.), LNCS 1764, pp. 296–309, Springer Verlag, November 1998. Available
athttp://www.fujaba.de.

VOLUME 1 11



EVOLUTIONARY LAYOUT

[5] A. Rensink, The GROOVE simulator: A tool for state space generation. In M. Nagl and J. Pfalz,
editors, Applications of Graph Transformations with Industrial Relevance (AGTIVE), Volume
3062 of Lecture Notes in Computer Science, Springer-Verlag, pp. 479-485, 2003.

[6] T.Fruchterman, E.Reingold, Graph Drawing by Force-Directed Placement,Software Practice
and Experience 21, p. 1129 - 1164, 1991.

[7] H. Ehrig, K. Ehrig, U.Prange, and G. Taentzer,Fundamentals of Algebraic Graph Transforma-
tion, EATCS monographs, Springer, 2006

[8] S. Diehl, C.Goerg, A. Kerren, Foresighted Graphlayout,
Technical Report A/02/2000, FR 6.2 - Informatik, University of Saarland, 2000.

[9] P. Eades, A Heuristic for Graph Drawing,Congessus Numerantium 42p. 149 - 160, 1984.

[10] S. Bridgeman, R. Tamassia, Difference Metrics for Interactive Orthogonal Graph Drawing Al-
gorthms,Lecture Notes in Computer Science 1547p.57 - 71, 1998.

[11] M.K. Coleman and D.S. Parker, Aesthetics-based based Graph Layout for Human Consumption.
Software Practice and Experience, 26(12):p.1415-1438, 1996

[12] R. Davidson and D. Harel. Drawing Graphs nicely using Simulated Annealing.ACM Transac-
tions on Graphics, 15(4): p 301-331, 1996.

[13] H.C. Purchase, M. McGill, L. Colpoys and D. Carrington. Graph Drawing Aesthetics and the
Comprehension of UML Class Diagrams, An empirical study, Proceedings of the Australian
Symposium on Information Visualisation, Eades, P. and Pattison, T. (eds), Australian Computer
society, pp129-137, 2001

[14] S. Diehl and C. Goerg, Graphs, They are Changing,Proceedings of 10th International Sympo-
sium on Graph Drawing, Irvine, California, August 26-28, 2002.

[15] D.Graf,Evolutionaeres Layout von Graphsequenzen unter Nutzung von anwendungsspezifischen
Vorwissen, Master Thesis, TU Berlin, 2006

[16] Model Transformation in Practice, Satellite Workshop of MODELS 2005,
http://sosym.dcs.kcl.ac.uk/events/mtip

[17] S. Jucknath-John, D.Graf and G. Taentzer, Preserving the Mental Map during the Development
of Class Models,Proceedings of the ACM Symposium on Software Visualization SoftVis 2006,
Brighton, UK, September 4-5, 2006.

[18] S. Jucknath-John and J.Bochnia, Code Dependencies meet Developer Dependencies,Proceed-
ings of IASTED International Conference on Software Engineering SE 2006, Innsbruck, Austria,
February 13-16, 2006.

12


