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Abstract. Recently, many researchers are working on semantics preserving model transforma-
tion. In the field of graph transformation one can think of translating graph grammars written in
one approach to a behaviourally equivalent graph grammar inanother approach. In this paper
we translate graph grammars developed with theGROOVE tool to AGG graph grammars by
first investigating the set of core graph transformation concepts supported by both tools. Then,
we define what it means for two graph grammars to be behaviourally equivalent, and for the
regarded approaches we actually show how to handle different definitions of both - application
conditions and graph structures. The translation itself isexplained by means of intuitive exam-
ples.
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1 Introduction

Models in general are representations of certain structures, fulfilling some properties, which may be given
by a specification. Transforming those models can be defined in many ways, e.g. by XSLT style sheets
[18] developed by the W3C to keep the format but possibly change the internal structure or semantics.
Furthermore the finalization of OMG’s language QVT [10] is underway; there are also implementations,
e.g. for Eclipse: GMT [3]. Besides, there is also graph transformation, putting model transformation on a
formal basis. The transformation is defined by rules, which are defined by pure mathematical constructs,
but using a very intuitive visual notation. During the last three decades there has been much interest
in developing suitable approaches and analyzing their properties in means of correctness, concurrency,
termination and confluence. Most of them consider categorical constructs like the single, double, and
triple pushout approach, single and double pullback, but also triple graph grammars [14] being especially
suitable for specifying the connections between a source and target model. Transforming UML models
by graph transformation rules is especially supported by the tool VIATRA [2], which is part of the

VOLUME 4 1



TRANSLATING GRAPH TRANSFORMATION APPROACHES

mentioned GMT project.
Again graph transformation systems are models itself, so they can be translated to other models. And

there are several tools supporting the definition of a graph transformation system as well as their sim-
ulation and analysis. Some of them also support an export to XMI or to XML formats like the Graph
eXchange Language (or GXL for short) [15], but the problem isto import such a model in a tool, which
uses a different approach. Even if an import is possible, then the behaviour of the system is not neces-
sarily equal.
Two existing graph transformation tools are GROOVE [11], which is mainly developed for state space

generation and model checking, and AGG [17] supporting simulation and analysis of graph transforma-
tion systems. The translation between them shows on the one hand, how to bridge gaps between their
differences in the formal approaches, and on the other hand it facilitates the elaboration of core concepts
of graph transformation in general. The main goal of the translation is the possibility to combine the
features of both tools.
There are already special file formats to exchange graphs andwhole graph transformation systems

between tools. GXL supports the exchange of graphs, which isused e.g. between FUJABA [9] and
PROGRES [13]. However, its extension GTXL [16] for graph transformation systems stores graph
transformation systems syntactically, but the behaviour in other tools is often far from equivalent. Special
attention is asked to encode rules in a different approach, as the tools base on different approaches in
general.
In this paper we describe the translation between the mentioned tools GROOVE and AGG and define

what it means for graph grammars in both approaches to be behaviourally equivalent. Despite the fact
that these tools look quite similar when comparing the approaches – both use SPO – there have been
interesting challenges. As GROOVE handles simple graphs, i.e. graphs with simple edges only, we had
to ensure that AGG will not create parallel edges, which it allows in general. Additionally, the definitions
of (negative) application conditions are different, slightly when looking at the mathematical definitions,
but complex when trying to translate them while preserving the semantics.
The paper is structured as follows. Sect. 2 gives a short introduction to the basics of graph transfor-

mation. In Sect. 3 we introduce the two approaches playing a central role in this paper, discuss their
differences and define an equivalence relation. In Sect. 4 and Sect. 5 we elaborate on the translation from
one approach to the other and vice versa, illustrating the necessary steps using simple examples. We will
conclude with a short discussion and some remarks about further work.

2 Preliminaries

The foundations of graph transformation were developed in the early seventies, e.g. in [4], to extend the
common formalisms of one-dimensional textual rewriting toa more complex level. In the following years
various approaches were defined keeping one big advantage incommon – they automatically preserve
the specified graph structure.
In general, a graphG = 〈N,E, src, tgt〉 consists of a setN of nodesand a setE of edges, with source

andtarget functionssrc, tgt:E → N . The global set of graphs is denotedG and ranged over byG, H.
Modelling system states as graphs facilitates the specification of system evolution. Graph transforma-

tion rules are used to intuitively define in what sense the system state changes. Such a rulep : L → R
consists of a graphLp (the left-hand-side, or LHS) and a graphRp (the right-hand-side, or RHS) to-
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gether with a graph morphismrp mapping nodes and edges ofLp to those ofRp, and a set of so-called
application conditions(AC p, which are supergraphs ofLp). The application of a graph transformation
rule p transforms a graphG, the source graph, into a graphH, the target graph, by looking for an
occurrence ofLp in G (specified by a graph matchingm that satisfies the extension conditions of all
AC p) and then replacing that occurrence withRp, resulting inH. Such a rule application is denoted
asG =

p,m
==⇒ H. Here we present the most general definitions using the SPO approach, which can be

restricted to the DPO approach by adding two conditions to the application of a rule: (1) identification
and (2) dangling condition. The former requires that every element that should be deleted in the source
graph has only one pre-image in the LHS of the rule; the latterrequires that if a noden is deleted, the
rule must specify the deletion of all edges incident ton. In both approaches transformation rules can be
equipped with appropriate application conditions, which is described in [6]. For formal analysis and a
concurrent semantics definition by processes we refer to [12].

Definition 1 (Graph Production System) A graph production systemP = 〈R, G〉 consists of a set
R = {p : L ⇀ R | L,R ∈ G} of graph transformation rules and a graphG; G is said to be theinitial
graph.

As rules of a graph production system (or GPS for short) may delete nodes and edges of a graph, the
defining morphism consists of two partial functions, which is indicated by a halved arrow head.
Each graph production systemP specifies a (possibly infinite) state space which can be generated by

repeatedly applying the graph transformation rules on the graphs, starting from the initial graphGP .
This results in agraph transition system.

Definition 2 (Graph Transition System) Thegraph transition systemT = 〈S,→, I〉 generated by a
graph production systemP = 〈R, G〉 consists of a setS of states which are actually graphs (S ⊆ G); a
transition relation→⊆ S ×R× [G → G]×S, such that〈G, p,m,H〉 ∈→ iff there is a rule application
G =

p,m
==⇒ H ′ with H ′ isomorphic toH; and an initial stateI.

3 Approaches

The two approaches for which we define a semantics preservingtranslation are discussed in this section.
We will mention the formalisms used for representing modelsand for specifying their transformations.

3.1 The GROOVE Approach

The main goal of the GROOVE tool [11] is to use graphs as a formalism to model system states and
graph transformation rules to specify system behaviour andperform model checking on state spaces that
can be generated by repeatedly applying the rules on the states. The main advantage of using graphs for
modelling system states, instead of bit vectors, as used by many other model checking approaches, is the
possibility to cope with the dynamic character of systems more naturally [7].

The Formalism. In GROOVE we support the use of non-typed attributed graphs,where graphs are
set-based models consisting of three distinct sets: a setN of nodes, a global setL of labels, and a set
E ⊆ N × L × N of edges. Nodes are non-structured elements having a unique identity; edges, on the
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other hand, are identified by means of their end-points and their label, i.e. for an edgee = 〈n1, l, n2〉 ∈ E
we distinguish itssource, label, andtarget, denoted bysrc(e), lab(e), andtgt(e). As a consequence, it
is not possible to haveparallel edges, i.e.

∀e1, e2 ∈ E : src(e1) = src(e2) ∧ lab(e1) = lab(e2) ∧ tgt(e1) = tgt(e2) ⇒ e1 = e2

Currently, GROOVE supports the use of negative applicationconditions (orNAC for short) in con-
junctive form, but oneNAC cannot contain more than one connected component. The rule morphism
may be non-injective as well as the matchings to the host graphs. GROOVE does not support typing,
but uses the edge-labelling as a typing-mechanism instead.
For performing graph transformations, GROOVE applies the SPO-approach.

Input/Output. A GROOVE graph grammar is saved in the GXL [15] XML-format. Rules are saved
as single graphs, in which the rule-roles (preserve, create, delete, and NAC) are encoded in edge-labels
by adding structure to the labels. A graph production systemconsists of all the rules in a single directory
(as well as its subdirectories). In the future we plan to support the special-purpose format GTXL.

Special features. The main feature of the GROOVE engine is its ability to generate state spaces from
graph grammars. During state space generation, it checks for the occurrence of isomorphic states. Fur-
thermore, a CTL [1] model checking algorithm has been implemented checking temporal properties in
which graph structures can be used as atomic propositions. In the future we plan to implement partial
order reduction techniques based on confluence properties of transformation rules as well as abstraction
techniques which enable the verification of larger (or possibly infinite) system models.

3.2 The AGG Approach

According to the complete formalization of the SPO approachby Michael Löwe [8] in 1990 the AGG
tool [17] was developed to support an editor for graph grammars, which also offers simulation and anal-
ysis capabilities by certain criteria including termination and confluence as the most important ones.
Further developments integrated high level features beingfor instance attribution and typing. Therefore,
AGG builds a basis for various fields, e.g. formal model transformation controlled by graph transfor-
mation, but also the definition of visual modelling languages with the possibility of an automatic editor
generation, using Tiger [5].

The Formalism. Similar to GROOVE the AGG tool uses the SPO approach to perform graph trans-
formations, but the fundamental description of graphs differs from that in GROOVE. Graphs with multi-
ple edges between nodes are allowed as long as the multiplicity constraints in the type graph are fulfilled.
The typing itself is handled by a type graphT , which includes all node and edge types and for each
graphG there is a graph morphismt : G → T to this type graph. In this way, the type graph defines the
general structure of all instances. Rules are visualized byseparate graphs for the left and right hand side
as well as for the application conditions. The morphisms of arule, which define the deletion, preserva-
tion, creation and forbidden parts, are indicated by a unique naming of the nodes. Additionally, negative
application conditions are handled differently in comparison to GROOVE.
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Figure 1:NACs in AGG
Fig. 1(a) explains a simplified view toNACs in AGG. The LHSL is embedded in theNAC N ,

where identifications of parts in LHS are possible. Given a match m for the rule, a negative application
conditionN is satisfied, if there is no morphismi with additional restrictions fromN to theG making the
triangle commutative. This means that the condition forbids a certain structure around the image ofL in
G. The morphismi has to be injective on the part ofN , which is not reached byn and of course identifies
the same things asm does. In other words,i is m extended injectively by the remaining elements.
Fig. 1(b) shows the complete formal version, whereN ′ is created at runtime, if it exists. It representsN
after identifying the elements inN according to the identifications bym for the corresponding elements
in L. Now the rule is applicable atm, if there is no injective morphismi making the outer arrows
commuting:i◦n′ ◦n = m. It is sufficient that the bottom left triangle commutes, becauseL → m(L) is
justm restricted to its image and therefore surjective. In comparison to GROOVE, where the morphism
i is not necessary injective, this definition ofNACs is a restriction, but also an extension as multiple
forbidden identifications of elements inL cannot be handled in one GROOVENAC .

Input/Output. AGG features several XML-based file formats to exchange graphs and transformation
systems. Internally, AGG uses the GGX format. It can import and export graphs in GXL, also used by
GROOVE. AGG can also export graph grammars using the specialformat GTXL which is an extension
of GXL for storing entire graph transformation systems. Finally, models generated by Eclipse modelling
plugin Omondo (in OMONDO XMI) can be imported by AGG.

Special features. One main advantage of AGG in comparison to other tools is its possibility to specify
the desired graph transformation approach. The DPO approach can be used by activating the dangling
and the identification condition. Possible extensions are attribution, typing, node type inheritance, and
multiplicities for the structure part and rule amalgamation as well as application levels for the control part.
Those extensions are also of help when using the second advantage of AGG: its analysis capabilities.
Critical pairs between rules can be computed and help to showconfluence, while termination can be
checked, which can be supported by the usage of levels. Finally the simulation part allows applying
formal model transformation with the certainty to reach a valid result in means of typing in the target
language.

3.3 Behavioural Equivalence

In this paper, graph production systems in the different approaches are related to each other by defining
a bi-directional equivalence (or simulation) relation between the graph transition systems generated by
them.
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Definition 3 (behavioural equivalence)Given two graph production systemsP1 = 〈R1, G1〉 andP2 =
〈R2, G2〉 and their generated graph transition systemsT1 = 〈S1,→1, I1〉 and T2 = 〈S2,→2, I2〉,
respectively, we say thatP2 is behaviourally equivalentto (or simulates) P1 if:

∀ti = 〈si, p,m, si+1〉 ∈→1 ∃t′i = 〈s′i, p′,m′, s′i+1〉 ∈→2: p′ ∈ tr(p) ∧ s′i = tr(si) ∧ s′i+1 = tr(si+1)

wheretr is the translation function,si, si+1 ∈ G andp ∈ R.

Restrictions. In the translation from graph production systems in GROOVE to behaviourally equiva-
lent ones in AGG, and vice versa, we restrict to those GPSs notusing node or edge-attribution. Typing
in AGG is flattened to labelled-edges in GROOVE. For both approaches we require injective rule-
morphisms, while non-injective rule matchings are allowed. When translating GPSs from AGG to
GROOVE we requiren:L → N (see Fig. 1(b)) to be an inclusion, because in GROOVE it is only
possible to express so calledmerge-embargoespair-wise.

Translation Issues. When translating between GROOVE and AGG, we need to pay special attention
to: (1) parallel edges and (2) application conditions. In the GROOVE approach parallel edges are not
supported. For rules it is allowed to specify the creation ofspecific edges without requiring their absence.
The application of such rules identifies the freshly creatededges with the already existing ones.
On the other hand, when translating AGG rules to GROOVE we need to introduce a mechanism which

enables the creation of parallel edges. Therefore, we will create a ’structured edge’ in GROOVE to
reflect the original AGG edges (see Fig. 6 in Sect. 5).
As mentioned in Sect. 3, both approaches use a slightly different definition of application conditions.

Where GROOVE only allows negative application conditions containing a single connected component,
AGG supports both positive and negative application conditions containing multiple components. Ad-
ditionally, in AGG the matchings fromL to G via theNACs must be injective on the elements that
are only in theNAC , where GROOVE allows any matching. Therefore, the translation of NACs from
GROOVE to AGG is more involved than simply copying. In the translation from AGG to GROOVE
we need to handleNACs with multiple components and make sure that theNAC elements are matched
injectively by merge embargoes.

4 GROOVE to AGG

When translating GROOVE rules to AGG, the basic idea is to keep track of edges being created by
rules not having a negative application condition which forbids this edge to be present already between
the incident nodes. In general, we have to create a number of AGG rules together describing the same
behaviour as the original rule. This number is (in the worst case) exponential in the number of edges
created by the GROOVE rule.

The Algorithm. Given a GROOVE rulep, we first take the nodes ofLp andRp and create counterparts
in Lp′ andRp′ for each node and build up the rule-morphism. When translating the edges we have to deal
with preserved, deleted, and created edges. The first two types can be translated easily. Before taking
care of the created edges we first translate theNACs. EveryNAC in a GROOVE rule, in general, results
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in a set ofNACs in the AGG rule, in such a way that the AGGNACs are all possible identifications of
theNAC -only elements with otherNAC elements from the GROOVE rule.
For the edges that are created we need to perform some additional checks. If at least one of the incident

nodes of the created edge is also created, we can do the translation straightforward. The same holds for
the case when the rule contains a NAC prohibiting this edge. In all other situations, we have to copy the
AGG rule created so far. The rules will create a subset of those edges, contain a correspondingNAC

prohibiting them and the rest of those edges are preserved, instead of creating parallel edges.

Example 4 Consider theGROOVErules depicted in Fig. 2, modelling a person who can get a driving
license by attending driving school, but possibly lose it again. The first rule applied to a person object
creates the edgegotDLicence at it. As in real life, applying this rule to a person who already has a
driving license will not create another edge because ofGROOVE not supporting parallel edges, i.e.
one can not gather several driving licenses.

RHSLHS

1 : Person

gotDLicence

attend_driving_school

NACRHSLHS

1 : Person

2 : Officer

gotDLicence

1 : Person

2 : Officer

caught

1 : Person

2 : Officer

goodFriend

get_caught

1 : Person

Figure 2: Rules specifying a person getting and losing a driving license.

The second rule states that a police officer can catch a personwith a driving license breaking some law.
The person will lose his license in this case. The negative application condition prohibits the rule to be
applied when the person is a good friend of the police officer.In GROOVENACs can be non-injectively
matched. In this example, the officer himself could be the driving person and assuming most people like
themselves, the officer would not fine himself, i.e. the rule would not be applicable.
The resulting rules created by the algorithm for the left rule of Fig. 2 are shown in Fig. 3. The left

rule of Fig. 3 shows the rule creating thegotDLicence-edge with a correspondingNAC ; the right rule
represents the case in whichAGG must preserve the edge when it is already there, instead of creating a
parallel edge.

attend_driving_school[2]

LHS gotDLicence

1 : Person

RHS gotDLicence

1 : Person

NAC gotDLicence

1 : Person

LHS

1 : Person

attend_driving_school[1]

RHS gotDLicence

1 : Person

Figure 3: AGG rules created for the ruleattenddriving school

Fig. 4 shows the two rules together behaving equivalent to the right rule of Fig. 2. The upper rule
creates thecaught-edge, the lower rule preserves it.

Simulation. In order to prove the correctness of the translation we show behavioural equivalence as
defined in Definition 3, i.e. a derivation can be performed in AGG if and only if there is a corresponding
derivation in GROOVE. The next theorem also shows that this simulation starts with the same graph
and also ends with the same resulting graph.
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NACRHS

1 : Person

2 : Officer

caught

1 : Person

2 : Officer

goodFriend
get_caught[2]

LHS

1 : Person

2 : Officer

caughtgotDLicence

NAC1RHSLHS

1 : Person

2 : Officer

gotDLicence

1 : Person

2 : Officer

caught

1 : Person

2 : Officer

goodFriend
get_caught[1]

NAC2

1 : Person

2 : Officer

caught

Figure 4: AGG rules created for the ruleget caught

Theorem 5 Given a derivationG =
r,m
==⇒ G′ of a grammar inGROOVEthere is exactly one correspond-

ing derivation starting atG, which can be performed inAGG. Furthermore, the resulting graph inAGG
is againG′ and if the rule is not applicable inGROOVE it is not in AGG via the corresponding match.

GROOVE:

N [i] L // r /

m
��
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PO
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o

��

G1
//

p
/ G2

−→ AGG:
N ′[k] L′ // r′ /
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��

G1
//

p
/ G2

Proof:
(Sketch). LetG1 =

r,m
==⇒ G2 be a derivation in GROOVE as depicted in Fig. 5(a). The type graph in AGG
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(b) Construction ofNACs N̂

Figure 5: Creation ofm′ andNACs
is just the initial graph. When translating one rule to a set of new rules the right hand side is preserved
and also the nodes ofL and the nodes of the differentNACsN [i] are translated identically. NewNACs
and additional edges may be added.
A NAC N [i] is transformed to a set ofNACs for each possible overlapping ofNAC only elements

with elements inN [i], which are allowed to be identified. This is shown in Fig. 5(b), whereN̂ [i] is one
of the newNACs with n̂i : L → N̂ [i]. Additionally, for each merge embargoNAC between two nodes
in L, one separateNAC is created, forbidding this identification. In the following, the newNACs are
denoted byN̂ [j].
Additional edges have to be created when preserving edges found in a graph instead of creating parallel

ones. Therefore, we consider the edgesEc, which are created by the ruler between two existing nodes,
and which are not forbidden by anyNAC :

Ec = {e ∈ ER\r(EL) | src(e) ∈ r(VL), tgt(e) ∈ r(VL), ∀N̂ [j] : e /∈ E
N̂ [j]}

For each subsetE′

c ⊆ Ec containing the edges to be preserved, a new rule is created, which extends the
identical rule by the following regulations.
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• EL′ = EL ] E′

c, s.t. this rule can be applied if the new edges occur inG,

• EN ′[j] = E
N̂ [j] ] E′

c, therefore, theNACs are extended by the new edges,

• ∀e ∈ Ec\E′

c : create an extraNAC NC , VNC
= VL, ENC

= EL′ ]{e}, so adding an extraNAC

to prevent the application of the rule, if more edges ofEc are present inG, and

• r′ = r ∪ idE′

c
, n′

j = n̂j ∪ idE′

c
, this way the rule morphismr′ and the morphisms tôN [i] are

extended by the new edges.

• If edges are added, the functionssrc andtgt for L′ and theNACs are extended according to the
morphismsr, ni for the nodes andsrc, tgt of R.

The partial morphismmc will be used to extend the originalm and it is defined for all edges of the
biggestE′ ⊆ Ec and their source and target nodes, s.t. the triangle in Fig. 5(a) commutes:mc ◦ r = m.
All rule instances, which contain an edgee ∈ E′ in a newNAC are not applicable and cannot produce
a parallel edge. Only the rule withE′ as an extension ofL′ in L is applicable and as theses edges are
preserved, no parallel edge is produced. Note that this holds also, ifm is not injective. The matching is
extended by the new edges:m′ = m ∪ (mc ◦ r). When applying this rule viam′ the result is the same
as in GROOVE, because the rule deletes and produces the same,except that the preserved edges inE′

are not created. The transformationG =
r′,m′

===⇒ G′ can be executed in AGG and because of the translated
NACs, only if the corresponding rule was applicable in GROOVE via its match.

√

5 AGG to GROOVE

In the translation from AGG to GROOVE we need to introduce a mechanism in GROOVE to sim-
ulate the parallel edges that are possible in AGG. Next to that, we need to handle the injectivity of
NAC -only elements andNACs consisting of several components. Since the latter cannotbe simulated
in GROOVE by one rule with separateNACs, we have to create a set of GROOVE rules, which to-
gether behaving equivalent (see Definition 3). The number ofGROOVE rules together describing the
equivalent behaviour is exponential in the number ofNACs.

The Algorithm. From an AGG rulep, we can first simply iterate over the nodes ofLp andRp just
as we described in the above algorithm. When iterating over the edges, we need to create the structure
shown in Fig. 6 for every edge we encounter. For everyNAC N in the AGG rule we have to perform
some computations. First of all, the setCN of connected components ofN needs to be determined, since
for everyci ∈ CN (with 0 ≤ i ≤ n andn being the number of connected components inN ) we have
to create a separate rulepi, such thatLpi

= Lp andRpi
= Rp andNAC pi

= ci. Furthermore, we have
to ensure that every element inNAC pi

\ Lpi
is mapped injectively. This is achieved by creatingNACs

for all possible identifications ofNAC -only nodes with all other nodes in thatNAC . Finally, we have to
add an extraNAC for each original node, forbidding it to match to a proxy node.
We have to admit that representing parallel edges as shown inFig. 6 has one serious drawback. Since

we use the SPO approach to perform graph transformations, deleting the source (or target) node of the
original edge in AGG, will not result in the deletion of the entire edge-structure in GROOVE. This
means that in such cases, the resulting graph in GROOVE stillcontains somegarbage. However, since
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 : A  : B

x

 : A  : B

 : x
src tgt

x  : x
src tgt

Figure 6: Graph structure in GROOVE to represent parallel edges

these ‘dead-edges’ will never be involved in derivations they can actually be ignored or collected and
removed by special rules.

Example 6 The rule in Fig. 7 creates a nodeOR with an true-edge for two formulae1 and 2. It can
only be applied, if not both of the matched formulas have afalse-edge. Logically, this could be expressed
as¬(¬1 ∧ ¬2) which is equivalent to1 ∨ 2.

1 : Formula

2 : Formula

LHS RHS

1 : Formula 2 : Formula

 : OR
true

sub sub

1 : Formula 2 : Formula

NAC
false false

create_true_OR

Figure 7: AGG rule for disjunctive formulae

The algorithm creates the two rules shown in Fig. 8. The main focus of this conversion is on solving the
NAC with two components and possibilities of creating paralleledges. TheNAC is split meaning that
a disjunction of two formulae1 and2 is evaluated totrue, if one of them istrue. Naturally, if both are,
both generated rules are applicable, but lead to the same result: ¬(¬1 ∧ ¬2) ≡ ¬(¬1) ∨ ¬(¬2).

1 : Formula

2 : Formula

LHS RHS

create_true_OR[1]

1 : Formula 2 : Formula

 : OR  : true
src

tgt

 : sub  : sub

tgt

tgt
src src

1 : Formula

tgt

 : false

src

NAC

RHS

create_true_OR[2]

1 : Formula 2 : Formula

 : OR  : true
src

tgt

 : sub  : sub

tgt

tgt
src src

2 : Formula

tgt

 : false

src

NAC

1 : Formula

2 : Formula

LHS

Figure 8: GROOVE rules created for the rulecreatetrue OR

Simulation. Analogue to the previous section the next theorem shows the behavioural equivalence of
a system in AGG and its translation in GROOVE, according to Definition 3. Therefore, a derivation
can be performed in AGG if and only if there is a correspondingderivation in the translated system in
GROOVE. Again this simulation is stronger as it starts and ends with the same graph (up to the different
edge-structure).
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Theorem 7 Given a derivationG =
r,m
==⇒ G′ of a grammar inAGG there are corresponding derivations

starting at the translated graphtr(G), which can be performed inGROOVE. Furthermore, all resulting
graphs inGROOVEare againtr(G′) and if the rule is not applicable inAGG it is not inGROOVEvia
the corresponding match.

AGG:
N ′[k] L′ // r′ /

m′

��

? _
n′

koo

PO

R

o′��

G′

1
//

p′
/ G′

2

−→ GROOVE:

N [i] L // r /

m
��

? _
nioo

PO

R
o

��

G1
//

p
/ G2

Proof:
(Sketch). LetG1 =

r,m
==⇒ G2 be a derivation in AGG with type graphTG. The set of labelsL =

VTG ]ETG ]{p, src, tgt} contains all node and edge types and a special flagp indicating that a node in
GROOVE is a proxy for modelling parallel edges as visualizedin Fig. 6. LetG′ be one ofN ′[k], L′, R′

andG′

1 from AGG, its corresponding graphG in GROOVE is constructed as follows:

• VG = VG′ ] EG′ , nodes are all original nodes and edges,

• EG ⊆ VG × L × VG, EG = {(n, l, n) | n ∈ VG, l = type(n)} ∪ {(e, p, e) | e ∈ EG′} ∪
{(e, src, src(e)) | e ∈ EG′}∪ {(e, tgt, tgt(e)) | e ∈ EG′}, new naming edges and new edges with
source and target distinction,

The rule morphismr = (rV , rE) is constructed as follows:rV (v) = r′(v), v ∈ VL,

rE(e) =







(r′(e), l, r′(e)) , e = (e, l, e), l /∈ {src, tgt}
(r′E(e), src, r′V (n)) , e = (e, src, n)
(r′E(e), tgt, r′V (n)) , e = (e, tgt, n)

The morphismsni andm are created analogously. For each node inVL′ a NAC is generated, which
forbids a proxy edge(e, p, e) on such a node inL. To prevent identification ofNAC only elements, new
NACs are created by putting merge embargo edges between allNAC only nodes. Finally theNACs
of AGG containing several components are divided and distributed to identical rules using each combi-
nation of components of the differentNACs. Therefore, several new rules may be applicable alongm,
but all lead toG2 = tr(G′

2). If a NAC in AGG forbids the application there is no rule applicable via the
corresponding match in GROOVE, because theNACs of a specific rule imply that allNACs in AGG
are satisfied.

√

6 Discussion and Conclusion

Discussion. In this paper we have shown that rules cannot be translated one-to-one between GROOVE
and AGG rules behaving equivalent. In particular cases, however, the semantic domain may not allow to
create parallel edges of a particular kind. Take for examplea file access protocol, where processes can
have different rights for accessing a file. In such systems itdoes not make sense to store an access right
twice. GROOVE automatically ensures this constraint, while in AGG one can include a type graph in a
graph production system to which all graphs and rules must have a typing morphism. In this setting, the
type graph could constraint the number of specific edges. Then, applying a rule could make the graph
invalid, but in such cases that rule is not applicable.
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Conclusion. By comparing two graph transformation approaches, one comes to the roots of both ap-
proaches. In this paper we have shown how to transform particular graph production systems specified
in GROOVE to behaviourally equivalent ones in AGG and vice versa, by transforming their building
blocks: the transformation rules. We have explained how to deal with two concepts on which both
approaches differ essentially, being parallel edges and application conditions. Furthermore, we have il-
lustrated how to apply the mentioned algorithms on simple and intuitive examples. The major part of the
translation has already been implemented.

Further Work. The given particular translation considered on the one handdifferent categories of
graphs: graphs with simple or parallel edges, and on the other hand different definitions for the used con-
trol structures for the transformation: negative application conditions with partly different interpretation
and expressiveness. It should be possible to extend the workon both, more differences in the graph and
the control structure of transformation systems. For example the concepts of attribution and typing with
inheritance seem to be a straight forward extension and theyare already available in AGG. Furthermore,
the generalization to arbitrary rule-morphisms instead ofinjective morphisms only is worth to investi-
gate. Generalizing beyong GROOVE and AGG is difficult, sinceevery other approach brings its own
underlying formalism. The main motivation for this work was, eventually, to be able to make optimal
use of the features provided by both approaches, i.e. the analysis techniques implemented in AGG and
the model checking algorithm(s) implemented in GROOVE. In order to reach this, both tools need to be
extended to support export and import to GXL, or better GTXL.
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612.000.314).
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[5] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual editors as eclipse plug-ins.
In D. F. Redmiles, T. Ellman, and A. Zisman, editors,Proc. of the 20th IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE 2005), pages 134–143. ACM, 2005.

PROC. OF WORKSHOP ONGRAPH AND MODEL TRANSFORMATION 12

http://www.eclipse.org/gmt/


ELECTRONIC COMMUNICATIONS OF THE EASST

[6] A. Habel, R. Heckel, and G. Taentzer. Graph grammars withnegative application conditions.
Special issue of Fundamenta Informaticae, 26(3,4):287–313, 1996.

[7] H. Kastenberg and A. Rensink. Model checking dynamic states in GROOVE. In A. Valmari,
editor,Proc. of the13th Int. SPIN Workshop on Software Model Checking (SPIN’06), volume 3925
of Lecture Notes in Computer Science, pages 299–305. Springer, 2006.
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