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Abstract. Recently, many researchers are working on semantics piegemodel transforma-
tion. In the field of graph transformation one can think offtséating graph grammars written in
one approach to a behaviourally equivalent graph grammaarnither approach. In this paper
we translate graph grammars developed with @BROOVEtool to AGG graph grammars by
first investigating the set of core graph transformation @gpis supported by both tools. Then,
we define what it means for two graph grammars to be behavigugguivalent, and for the
regarded approaches we actually show how to handle diftetefinitions of both - application
conditions and graph structures. The translation itsekxplained by means of intuitive exam-
ples.
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1 Introduction

Models in general are representations of certain strustfuéilling some properties, which may be given
by a specification. Transforming those models can be defmeathny ways, e.g. by XSLT style sheets
[L8] developed by the W3C to keep the format but possibly gbeahe internal structure or semantics.
Furthermore the finalization of OMG's language Q\/TI[10] islerway; there are also implementations,
e.g. for Eclipse: GMTI[B]. Besides, there is also graph ti@msation, putting model transformation on a
formal basis. The transformation is defined by rules, whiehdefined by pure mathematical constructs,
but using a very intuitive visual notation. During the lastete decades there has been much interest
in developing suitable approaches and analyzing theirgstigs in means of correctness, concurrency,
termination and confluence. Most of them consider categlbdonstructs like the single, double, and
triple pushout approach, single and double pullback, taat twiple graph grammars]i14] being especially
suitable for specifying the connections between a sourddaget model. Transforming UML models
by graph transformation rules is especially supported lyttol VIATRA [2], which is part of the
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mentioned GMT project.

Again graph transformation systems are models itself, ep tlan be translated to other models. And
there are several tools supporting the definition of a graghsformation system as well as their sim-
ulation and analysis. Some of them also support an exportiMbof to XML formats like the Graph
eXchange Language (or GXL for shoiff) ]15], but the problermisnport such a model in a tool, which
uses a different approach. Even if an import is possible) the behaviour of the system is not neces-
sarily equal.

Two existing graph transformation tools are GROOVE [11]jalhis mainly developed for state space
generation and model checking, and AGG [17] supporting Eitimn and analysis of graph transforma-
tion systems. The translation between them shows on the amg how to bridge gaps between their
differences in the formal approaches, and on the other hdadilitates the elaboration of core concepts
of graph transformation in general. The main goal of thediation is the possibility to combine the
features of both tools.

There are already special file formats to exchange graphswaote graph transformation systems
between tools. GXL supports the exchange of graphs, whiclsesl e.g. between FUJABAI[9] and
PROGRESI[13]. However, its extension GTXL]16] for graphnsfrmation systems stores graph
transformation systems syntactically, but the behaviowther tools is often far from equivalent. Special
attention is asked to encode rules in a different approazithetools base on different approaches in
general.

In this paper we describe the translation between the mesditools GROOVE and AGG and define
what it means for graph grammars in both approaches to bevibehally equivalent. Despite the fact
that these tools look quite similar when comparing the agpghnes — both use SPO — there have been
interesting challenges. As GROOVE handles simple graphsgiaphs with simple edges only, we had
to ensure that AGG will not create parallel edges, whicHawes in general. Additionally, the definitions
of (negative) application conditions are different, stlgtwhen looking at the mathematical definitions,
but complex when trying to translate them while preservieygemantics.

The paper is structured as follows. Sédt. 2 gives a shoadntition to the basics of graph transfor-
mation. In Sectld3 we introduce the two approaches playingnaral role in this paper, discuss their
differences and define an equivalence relation. In Ekctd$Saat[b we elaborate on the translation from
one approach to the other and vice versa, illustrating thessary steps using simple examples. We will
conclude with a short discussion and some remarks abobefuitork.

2 Preliminaries

The foundations of graph transformation were developeteérearly seventies, e.g. in [4], to extend the
common formalisms of one-dimensional textual rewriting tnore complex level. In the following years
various approaches were defined keeping one big advantagmrimon — they automatically preserve
the specified graph structure.

In general, a grapliy = (N, E, src, tgt) consists of a selV of nodesand a sef’ of edgeswith source
andtargetfunctionssrc, tgt: £ — N. The global set of graphs is denotédnd ranged over b§, H.

Modelling system states as graphs facilitates the spetiificaf system evolution. Graph transforma-
tion rules are used to intuitively define in what sense théesystate changes. Sucharple L — R
consists of a grapli,, (the left-hand-side, or LHS) and a grapt (the right-hand-side, or RHS) to-
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gether with a graph morphism, mapping nodes and edgesof to those ofR,,, and a set of so-called
application conditiongAC',, which are supergraphs &f,). The application of a graph transformation
rule p transforms a grapld-, the source graphinto a graphH, the target graph by looking for an
occurrence ofL, in G (specified by a graph matching that satisfies the extension conditions of all
AC)) and then replacing that occurrence wil, resulting inZ. Such a rule application is denoted
asG 2. H. Here we present the most general definitions using the SP@agh, which can be
restricted to the DPO approach by adding two conditions ecajbplication of a rule: (1) identification
and (2) dangling condition. The former requires that evéeynent that should be deleted in the source
graph has only one pre-image in the LHS of the rule; the la#quires that if a node is deleted, the
rule must specify the deletion of all edges incident.tdn both approaches transformation rules can be
equipped with appropriate application conditions, whigldéscribed in[]6]. For formal analysis and a
concurrent semantics definition by processes we refério [12

Definition 1 (Graph Production System) A graph production syster? = (R, ) consists of a set
R={p:L— R|L,R € G} of graph transformation rules and a gragh; G is said to be thenitial
graph

As rules of a graph production system (or GPS for short) médgtel@odes and edges of a graph, the
defining morphism consists of two partial functions, whistiridicated by a halved arrow head.

Each graph production system specifies a (possibly infinite) state space which can be gatwby
repeatedly applying the graph transformation rules on tlaplts, starting from the initial grapfp.
This results in graph transition system

Definition 2 (Graph Transition System) The graph transition systeri’ = (S, —, I) generated by a
graph production systerf? = (R, G) consists of a se$ of states which are actually graphs C G); a
transition relation—C S x R x [G — G| x S, such that{G, p, m, H) €— iff there is a rule application
G 2, H' with H' isomorphic toH; and an initial statel.

3 Approaches

The two approaches for which we define a semantics presemanglation are discussed in this section.
We will mention the formalisms used for representing models for specifying their transformations.

3.1 The GROOVE Approach

The main goal of the GROOVE tod[]lL1] is to use graphs as a ftismato model system states and
graph transformation rules to specify system behaviourpemfbrm model checking on state spaces that
can be generated by repeatedly applying the rules on thesstilhe main advantage of using graphs for
modelling system states, instead of bit vectors, as usedany wther model checking approaches, is the
possibility to cope with the dynamic character of systemsenmaturally [7].

The Formalism. In GROOVE we support the use of non-typed attributed graptimgre graphs are
set-based models consisting of three distinct sets: &'seft nodes a global setl. of labels and a set
E C N x L x N of edges Nodes are non-structured elements having a unique igeatiges, on the
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other hand, are identified by means of their end-points agidltibel, i.e. for an edge= (n1,l,n9) € E
we distinguish itssource label, andtarget denoted byrc(e), lab(e), andtgt(e). As a consequence, it
is not possible to havparallel edgesi.e.

Vei,es € E :src(eg) = src(ez) Alab(er) = lab(eg) Atgt(er) = tgt(ez) = e1 = s

Currently, GROOVE supports the use of negative applicatimmditions (orNVAC' for short) in con-
junctive form, but oneVAC' cannot contain more than one connected component. The ardghism
may be non-injective as well as the matchings to the hosthgra@ROOVE does not support typing,
but uses the edge-labelling as a typing-mechanism instead.

For performing graph transformations, GROOVE applies tR®@Spproach.

Input/Output. A GROOVE graph grammar is saved in the GXLI[15] XML-format. |&iare saved
as single graphs, in which the rule-roles (preserve, crel@lete, and NAC) are encoded in edge-labels
by adding structure to the labels. A graph production systensists of all the rules in a single directory
(as well as its subdirectories). In the future we plan to supihe special-purpose format GTXL.

Special features. The main feature of the GROOVE engine is its ability to geteestate spaces from
graph grammars. During state space generation, it checkldaccurrence of isomorphic states. Fur-
thermore, a CTLIJ1] model checking algorithm has been imglet®ed checking temporal properties in
which graph structures can be used as atomic propositianthelfuture we plan to implement partial
order reduction techniques based on confluence propeftieangformation rules as well as abstraction
techniques which enable the verification of larger (or gdgsnfinite) system models.

3.2 The AGG Approach

According to the complete formalization of the SPO apprdagiMichael Lowe [8] in 1990 the AGG
tool [17] was developed to support an editor for graph gramsmahich also offers simulation and anal-
ysis capabilities by certain criteria including termiatiand confluence as the most important ones.
Further developments integrated high level features beinipstance attribution and typing. Therefore,
AGG builds a basis for various fields, e.g. formal model tfarmsation controlled by graph transfor-
mation, but also the definition of visual modelling languageéth the possibility of an automatic editor
generation, using Tigel[5].

The Formalism. Similar to GROOVE the AGG tool uses the SPO approach to parfaph trans-
formations, but the fundamental description of graphsdiffrom that in GROOVE. Graphs with multi-
ple edges between nodes are allowed as long as the mutyiamstraints in the type graph are fulfilled.
The typing itself is handled by a type grafih which includes all node and edge types and for each
graphG there is a graph morphism: G — T to this type graph. In this way, the type graph defines the
general structure of all instances. Rules are visualizeselparate graphs for the left and right hand side
as well as for the application conditions. The morphisms afle, which define the deletion, preserva-
tion, creation and forbidden parts, are indicated by a witaming of the nodes. Additionally, negative
application conditions are handled differently in compan to GROOVE.
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(a) Simplified definition ofVAC's ( ) f
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(b) Complete definition ofVAC's

Figure 1: NACsin AGG

Fig. [I(@) explains a simplified view t&/ AC's in AGG. The LHSL is embedded in théVAC N,
where identifications of parts in LHS are possible. Given &ha for the rule, a negative application
condition N is satisfied, if there is no morphisinvith additional restrictions fron¥ to theG making the
triangle commutative. This means that the condition falzictertain structure around the imagd.ah
G. The morphism has to be injective on the part 6f, which is not reached by and of course identifies
the same things as: does. In other words; is m extended injectively by the remaining elements.
Fig.[I{b] shows the complete formal version, whafeis created at runtime, if it exists. It represenfs
after identifying the elements ilV according to the identifications by for the corresponding elements
in L. Now the rule is applicable at:, if there is no injective morphism making the outer arrows
commuting:ion’ on = m. Itis sufficient that the bottom left triangle commutes, desel. — m(L) is
justm restricted to its image and therefore surjective. In colisparto GROOVE, where the morphism
i IS not necessary injective, this definition &4 C's is a restriction, but also an extension as multiple
forbidden identifications of elements incannot be handled in one GROOVEAC.

Input/Output. AGG features several XML-based file formats to exchangetgramd transformation
systems. Internally, AGG uses the GGX format. It can impod export graphs in GXL, also used by
GROOVE. AGG can also export graph grammars using the sgecimht GTXL which is an extension
of GXL for storing entire graph transformation systems.afin models generated by Eclipse modelling
plugin Omondo (in OMONDO XMI) can be imported by AGG.

Special features. One main advantage of AGG in comparison to other tools isossibility to specify
the desired graph transformation approach. The DPO appiat be used by activating the dangling
and the identification condition. Possible extensions #ribation, typing, node type inheritance, and
multiplicities for the structure part and rule amalgamatis well as application levels for the control part.
Those extensions are also of help when using the secondtadeaof AGG: its analysis capabilities.
Critical pairs between rules can be computed and help to stomfluence, while termination can be
checked, which can be supported by the usage of levels. I¥it simulation part allows applying
formal model transformation with the certainty to reach kdveesult in means of typing in the target
language.

3.3 Behavioural Equivalence

In this paper, graph production systems in the different@gghes are related to each other by defining
a bi-directional equivalence (or simulation) relationvbe¢n the graph transition systems generated by
them.
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Definition 3 (behavioural equivalence) Given two graph production systerf’s = (R, G1) and P, =
(R9,G5) and their generated graph transition systeffis = (S1,—1,1) and Ty, = (S3, —9, I3),
respectively, we say thd?, is behaviourally equivalertb (or simulate$ P if:

Vt; = (si,p,m, sip1) €—1 ;= (53, p',m/, s}y 1) €= p' € tr(p) A s = tr(si) Asiyy = tr(si1)

wheretr is the translation functiors;, s;11 € G andp € R.

Restrictions. In the translation from graph production systems in GROOW Behaviourally equiva-
lent ones in AGG, and vice versa, we restrict to those GP Sasiogy node or edge-attribution. Typing
in AGG is flattened to labelled-edges in GROOVE. For both apphes we require injective rule-
morphisms, while non-injective rule matchings are allowatfhen translating GPSs from AGG to
GROOVE we requiren: L — N (see Fig['I(B)) to be an inclusion, because in GROOVE it iy onl
possible to express so calleterge-embargogsair-wise.

Translation Issues. When translating between GROOVE and AGG, we need to payaptention

to: (1) parallel edges and (2) application conditions. k& @ROOVE approach parallel edges are not
supported. For rules it is allowed to specify the creatiospefcific edges without requiring their absence.
The application of such rules identifies the freshly creatggles with the already existing ones.

On the other hand, when translating AGG rules to GROOVE wd teatroduce a mechanism which
enables the creation of parallel edges. Therefore, we watte a 'structured edge’ in GROOVE to
reflect the original AGG edges (see HIj. 6 in SELt. 5).

As mentioned in Seckl 3, both approaches use a slightlyreiffedefinition of application conditions.
Where GROOVE only allows negative application conditioostaining a single connected component,
AGG supports both positive and negative application camubt containing multiple components. Ad-
ditionally, in AGG the matchings froni to GG via the NAC's must be injective on the elements that
are only in theNAC, where GROOVE allows any matching. Therefore, the traimsiaif NAC's from
GROOVE to AGG is more involved than simply copying. In thenskation from AGG to GROOVE
we need to handl&/A C's with multiple components and make sure thatA®C elements are matched
injectively by merge embargoes.

4 GROOVE to AGG

When translating GROOVE rules to AGG, the basic idea is tqpkeack of edges being created by
rules not having a negative application condition whictbifds this edge to be present already between
the incident nodes. In general, we have to create a numbeG@ Aules together describing the same
behaviour as the original rule. This number is (in the woeste} exponential in the number of edges
created by the GROOVE rule.

The Algorithm.  Given a GROOVE rule, we first take the nodes @f, andRz,, and create counterparts
in L,» andR,, for each node and build up the rule-morphism. When tramgjdtie edges we have to deal
with preserved, deleted, and created edges. The first tvas tgan be translated easily. Before taking
care of the created edges we first translateMA&’'s. EveryNA C' in a GROOVE rule, in general, results
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in a set of NAC's in the AGG rule, in such a way that the AG&A C's are all possible identifications of
the NAC-only elements with otheNA C' elements from the GROOVE rule.

For the edges that are created we need to perform some addlitivecks. If at least one of the incident
nodes of the created edge is also created, we can do theatrangdtraightforward. The same holds for
the case when the rule contains a NAC prohibiting this edgelllother situations, we have to copy the
AGG rule created so far. The rules will create a subset ofdlaaiges, contain a correspondiigl C
prohibiting them and the rest of those edges are presemsteaid of creating parallel edges.

Example 4 Consider theGROQVEr rules depicted in Fidl2, modelling a person who can get aidgv
license by attending driving school, but possibly lose #iag The first rule applied to a person object
creates the edgegotDLicence at it. As in real life, applying this rule to a person who altdahas a
driving license will not create another edge becaus&setOOVE not supporting parallel edges, i.e.
one can not gather several driving Ilcenses

________\

/ ———————————————— ||-HS 2. Offlcer :

LHS \ IRHS otDLlcence: : otDchence : N

) (eerson] | =1 . .

N 1: Person ’ l Person |
attend_driving_school geL caught

Figure 2: Rules specifying a person getting and losing ardrilicense.

The second rule states that a police officer can catch a pesgibra driving license breaking some law.
The person will lose his license in this case. The negatiydicgiion condition prohibits the rule to be
applied when the person is a good friend of the police office6 ROOVE NA C's can be non-injectively
matched. In this example, the officer himself could be therdriperson and assuming most people like
themselves, the officer would not fine himself, i.e. the rol@dwmnot be applicable.

The resulting rules created by the algorithm for the lefteralf Fig.[2 are shown in Fidl3. The left
rule of Fig.[3 shows the rule creating tigetDLicence-edge with a correspondingy A C'; the right rule
represents the case in whi&dG G must preserve the edge when it is already there, insteaceatiog a
parallel edge.

S m—_———— e —————— e —————— e —————— e ——————

/LHS N RHS otDchencel NAC otDchencé\ ,/LHS gotDLicence, I/RHS gotDLicence,
| | | | | |
| _1 [1: Person| |:> - :>| |

Person Person V \ Person \ Person '

attend_driving_school[1] attend_driving_school[2]
Figure 3: AGG rules created for the ridétend driving_school

Fig. @ shows the two rules together behaving equivalent ¢origpht rule of Fig.[2. The upper rule
creates theaught-edge, the lower rule preserves it.

Simulation. In order to prove the correctness of the translation we shelwatoural equivalence as
defined in Definitiod B, i.e. a derivation can be performed @ if and only if there is a corresponding
derivation in GROOVE. The next theorem also shows that tinmulgation starts with the same graph
and also ends with the same resulting graph.
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get _caught[1] :

¢ >\ 2\
AHS [2-0fer ) NAC [2-Offce

I gotDLicence ht
get_caught{2] : caug

——— e — —

—— e — —

Figure 4: AGG rules created for the rugetcaught

Theorem 5 Given a derivationG =2+ G’ of a grammar inGROOVEthere is exactly one correspond-
ing derivation starting at7, which can be performed iIRGG. Furthermore, the resulting graph hKGG
is againG’ and if the rule is not applicable iIGROOVEit is not in AGG via the corresponding match.

n; r n; ’

Ni] L R N'[k] I'>——R
GROOVE: m| PO |o — AGG: w| po o
G P Go Gy n Go

Proof:
(Sketch). LetG; ==+ G be a derivation in GROOVE as depicted in ffig- b(a). The typ@lyin AGG

L—"—R NTi] o L

m| = _~ |n ¢ 5 n((:L)) L{
G— & A

(a) Construction ofn’ ) .
(b) Construction ofVACs N

Figure 5: Creation ofn’ and NAC's

is just the initial graph. When translating one rule to a $atew rules the right hand side is preserved
and also the nodes @f and the nodes of the differentA C's N[i] are translated identically. NeWAC's
and additional edges may be added.

A NAC Nli] is transformed to a set afAC's for each possible overlapping 6fAC only elements
with elements inV|i], which are allowed to be identified. This is shown in fig. b@here N [i] is one
of the newNACs withn; : L — N[z‘]. Additionally, for each merge embargéA C' between two nodes
in L, one separat&/ AC' is created, forbidding this identification. In the followinthe newNAC's are
denoted byV[j].

Additional edges have to be created when preserving edged fa a graph instead of creating parallel
ones. Therefore, we consider the edgeswhich are created by the rulebetween two existing nodes,
and which are not forbidden by ayAC':

E. = {e € Er\r(EL) | src(e) € r(Vi), tgt(e) € r(Vi), VN[j] : e ¢ Eg;)}

For each subsdf’, C F. containing the edges to be preserved, a new rule is createch wxtends the
identical rule by the following regulations.
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e F;, = EWE., s.t this rule can be applied if the new edges occu¥,in
o Eniy = EN[j} W E., therefore, theéVA C's are extended by the new edges,

e Ve € E \E, : create an extr&d/AC N¢, Vn, = Vi, En. = ErW{e}, so adding an extr& AC
to prevent the application of the rule, if more edgespfare present iid¢7, and

o v = rUidg, nj = n; Uidg, this way the rule morphism’ and the morphisms toV[i] are

extended by the new edges.

e If edges are added, the functiosre andtgt for L’ and theNAC's are extended according to the
morphismsr, n; for the nodes anekc, tgt of R.

The partial morphismmn,. will be used to extend the originah and it is defined for all edges of the
biggestE’ C E. and their source and target nodes, s.t. the triangle i F&J.commutesm,. o r = m.
All rule instances, which contain an edge= E’ in a newNAC' are not applicable and cannot produce
a parallel edge. Only the rule with’ as an extension af’ in L is applicable and as theses edges are
preserved, no parallel edge is produced. Note that thisshadkb, ifm is not injective. The matching is
extended by the new edges’ = m U (m. o r). When applying this rule via:’ the result is the same
as in GROOVE, because the rule deletes and produces the sarae} that the preserved edgesiih

are not created. The transformatiéh% G’ can be executed in AGG and because of the translated
NACS, only if the corresponding rule was applicable in GROOV&its match. vV

5 AGG to GROOVE

In the translation from AGG to GROOVE we need to introduce &imaism in GROOVE to sim-
ulate the parallel edges that are possible in AGG. Next tg tha need to handle the injectivity of
NAC-only elements andVA C's consisting of several components. Since the latter cdyeeimulated

in GROOVE by one rule with separaf€A C's, we have to create a set of GROOVE rules, which to-
gether behaving equivalent (see Definitidn 3). The numb&sRODOVE rules together describing the
equivalent behaviour is exponential in the numbeNafC's.

The Algorithm. From an AGG rulep, we can first simply iterate over the nodesigf and R, just
as we described in the above algorithm. When iterating dweetiges, we need to create the structure
shown in Fig[® for every edge we encounter. For ev€A/C' N in the AGG rule we have to perform
some computations. First of all, the &t of connected components &f needs to be determined, since
for everyc; € Cn (with 0 < ¢ < n andn being the number of connected component&inwe have
to create a separate rykg such thatl,, = L, andR,, = R, and NAC), = ¢;. Furthermore, we have
to ensure that every element®AC,, \ L,, is mapped injectively. This is achieved by creatiNg C's
for all possible identifications aVA C-only nodes with all other nodes in thatA C'. Finally, we have to
add an extraVA C for each original node, forbidding it to match to a proxy node

We have to admit that representing parallel edges as showig.ifd has one serious drawback. Since
we use the SPO approach to perform graph transformatiofetjrdethe source (or target) node of the
original edge in AGG, will not result in the deletion of thetiee edge-structure in GROOVE. This
means that in such cases, the resulting graph in GROOVEagtithins somgarbage However, since
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Figure 6: Graph structure in GROOVE to represent parallgesd

these ‘dead-edges’ will never be involved in derivationsytiban actually be ignored or collected and
removed by special rules.

Example 6 The rule in Fig[¥ creates a nod®R with an true-edge for two formulad and2. It can
only be applied, if not both of the matched formulas hat@sa-edge. Logically, this could be expressed
as—(—1 A =2) which is equivalent ta V 2.

! I

: false false |
I

I

I

/ \
|
1: Formula
create_true OR : _ : = sub sub :
I |2:Formula| ! ' [1:Formula] [2:Formula] |
\ 7 \ 7

~

—————— - —— e e~

\ [1:Formula| [2= Formula|/:

~

—_———— e e — —

Figure 7: AGG rule for disjunctive formulae

The algorithm creates the two rules shown in Eig. 8. The n@ing of this conversion is on solving the
NAC with two components and possibilities of creating paradldges. TheVAC' is split meaning that
a disjunction of two formulaé and2 is evaluated tarue, if one of them isrue. Naturally, if both are,
both generated rules are applicable, but lead to the samdtres(—1 A =2) = —(—1) V =(—2).

—_——————— —_— e = _—————_—

/ \ Src

i LHS 1 RHS :OR lg e | 1 NAC \
: i : |src/’ ‘\src ot |: : |_ : falseJ i
create_true_OR[1] | | = [ ~sub |[ _sub | i Do fere it |
! oot tot tot ! I

| - [ AT Y [ [1:Formuia]
N [2-Formula] ) ' |1 Formula] [2:Formula] PN 1 Formula|
___________________________________ 7/
e e e s?c _______ N //N_A_C _____ Y
i LHS | 1 RHS | _OR @ Strue |1 |
I | I tot b ; |
I | I src/l ‘\src : ! |_ .falseJ I
create_true_ORJ2] : : :>: [ sub |[ _sub | | : src |tgt :
[ ot ot ot VAR [

| X I AT gty L |: :I
N M/: N [1:Formula] [2:Formula] , " 2. Formula II
7/

—_——— - —— = NS T T ——— ~N——— =

Figure 8: GROOVE rules created for the ruleatetrue. OR

Simulation. Analogue to the previous section the next theorem showsehavioural equivalence of
a system in AGG and its translation in GROOVE, according tdiriteon 3. Therefore, a derivation
can be performed in AGG if and only if there is a correspondirgvation in the translated system in
GROOVE. Again this simulation is stronger as it starts andsemith the same graph (up to the different
edge-structure).
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Theorem 7 Given a derivationd == G’ of a grammar inAGG there are corresponding derivations
starting at the translated graptr(G), which can be performed i8ROOVE Furthermore, all resulting
graphs inGROOVEare againtr(G’) and if the rule is not applicable IAGG it is not in GROOVEvia
the corresponding match.

!
T

N[k ———p " ~R NTi] oL, R
AGG: w| PO l — GROOVE: mi PO l”
GG G ——— G

Proof:

(Sketch). LetG; ==, G, be a derivation in AGG with type grapiG. The set of labeld. =
Vra W Epg W {p, src, tgt} contains all node and edge types and a speciapfladicating that a node in
GROOVE is a proxy for modelling parallel edges as visualirefig.[d. LetG’ be one ofN’[k|, L', R’
andG’; from AGG, its corresponding graghl in GROOVE is constructed as follows:

e Vo = Vo W Egr, nodes are all original nodes and edges,

e Eqc C Vg x LxVg,Eg = {(n,l,n) | n € Vgl = type(n)} U {(e,p,e) | e € Eg'} U
{(e,src,src(e)) | e € EgryU{(e, tgt,tgt(e)) | e € Egr }, new naming edges and new edges with
source and target distinction,

The rule morphism = (ry, rg) is constructed as follows:y (v) = 7/ (v),v € V7,

(r'(e), 1,7 (e)) , e= (el e),l & {src,tgt}
re(e) =1 (rg(e),sre,ri,(n)) , e= (e sre,n)
(ry(e), tgt,ri,(n)) , e= (e tgt,n)

The morphisms:; andm are created analogously. For each nod&jina N AC' is generated, which
forbids a proxy edgée, p, ) on such a node . To prevent identification oNAC' only elements, new
NACSs are created by putting merge embargo edges betwedMall only nodes. Finally theéV AC's
of AGG containing several components are divided and bigked to identical rules using each combi-
nation of components of the differenA C's. Therefore, several new rules may be applicable atong
but all lead toG, = tr(GY). If a NAC in AGG forbids the application there is no rule applicable trie
corresponding match in GROOVE, because ah&C's of a specific rule imply that alVAC's in AGG
are satisfied. vV

6 Discussion and Conclusion

Discussion. Inthis paper we have shown that rules cannot be translatedomsane between GROOVE
and AGG rules behaving equivalent. In particular casesghew the semantic domain may not allow to
create parallel edges of a particular kind. Take for exaradie access protocol, where processes can
have different rights for accessing a file. In such systerdeés not make sense to store an access right
twice. GROOVE automatically ensures this constraint, @milAGG one can include a type graph in a
graph production system to which all graphs and rules mug hdyping morphism. In this setting, the
type graph could constraint the number of specific edgesn,Tdygplying a rule could make the graph
invalid, but in such cases that rule is not applicable.
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Conclusion. By comparing two graph transformation approaches, one sdamthe roots of both ap-
proaches. In this paper we have shown how to transform péatigraph production systems specified
in GROOVE to behaviourally equivalent ones in AGG and vicesaeby transforming their building
blocks: the transformation rules. We have explained howetal avith two concepts on which both
approaches differ essentially, being parallel edges apticagion conditions. Furthermore, we have il-
lustrated how to apply the mentioned algorithms on simpteiatuitive examples. The major part of the
translation has already been implemented.

Further Work.  The given particular translation considered on the one Ithifierent categories of
graphs: graphs with simple or parallel edges, and on the bdred different definitions for the used con-
trol structures for the transformation: negative appia@atonditions with partly different interpretation
and expressiveness. It should be possible to extend theawdokth, more differences in the graph and
the control structure of transformation systems. For exartipe concepts of attribution and typing with
inheritance seem to be a straight forward extension andateeglready available in AGG. Furthermore,
the generalization to arbitrary rule-morphisms insteathjgictive morphisms only is worth to investi-
gate. Generalizing beyong GROOVE and AGG is difficult, siegery other approach brings its own
underlying formalism. The main motivation for this work wawentually, to be able to make optimal
use of the features provided by both approaches, i.e. tHgseméechniques implemented in AGG and
the model checking algorithm(s) implemented in GROOVE.riteo to reach this, both tools need to be
extended to support export and import to GXL, or better GTXL.
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