
FESCA 2006 Preliminary Version

Towards Multiple Access in Generic
Component Architectures 1

M. Klein, J. Padberg 2

Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany

F. Orejas 3

Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

The paper introduces an abstract framework for the specification of components
with multiple require and provide interfaces that allows the specification of mul-
tiple access to a single provide interface. This framework can be regarded as a
generalization of abstract hierarchical and connector-based component specification
approaches. The main ideas are clarified in a sample specification, a component ar-
chitecture for a web browser suite. For this, elementary nets are applied and are
shown to be an instantiation of the abstract framework.

Key words: Component Architectures, Reduction Semantics

1 Introduction

By now component-based software development is becoming nearly a standard
in large scale software engineering (see e.g. [21,22,33,34]), for several reasons:
For example, components implemented once can easily be integrated in other
projects requiring the same functionalities. It is possible to buy components
with explicitly defined interfaces, thus, time pressure in the development of
software projects can be relaxed by paying for a piece of code that is quickly
integrated into the project. Changes of a component body, or even a full ex-
change, can be processed encapsulated, i.e. with no effects for the component’s
environment as long as the corresponding interfaces are preserved. See [24]
for a survey of component-based software engineering.

1 Acknowledgment: This work is partially supported by the TMR network SEGRAVIS.
2 Email: [klein, padberg]@cs.tu-berlin.de
3 Email: orejas@lsi.upc.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Klein, Padberg, Orejas

But despite the wide acceptance of component-based software develop-
ment approaches, there is still a lack of specification techniques suited for
component-based design. Especially the application of formal specification
techniques is hardly supported in a continuous fashion that comprises compo-
nents and composition as well as the architecture. But whenever it is impor-
tant to verify or to check the correctness of an implementation with respect to
a specification, e.g. in the case of security relevant software, formal techniques
equipped with a mathematical semantics have strong advantages compared to
less formal techniques.

In [20] D. Garlan lists convincing arguments for the use of formal tech-
niques architecture description languages. In [31] a survey (in German) over
the use of formal techniques for the description of software architectures is
given. Exemplarily stated there are: Process algebras are used for various
architecture description languages, e.g. Darwin [27,28], Wright [2,3] or
AEmilia [4], but none of these specifies the component itself. SARA [17] is
an early architecture description language using Petri nets for the description
of the operational behavior. In [9,10] dualistic Petri nets are proposed. These
describe the architecture using abstract representations of parallel process ob-
jects. In ZCL [11] is based on Z [36] a set-theoretic specification language. Z
schemes are used to describe the architecture structure as well as the dynamic
changes. CommUnity [18] and COOL [23] are architecture description lan-
guages that are founded on graph transformations. But in COOL no explicit
component specification is given.

But there are only a few other approaches with the aim to combine compo-
nent-based architectures and formal specification techniques in order to have
a continuous formal technique. Those examine only a particular specification
technique in contrast to our generic approach. E.g. [7] uses the integrated for-
mal specification technique Korrigan to specify components and their compo-
sition. CommUnity [8,19] is a prototype language for architectural modeling
that is founded on graph transformations.

In [13] a transformation-based hierarchical component concept that is
generic with respect to the used specification technique and the applied trans-
formation notion, has been presented. This first step to close the gap between
formal specification techniques and real life component architectures has been
followed by another concept using generic specifications and transformations.
In [16,12] connector-based architectures have been introduced to enable the
specification of components with multiple provide interfaces that are coordi-
nated by connectors with several require specifications. Both approaches have
been successfully instantiated to a variety of specification techniques [14,15].
In this paper a new, even more general approach is introduced which allows
the specification of components with several require and provide interfaces,
where require interfaces correspond to import interfaces and provide inter-
faces correspond to export interfaces in the previous transformation-based
approaches.

Klein, Padberg, Orejas

Component Component

ComponentComponent

Web Browser Mail

Text EditorFile Browser

Fig. 1. Sample Architecture Using Multiple Access

Even more important, the approach allows the connection of different re-
quirement specifications of one or more components with the same provide
specification. This is a very common scenario in a software developing pro-
cess. Fig. 1 shows a small architecture containing a web browser, a mail
program, a text editor, and a file browser that is accessed by both, the web
browser and the mail program. In Sect. 2 it is shown that both accesses oper-
ate on the same provide specification and how this is handled within the new
approach.

As the above mentioned generic transformation-based approaches, this pa-
per concentrates on a static view of architectures. See Sect. 5 for a discussion
of possible extensions handling dynamic architectures. Since the main motiva-
tion for a formal approach to component architectures is to enable verification
and model checking, it is necessary to calculate the common specification for a
given set of component specifications, i.e. the given architecture. This process,
explained in detail in Sect. 3, is suitable for many specification techniques and
application scenarios.

2 Example: Web Browser Suite

In this section the sample architecture shown in Fig. 1 is explained in detail.
We use elementary nets as specification technique. In Sect. 4 we sketch the
formal instantiation of our generic framework to this technique.

COMP WB

$,RRRRRRRRRRRRR

RRRRRRRRRRRRR COMP M

�� $,RRRRRRRRRRRR

RRRRRRRRRRRR

COMP FB COMP TE

Fig. 2. Architecture Graph of Web Browser Suite

Each component, in general and in the example, consists of a body and a set
of provide and require specifications. E.g. the component web browser is given
by COMP WB = (REQ WB → BOD WB ⇐ PRV WB) where REQ WB

specifies the require interface, BOD WB the body and PRV WB the pro-
vide interface. Each of these specifications is given an elementary net. Fig. 2
shows the architecture graph that is the components and their connection.

Klein, Padberg, Orejas

The more detailed illustration in Fig. 7 shows all specifications of the exam-
ple’s components and all connecting transformations and embeddings. The
component index set of the architecture is given by I = {WB ,M ,FB ,TE},
which is the set of abbreviations for the component names: Web Browser,
Mail, File Browser, Text Editor.

file

load_page

download!

wait

browse_file

browse_file

download_and_store

load_page���
�idle

���
�

���
�

COMP_WB

store_file

controld

idle
BOD_WB

REQ_WB

wait file

pw1PRV_WB
idle

pw2PRV_WB

Fig. 3. Web Browser Component

The specification of the web browser component as shown in Fig. 3 contains
two provide and a single require interface. The provide interfaces of the web
browser component state that this component initially is in a state called
idle and two different events can occur: the simple loading of a web page
(load page) or loading and storing a file to disk. Both events lead to the same
state, the idle state.

The provide specification nets are refined by the component’s body net.
The place idle (expressing the initial state of the component) and the load page

transition remain unchanged. The download and store transition is replaced
by a subnet containing the three places controld, wait and file, and the transi-
tions store file, download! and browse file. This subnet models that after each
occurrence of the download! event the user has to start a file browser to deter-
mine the storage area and the save name of the file. After this selection, the
actual download and the file saving are executed. The place controld ensures
that the selected file is the result of the started browsing process. This file
browsing process and the related places are in the component’s only require
specification.

The component COMP WB also contains the connections between its pro-
vide and require interfaces and the body. For the case of the require interfaces,
the corresponding embeddings are quite obvious, and thus omitted. In Fig. 4
the provide interface and the body of component COMP WB are connected.
The only place of the provide interfaces is mapped to the same place in the
body net. Since the transition load page remains unchanged in the body, it is

Klein, Padberg, Orejas

file

load_page

download!

wait

browse_file

���
�

store_file

controld

idle
BOD_WB

prv_WBpw1,P

download_and_store

load_page��	
	idle

pw2PRV_WB

prv_WBpw2,T

prv_WBpw1,T

prv_WBpw2,P

�
�

PRV_WB
idle

pw1

Fig. 4. Transformation prv WB

PRV_M

send_mail

send_mail

edit_init

edit_ready

attachment!

filecontrol

BOD_M

write_mail

ready_to_send

create_text

browse_file

��

���
�

COMP_M

ready

read_mails

ready

read_mails

create_text

attach_file

ready_to_send

browse_file

wait

REQ_M

REQ_M

rm2

rm1

edit_ready

wait file

ready_to_send

Fig. 5. Mailer Component

mapped to the subnet containing the transition load page and the only place
connected to the transition. The transition download and store is mapped to
a net containing the whole body except the transition load page.

The specification of the mailer component is depicted in Fig. 5. Besides
a body net it contains a single provide interface and two require interfaces.
Initially the provide interface of this component allows two events: read mails
and write mail. After a mail has been written, the net is enabled to send this
message. Both, the send mail and the read mails transitions lead to the initial

Klein, Padberg, Orejas

change_dir file

select_file
edit_ready

del_char

create_text

edit_ready

browse_file

wait file

PRV_FB

wait

PRV_TE

COMP_TE

BOD_TE

COMP_FB

BOD_FB
export_text

text

write_char

text

Fig. 6. File Browser and Text Editor Component

state, specified by a marking on place ready.

In the body net of the component the process of writing a mail is refined.
First, the mailer starts a text editor which is then used to write the content
of the email. Afterwards, the user is enabled to send the mail or to attach a
file to it. The latter includes the browsing of a suiting file. Both, the creation
of the email content and the browsing of an attachment, are to be provided
by the component’s environment. This is expressed by the occurrence of the
two transitions in the require interfaces.

Fig. 6 shows the components file browser and text editor. Both do not
contain a require interface. The simple file browser is specified by only two
transitions that offer to change the directory and to select finally the file. The
text editor body is specified by three transitions, expressing the possibilities
of writing a character, deleting a character and to finally export the written
text.

PRV WB

prv WB

��

PRV M

prv M

��
BOD WB BOD M

REQ WB

req WB

OO

conWB,FB

+3

REQ Mrm1

req Mrm1

OO

conM ,rm1 ,FB

��

REQ Mrm2

req Mrm2

hhQQQQQQQQQQQQQ

conM ,rm2 ,TE

��
PRV FB

prv FB

��

PRV TE

prv TE

��
BOD FB BOD TE

Fig. 7. Detailed Architecture of the Web Browser Suite

Fig. 7 illustrates the architecture diagram of the web browser suite. It
involves all specifications, transformations, and embeddings, but it disregards
all the specific elementary nets given in Figures 3-6. The abstraction of this
diagram is the architecture graph in Fig. 2.

In this sample architecture all but one connecting transformation are iden-

Klein, Padberg, Orejas

tity transformations, i.e. we have equality of the corresponding require and
provide interfaces. The transformation conM ,rm2 ,TE shown in Fig. 8 is dif-
ferent, since it actually applies the possibility to rename places along trans-
formations of marked elementary nets. In general, our framework offers the
possibility to connect require and provide interfaces by refining transforma-
tions. For the case of elementary nets this includes the possibility to replace
transitions by subnets.

REQ_M

edit_ready

ready_to_send

create_text

rm2

create_text

con M,rm2,TE,Pcon M,rm2,TE,P con M,rm2,TE,T

PRV_TE

edit_ready text

Fig. 8. Transformation conM ,rm2 ,TE

Since the main motivation for applying formal techniques to software en-
gineering is verification we need to construct from the given components a
single specification that can be verified with the corresponding tools of that
specification technique. In the next section we define how components can be
composed to larger ones. In the case of our sample architecture, the repeated
application of the composition operation yields a component that contains the
whole behavior of the browser suite. Fig. 9 shows the body of the resulting
component.

send_mailedit_init

edit_ready

attachment!

filecontrol

ready

read_mails

controld

store_file

load_page���
�idle

select_file

export_text

write_char

del_char

change_dir

���
�

attach_file

text

download!

wait

Fig. 9. Body of Composed Browser Suite

After having derived the complete specification, we now can start verifi-
cation or model checking, respectively, with respect to a given requirement
specification, but this is not within the scope of this paper.

Klein, Padberg, Orejas

3 The Generic Framework

One central aim of this work is to define generic notions of components and
composition operations capable of handling multiple access scenarios, as shown
in the example of the previous section. As the approaches [13] and [16,12] this
work applies generic specifications, embeddings and transformations to form
components. Since not all classes of embeddings and transformations are
suitable for this purpose we have to state some general requirements first. The
validity of these requirements needs to be proven in the concrete specification
technique when instantiating the generic concept.

3.1 General Requirements

Our generic technique requires a defined class of specifications, correspond-
ing transformations and embeddings. Since the transformations are used in
the framework to establish the connection between provide interfaces and the
actual component specification, the component body, it is sensible to assume
that the transformations define a class of refinements for the specifications.
Since there exist so many notions of refinement, even for single specification
techniques, this assumption should not be further formalized at the abstract
level - but it has to be clarified when the concept is instantiated. In Sect. 2
we applied a refinement notion for elementary nets that allows mapping single
transitions to whole subnets (see Sect. 4 for details).

For both, the transformations and the embeddings, we require a compo-
sition operation and a special identity instance. Moreover, it is necessary
that the class of embeddings defines a subclass of the transformations, i.e. we
require a mapping trafo : EMB → TRAFO that selects a transformation for
each embedding.

The extension property defined below is well-known from [12] and [13]. It
states that a single transition can be applied to a larger context.

Definition 3.1 Extension Property Given an embedding e : SPEC R →
SPEC and a transformation t : SPEC R =⇒ SPEC ′. Now there is a se-
lected transformation t′ : SPEC =⇒ SPEC ′ and a selected embedding
e ′ : SPEC R′ → SPEC ′, such that diagram (1) in Fig. 10 becomes an exten-
sion diagram. In case of t also being an embedding, we require the existence
of a unique extension diagram (2), called mutual extension diagram.

SPEC R

t

��

e //

(1)

SPEC

t ′

��
SPEC R′

e′
// SPEC ′

SPEC R

t

��

e //

(2)

SPEC

t ′

��
SPEC R′

e′
// SPEC ′

Fig. 10. Extension

Klein, Padberg, Orejas

The multiple extension defined below expresses the possibility to apply a
set of transformations to a larger context within a single transformation. It
differs from the parallel extension used in [16] and [12] by allowing given trans-
formations with the same codomain only, and it contains the extension defined
above as a special case. In general, this construction is not available for all
families of embeddings and corresponding transformations. Intuitively, such
families allow multiple extension, if the boundary of all embeddings is pre-
served i.e. the transformations do not delete or rewrite parts that are needed
to maintain a well-formed specification, and all overlappings with respect to
the embeddings are transformed uniquely.

Definition 3.2 Multiple Extension Given an index set I, a corresponding
family of embeddings e = (ei : SPEC Ri → SPEC)i∈I and a family of trans-
formations tr = (tri : SPEC Ri =⇒ SPEC R)i∈I . Now e and tr allow mul-
tiple extension, if there exist a selected transformation t : SPEC =⇒ SPEC ′

and a single embedding e ′ : SPEC R → SPEC ′. We call diagram (1i)i∈I mul-
tiple extension diagram.

SPEC Ri

tri

��

ei //

(1i)i∈I

SPEC

t

��
SPEC R

e′
// SPEC ′

Fig. 11. Multiple Extension

Definition 3.3 Compatibility of Embeddings with Multiple Exten-

sion A family of embeddings (ei : SPEC Ri → SPEC)i∈I is compatible with
multiple extension, if for each multiple extension diagram (1) with a family
of transformations (tri : SPEC Ri =⇒ SPEC R)i∈C⊆I , we have for the family
of embeddings (ej : SPEC Rj → SPEC)j∈I\C a selected family of embeddings
(e ′

j : SPEC Rj → SPEC ′)j∈I\C .

SPEC Ri

tri

��

ei //

(1)

SPEC

t

��

(2)

SPEC Rj
ejoo

e′jxxppppppppppp

SPEC R
e′

// SPEC ′

Fig. 12. Compatibility of Embeddings

We require the existence of a subclass D of all families of embeddings
such that all elements in this subclass are compatible with multiple exten-
sion. Moreover, we require that D is closed under multiple extensions. I.e. if
(ei : SPEC Ri → SPEC)i∈I in Fig. 12 is in class D and (1) is an extension di-
agram and we have embeddings e′j then also (e ′

j : SPEC Rj → SPEC ′)j∈I\C∪
{e ′ : SPEC R → SPEC ′} is in class D. In the corresponding instantiation this
can be achieved by defining D by non-overlapping embeddings. Note that the

Klein, Padberg, Orejas

instantiation has to define which transformations and embeddings make up a
multiple extension diagram.

Moreover, we assume horizontal and vertical composition of multiple ex-
tension diagrams: Given diagrams (1), (2), (3) in Fig. 13 with i ∈ I and j ∈ J .
Now (1+3) and (2+3) have to be multiple extension diagrams if (1) and (2)
are multiple extension diagrams and (3) is an extension diagram.

SPEC Ri

tri

��

eri //

(1)

SPEC

t

��
SPEC Cj

trj

��

ecj //

(2)

SPEC R
er′ //

t′

��
(3)

SPEC ′

t′′

��
SPEC C

ec′j // SPEC R′ er ′′ // SPEC ′′

Fig. 13. Composition of Extension Diagrams

3.2 Components and Composition

Based on the requirements explained above, we are now able to define com-
ponent specifications and the corresponding composition operation.

Definition 3.4 Component A component specification COMP = (BOD ,

REQ ,PRV , req , prv) consists of a body specification BOD, a family of re-
quire specifications REQ = (REQi)i∈I for some index set I , a family of pro-
vide specifications PRV = (PRVj)j∈J for some index set J and of suiting
families of embeddings req = (reqi : REQi → BOD)i∈I and transformations
prv = (prvj : PRV =⇒ BOD)j∈J , respectively, where we require that the fam-
ily of embeddings is in class D and thus compatible with multiple extension
in the sense of Def. 3.3.

Note that the components in our example in Sect. 2 fit into this abstract
definition. The web browser component in Fig. 3 contains two provide spec-
ifications, a body specification and a single require specification. The corre-
sponding transformations of the provide interfaces are shown in Fig. 4.

Next, we summarize the conditions ensuring that a given set of connected
components can be reduced to a single component. According to [16,12] we
call such a set an architecture. An architecture A is a set of components
COMPS (A) = (COMP i)i∈I and corresponding connecting transformations
CONS (A) that fulfill the properties listed below. Each architecture A can
be illustrated by an architecture graph GA (e.g. as for the web browser suite
in Fig. 2), obtained by shrinking A to a graph representation that contains
nodes labeled by the component names and edges labeled by the connecting
transformations.

• There are no isolated components in the architecture.

Klein, Padberg, Orejas

• Each requirement specification is the source of at most one connecting trans-
formation.

• For each component we require that its embedding of the require interfaces
and the connected realizing transformations allow multiple extension.
(i.e. (prv 2y ◦ con1 ,j ,2 ,y)j∈I 1 ,y∈J C2 ,con1 ,j ,2∈CONS(A) allow multiple extension)

• There are no cycles in the graph obtained by representing single specifica-
tions by nodes and transformations and embeddings by non-directed edges.

In [16,12] it has been shown that architectures can be reduced to a single
component, if the applied composition operations yield unique results inde-
pending of their application order. This is the case for the operations defined
below.

The hierarchical composition with multiple interfaces defined below con-
nects a single providing component to a single requiring component, possibly
via different provide and require interfaces. Intuitively, the requiring com-
ponent is glued with the providing component over the provide interfaces
accessed by the requiring component.

Definition 3.5 Hierarchical Composition with Multiple Interfaces

Given a requiring component COMP R = (BOD R,REQ R,PRV R, req R,

prv R) and a providing component COMP P = (BOD P ,REQ P ,PRV P ,

req P , prv P) with index sets I R, J R and I P, J P for the require and pro-
vide interfaces of the requiring component and the providing component, re-
spectively. We denote the index set of the require interfaces actually connected

PRV Rj

prv Rj

��
REQ Ri

coni

��

req Ri //

(1i)

BOD R

xcon′

��

REQ Rz
req Rzoo

req R′
z

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

PRV Px

prv Px

#+NNNNNNNNNNNN

NNNNNNNNNNNN
PRV Pl(i)

prv Pl(i)

��
REQ Py

req Py // BOD P
req R′

// BOD G

Fig. 14. Hierarchical Composition with Multiple Requirements

with the providing component by C R ⊆ I R. Given corresponding connect-
ing transformations con = coni : REQ Ri =⇒ PRV Pl(i) with i ∈ C R ⊆ I R

and l(i) ∈ J P , such that the family of embeddings req R and the family of
composed transformations xconi = (prv Pl(i) ◦ coni)i∈C R allow multiple ex-
tension. The mapping l : I R → J P has to be injective. The index sets of all
components are disjoint. In the first step we can derive a multiple extension
diagram (1i)i∈C R with selected transformation xcon ′ and embedding req R′.
The compatibility of the embeddings (req Ri)i∈I with respect to multiple ex-
tension, which is given by the component definition, yields a set of embeddings

Klein, Padberg, Orejas

(req R′
z)z∈I R\C R, such that (req R′

z)z∈I R\C R ∪ {req R′} is again in class D

and thus compatible with respect to multiple extension. Now we define the
result of the Hierarchical Composition with Multiple Interfaces (short: com-
position) by

COMP R ◦con COMP P =

COMP G = (BOD G ,REQ G ,PRV G , req G , prv G),

where the index sets of the requirements and provisions of the new component
are defined as I G = (I R \ C R) ∪ I P and J G = J R ∪ J P , respectively.
And we have:

REQ G = (REQ Rz)z∈I R\C R ∪ REQ P

req G = (req R′
z)z∈I R\C R ∪ (req R′ ◦ req Py)y∈I R

PRV G = PRV R ∪ PRV P

prv G = (xcon ′ ◦ prv Pj)j∈J R ∪ (trafo(req R′) ◦ prv Px)x∈J P

Note that the family of embeddings (req Gi)i∈I G is again in class D. In Fig. 15
the elements of the resulting component are depicted in detail.

PRV Rj

xcon′◦prv Rj

��

PRV Px

prv Px

#+NNNNNNNNNNNN

NNNNNNNNNNNN
PRV Pl(i)

prv Pl(i)

��

REQ Rz

req R′
zxxqqqqqqqqqqq

REQ Py
req Py // BOD P

req R′

--

trafo(req R′)
-5 BOD G

Fig. 15. Result of Composition

Since we allow different components accessing the same provide interface,
all provide interfaces are preserved by the composition.

Fig. 16 shows the composition of the mailer and the text editor com-
ponent of our example from Sect. 2. Note that only the transformations
prv TE , conM ,rm2 ,TE and the embedding req Mrm2 are shown in detail.

The hierarchical composition with multiple interfaces is independent of
its application order. Since there are three possibilities of overlappings for
two composition steps, we present three different theorems: associativity of
composition, compatibility of composition I and II.

Whenever we have two connections crossing the same level of a given com-
ponent architecture, we also offer a parallel composition, which constructs
the result of two compositions within a single step. This is the case in the
Theorems 3.8 and 3.9.

Klein, Padberg, Orejas

con M,rm2,TE,Pcon M,rm2,TE,P con M,rm2,TE,T

create_text

REQ_Mrm2

edit_ready ready_to_send

create_text

edit_ready

del_char

send_mailedit_init

edit_ready

attachment!

filecontrol

req’M,rm2

browse_file

REQ_Mrm1

wait file

PRV_M

send_mailwrite_mail

ready_to_send

���
�ready

read_mails

xcon’

Pprv_TE Tprv_TE Pprv_TE

rm2,Preq_M

rm2,Treq_M

rm2,Preq_M

rm1req_M’

rm1req_M

prv_M

send_mailedit_init

edit_ready

attachment!

filecontrol

ready

read_mails

export_text

write_char

del_char

���
�

���
�PRV_TE

edit_ready text

export_text

text

write_char

BOD_TE

ready

read_mails

create_text

attach_file

ready_to_send

browse_file

wait

BOD_M

BOD_MTE

attach_file

text

wait

browse_file

Fig. 16. Composition of Mailer and Text Editor

COMP 1

con 1

��
COMP 2

con 2

��
COMP 3

Fig. 17. Architecture Graph GA1

Theorem 3.6 Associativity of Composition Given three components

COMP i = (BOD i ,REQ i ,PRV i , req i , prv i) for i ∈ {1, 2, 3} as shown in

the architecture graph GA1 and families of transformations con 1 = (con 1i :
REQ 1i =⇒ PRV 2l(i))i∈C 1 , con 2 = (con 2k : REQ 2k ⇒ PRV 3l(k))k∈C 2 ,

for some C 1 ⊆ I 1, C 2 ⊆ I 2, where I 1 and I 2 denote the index sets of

the require interfaces of COMP 1 and COMP 2, such that the pairs of fam-

ilies (prv 2l(i) ◦ con 1i)i∈C 1 , req 1 and (prv 3l(k) ◦ con 2k)k∈C 2 , req 2 allow

Klein, Padberg, Orejas

multiple extension, each. Then we have the following associativity law:

(COMP 1 ◦con 1 COMP 2) ◦con 2 COMP 3 =

COMP 1 ◦con 1 (COMP 2 ◦con 2 COMP 3)

Proof. Fig. 18 shows the given components and connecting transformations
in detail, where we have:

j ∈ J 1, l 1 : C 1 → J 2 injective,

i ∈ C 1 ⊆ I 1, k ∈ C 2 ⊆ I 2,

i′ ∈ I \ C 1, k′ ∈ I 2 \ C 2, and

j ′ ∈ J 2 \ l(C 1), m ∈ I 3, x ∈ J 3.

PRV 1j

prv 1j

��
REQ 1i

req 1i //

con 1i

��
(1)

BOD 1

xcon

��

REQ 1i′
req 1i′oo

req 1′
i′

ww

REQ 2k′

++WWWWWWWWWWWWWWWWWWWWWWWWW PRV 2j′

prv 2j′

$,PPPPPPPPPPPP

PPPPPPPPPPPP
PRV 2l 1(i)

prv 2l(i)

��
REQ 2k

req 2k //

con 2k

��
(2)

BOD 2 //

��

(3)

BOD 12

��

PRV 3x

#+OOOOOOOOOOOO

OOOOOOOOOOOO
PRV 3l 2(k)

��
REQ 3m req 3m

// BOD 3 // BOD 23 // BOD 123

Fig. 18. Associativity of Composition

We are able to construct the multiple extension diagrams (1) and (2)
due to the assumptions. The extension diagram (3) exists, because there
are no properties required for this construction. The body of the left side
of our equation, (COMP1 ◦con 1 COMP 2) ◦con 2 COMP 3 , is constructed by
the following steps: First, we have to construct extension diagram (1) to re-
solve con 1 . We know that (2) and (3) are multiple extension diagrams, thus
we can construct (2+3) and resolve con 2 . For the construction of the body
of the left side of our equation, COMP 1 ◦con 1 (COMP 2 ◦con 2 COMP 3),
the first step is to resolve con 2 using multiple extension diagram (2), and

Klein, Padberg, Orejas

afterwards resolving con 1 by multiple extension diagram (1+3). Since ex-
tension yields unique resulting specifications and transformations, we obtain
a unique body BOD 123 . 2

3.3 Compatibility of Composition

In order to ensure a unique reduction of architectures we need to prove that for
all kinds of overlappings of components the result of several composition steps
is independent of the order of the composition steps. In Thm. 3.6 this was
shown for overlappings along an hierarchy. This section deals with composition
steps that include overlappings of components of the same hierarchical level.
Fig. 19 shows such an architecture. For this case, the result of the given
compositions can be constructed within one parallel step. We can prove that
the result of this parallel composition is equal to the sequential composition
independent of the ordering.

COMP 1
con 1

#+PPPPPPPPPPP

PPPPPPPPPPP COMP 2
con 2

s{ nnnnnnnnnnn

nnnnnnnnnnn

COMP 3

Fig. 19. Architecture Graph GA2

Definition 3.7 Parallel Composition Given three components COMP i =
(BOD i ,REQ i ,PRV i , req i , prv i) for i ∈ {1, 2, 3} and families of trans-
formations con 1 = (con 1i : REQ 1i =⇒ PRV 3l(i))i∈C 1 , con 2 = (con 2k :
REQ 2k =⇒ PRV 3l(k))k∈C 2 , for some C 1 ⊆ I 1, C 2 ⊆ I 2, such that the
pairs (prv 3l(i) ◦ con 1i)i∈C 1 , req 1 and (prv 3l(k)◦ con 2k)k∈C 2 , req 2 allow
multiple extension, each. Then we construct the multiple extension diagrams
(1) and (2) in Fig. 20. Diagram (3) is constructed as mutual extension di-
agram, including the resulting body BOD 123 . The result of the parallel
composition is given by

(COMP 1 ,COMP 2) ◦(con 1 ,con 2) COMP 3 =

COMP 123 = (REQ 123 ,PRV 123 , req 123 , prv 123),

where

REQ 123 = (REQ 1i ′)i ′∈I 1\C 1 ∪ (REQ 2k ′)k ′∈I 2\C 2 ,

req 123 = (req 2 ′′ ◦ req 1 ′
i ′)i ′∈I 1\C 1 ∪ (req 1 ′′ ◦ req 2 ′

k ′)k ′∈I 2\C 2 ,

PRV 123 = (PRV 1j)j∈J 1 ∪ (PRV 2j ′)j ′∈J 2 ∪ (PRV 3x)x∈J 3 ,

prv 123 = (trafo(req 2 ′′) ◦ xcon 1 ′ ◦ prv 1j)j∈J 1∪

(trafo(req 1 ′′) ◦ xcon 2 ′ ◦ prv 2j ′)j ′∈J 2 ∪ (prv 3x)x∈J 3 .

Klein, Padberg, Orejas

PRV 1j

prv 1j

��

PRV 2j ′

prv 2 ′

j

��
REQ 1i ′

//

req 1′
i′

%%

BOD 1

��

(1)

REQ 1i
oo

con 1i

��

REQ 2k
//

con 2k

��

BOD 2

��

(2)

REQ 2k ′
oo

req 2′
k′

yy

PRV 3l1 (i)

prv 3l1 (i) !)KKKKKKKKK

KKKKKKKKK
PRV 3x

prv 3x

��

PRV 3l2 (k)

prv 3l2 (k)u} sssssssss

sssssssss

BOD 13

req 2 ′′

**UUUUUUUUUUUUUUUUU BOD 3
req 1 ′

oo
req 2 ′

//

(3)

BOD 23

req 1 ′′

ttiiiiiiiiiiiiiiiii

BOD 123

Fig. 20. Parallel Composition

Theorem 3.8 Compatibility of Composition I Given the same compo-

nents and connecting transformations as in the definition above, then we have

the following compatibility law:

COMP 1 ◦con 1 (COMP 2 ◦con 2 COMP 3) =

COMP 2 ◦con 2 (COMP 1 ◦con 1 COMP 3) =

(COMP 1 ,COMP 2) ◦(con 1 ,con 2) COMP 3

The web browser suite presented in Sect. 2 involves such a situation: The
web browser component and the mailer component access the file browser
component, as shown in Figures 2 and 7.

Proof. Fig. 20 shows the given setting in detail, where the mappings l1 : I 1

→ J 3 and l2 : I 2 → J 3 are injective each, but their codomains are not
assumed to be disjoint. First, we construct the result of the parallel compo-
sition that resolves both connection in a single step. In this case, we start
by computing the multiple extension diagrams (1) and (2), which exist due
to the assumption of multiple extension for prv 3l1 (i) ◦ con 1i and req 1 as
well as for prv 3l2 (k) ◦ con 1k and req 2 . Diagram (3) is constructed as mu-
tual extension diagram including the resulting body BOD 123 . In case of
processing only the composition along con 2 in the first place, we obtain the
extension diagram (2). Afterwards we construct the multiple extension dia-
gram (1’) as depicted in Fig. 21. This diagram is constructed from the same
given transformations and embeddings as diagram (1+3) in the case of the
parallel composition explained above. This implies BOD 231 = BOD 123 .

Analogously we construct BOD 13 in the multiple extension diagram (1).
Then we construct the extension diagram (2’) which is equal to (2+3) in the
parallel composition. This implies BOD 132 = BOD 123 = BOD 231 . Ad-

Klein, Padberg, Orejas

REQ 1i
req 1i //

(1′)

con 1i

��

BOD 1

��

PRV 3l1 (i)

trafo(req 1 ′)◦prv 3l1 (i)

��
BOD 23

req 1 ′′

// BOD 231

REQ 2k
req 2k //

(2′)

con 2k

��

BOD 2

��

PRV 3l2 (k)

trafo(req 2 ′)◦prv 3l2 (k)

��
BOD 13

req 2 ′′

// BOD 132

Fig. 21. Stepwise Composition

ditionally, in all three cases we obtain the same families of provide and require
interfaces and the corresponding connections, because the disjoint index sets
of the given components imply independence of the composition order. 2

COMP 1
con 1

s{ nnnnnnnnnnn

nnnnnnnnnnn

con 2

#+PPPPPPPPPPP

PPPPPPPPPPP

COMP 2 COMP 3

Fig. 22. Architecture Graph GA3

Theorem 3.9 Compatibility of Composition II Given three components

COMP i = (BOD i ,REQ i ,PRV i , req i , prv i) for i ∈ {1, 2, 3} and families

of transformations con 1 = (con 1i : REQ 1i =⇒ PRV 2l(i))i∈C 1 , con 2 =
(con 2k : REQ 1k =⇒ PRV 3l(k))k∈C 2 , for some C 1 ,C2 ⊆ I 1 such that the

pairs (prv 2l(i) ◦ con 1i)i∈C 1 , req 1 and (prv 3l(k) ◦ con 2k)k∈C 2 , req 1 allow

multiple extension, each. Then we have the following compatibility law:

(COMP1 ◦con 1 COMP 2) ◦con 2 COMP 3 =

(COMP 1 ◦con 1 COMP 3) ◦con 2 COMP 2) =

COMP 1 ◦(con 1 ,con 2) (COMP 2 ,COMP 3)

In our example in Sect. 2 this situation occurs as well. Figures 2 and 7
show that the mailer component accesses both, the file browser component
and the text editor component.

A full proof of the theorem is given in [26]. Here, we only sketch its main
idea. In [16] the parallel extension diagram was introduced that embeds in-
dependent transformations into a common larger context. Moreover, it offers
a special case with all but one given transformation being identities. This
is also the case here, because the require interfaces of COMP 1 are disjoint.
Composing those diagrams yields the intended uniqueness of the body con-
struction.

Klein, Padberg, Orejas

4 Instantiation to Elementary Nets

In this section we show that the specification technique of elementary nets
[35] fits into our generic framework. This includes the definition of embed-
dings and transformations, and based on that, the construction of the multiple
extensions.

The hierarchic transformation-based concept in [13] and the connector
component framework in [16] have been instantiated with a variety of spec-
ification techniques: HLR-systems and algebraic specifications in [25], Petri
nets in [15] and UML diagrams in [12]. Since our approach is a generaliza-
tion of those two concepts the instantiations can be easily adopted to the new
concept.

Elementary transition systems are a special notion of Petri nets, allowing
only arcs and place weights of arity one. We use the algebraic notion of Petri
nets as given in [29] and extend it by the initial marking. This enables us to
use a set based representation of the pre and post functions of the transitions
of the nets.

An elementary net N = (P, T, pre, post, m) consists of a set of places P

and a set of transitions T . The functions pre, post : T → P(P) represent the
connecting arcs, and the set m ⊆ P contains all initially marked places. Plain
morphismsf : N1 → N2 between elementary nets are mappings of places
fP : P1 → P2 and of transitions fT : T1 → T2 that are compatible with the
pre and post , i.e. fP ◦ pre1(t) = pre2 ◦ fT (t) and analogously for post . The
mapping has to preserve and reflect the initial marking, i.e. fP (m1) ⊆ m2 and
m2 \ fP (m1) ⊆ P2 \ fP (P1). This category ENplain has pushouts.

Embeddings are injective morphisms. The following notion of transfor-
mation of elementary nets is an adaption of the substitution morphisms of
place/transition nets in [30]. These morphisms replace transitions of the orig-
inal net by whole subnets in the target net and map places injectively. Again,
the markings are preserved and reflected. More precisely, a substitution mor-
phism s = (sP , sT) : N1 → N2 with Ni = (Pi, Ti, prei, posti, mi) for (i = 1, 2)
is given by an injective mapping of places sP : P1 → P2 and a mapping
sT : T1 → P(N2) with sT (t) := N t

2 = (P t
2, T

t
2, pre2, post2, m2) ⊆ N2 where

pre2, post2 and m2 are restricted to the subset of transitions T t
2 and the sub-

set of places P t
2. Again we have preservation and reflection of the marked

places, i.e. sP (m1) ⊆ m2 and m2 \ sP (m1) ⊆ P2 \ sP (P1). Composition is
well-defined analogously to [30]. So, we have the category EN . Similar to [30]
plain morphisms are a special case of substitution morphisms.

We have the extension properties as required in Def. 3.1, because there
are in the category EN pushouts of embeddings with substitution morphisms
as well as pushouts of plain morphisms only. The abstract framework re-
quires a class D with compatibility of embeddings with multiple extension
(see Def 3.3). For this instantiation with elementary nets a family of embed-
dings ei : Ni → N has no overlappings, if the codomain of the embeddings

Klein, Padberg, Orejas

ei(Ni) are pairwise disjoint.

Then we have multiple extension as required in Def. 3.2. Basically we
glue N R with N together by replacing the embeddings of N Ri by their
substitution subnets tri(N Ri) in N R. In the detailed proof [26] we have
given the construction in categorical terms, based on the following diagram in
EN :

N Ri
ei //

tri

��
(i)

N

ctri

��

N R
e′i

// N̂i bei

//
Ñ ee

// N ′

First, we construct i pushout diagrams (i). Next we construct the star-pushout

N Ri

e′i−→ N̂i
bei−→ Ñ and subsequently the star-coequalizer N

bei◦ctri=⇒ Ñ
ee

−→ N ′.
Then we have the unique e′ = ẽ◦ êi ◦e′i and the unique tr = ẽ◦ êi ◦ t̂ri We show
in [26] that this star-coequalizer exists and that e′ is a well-defined embedding.

Compatibility of embeddings with multiple extension as required in Def. 3.3
we have for families of embeddings (ei : Ni → N)i∈I that have no overlappings,
because the pushout and coequalizer constructions leave those parts that are
not in the codomain (ei(N Ri))i∈C⊆I unchanged, especially the codomain of
(ej(N Rj))j∈I\C . Hence there is the family of embeddings (e′j : N Rj →
N ′)j∈I\C that remains non-overlapping, see [26].

N Ri
ei //

tri

��
(i)

N

ctri

��

N Rj
ejoo

e′j

��
N R

e′i

// N̂i bei

//
Ñ ee

// N ′

5 Conclusion

In this paper we present a generic component concept capable of handling
multiple provide and require interfaces and multiple access. This includes the
definition of generic components and a hierarchical composition operation for
multiple interfaces. Moreover, we introduce the concurrent application of com-
position steps, called parallel composition. Based on that we prove the result
of two overlapping composition steps to be independent of the construction
ordering. This induces that the given reduction semantics of architectures is
unique. The generic concept is instantiated to the sample specification tech-
nique of elementary nets which is also used for the small web browser suite in
order clarify the main ideas.

Dynamic software architectures that use formal techniques are investigated
in [6,5]. Many of those approaches use graph transformations for the speci-
fication of dynamic changes and reconfigurations. In [32] we have integrated
the generic component concept with high-level replacement systems, a cate-
gorical generalization of graph transformations. This work can be considered

Klein, Padberg, Orejas

as the technical foundation for the extension of the approach introduced in
this paper to dynamic architectures. Since the semantics of architectures is
defined by graph transformations we can apply corresponding transformation
engines as for example the AGG tool [1] in order to compute the semantics
automatically.

As already mentioned in Sect. 3 the handling of multiple accesses in compo-
nent architectures depends on the used specification technique and the corre-
sponding instance notion. The composition operations presented in this paper
are fully adequate for techniques with a loose semantics, i.e. each specification
induces a set of valid instances. For techniques with a close semantics there
are two possibilities of resolving multiple access. The first variant glues the
requiring components over the providing one. This is suitable for a shared
access, as used in our example of Sect. 2. Exclusive access requires a different
composition operation that creates a copy of the required component for each
request. See [26] for details.

References

[1] AGG: A development environment for attributed graph transformation systems.
http://tfs.cs.tu-berlin.de/agg.

[2] R. Allen and D. Garlan. The Wright architectural specification language.
Technical Report CMU-CS-96-TBD, School of Computer Science, Carnegie
Mellon University, 1996.

[3] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 1997.

[4] S. Balsamo, M. Bernardo, and M. Simeoni. Performance evaluation at the
software architecture level. volume 2804 of Lecture Notes in Computer Science,
pages 207–258. Springer Verlag, 2003.

[5] J.S. Bradbury. Organizing definitions and formalisms for dynamic software
architectures. Technical Report 2004-477, Queens University, 2004.

[6] J.S. Bradbury, J.R. Cordy, J. Dingel, and M. Wermelinger. A survey of self-
management in dynamic software architecture specifications. In WOSS ’04:
Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems,
pages 28–33, New York, NY, USA, 2004. ACM Press.

[7] C. Choppy, P. Poizat, and J. Royer. Formal specification of mixed components
with Korrigan. In Proceedings of the 8th Asia-Pacific Software Engineering
Conference, APSEC’2001, pages 169–176. IEEE, 2001.

[8] http://www.fiadeiro.org/jose/CommUnity/.

[9] E.P. Dawis. Architecture of an SS7 protocol stack on a broadband switch
platform using dualistic petri nets. In 2001 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pages 323–326, 2001.

Klein, Padberg, Orejas

[10] E.P. Dawis, J.F. Dawis, and W.P. Koo. Architecture of computer-based systems
using dualistic petri nets. In Proceedings of the 2001 IEEE Systems, Man, and
Cybernetics Conference, October 2001.

[11] V.C. de Paula, G.R.B. Justo, and P.R.F. Cunha. Specifying and verifying
reconfigurable software architectures. In International Symposium on Software
Engineering for Parallel and Distributed Systems, pages 21 – 31, 2000.

[12] H. Ehrig, B. Braatz, M. Klein, F. Orejas, S. Perez, and E. Pino. Object-Oriented
Connector-Component Architectures. In Formal Foundations of Embedded
Software and Component-Based Software Architectures (FESCA), volume 141
of Electronic Notes in Theoretical Computer Science. Elsevier, 2005.

[13] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A Generic
Component Concept for System Modeling. In Ralf-Detlef Kutsche and Herbert
Weber, editors, Fundamental Approaches to Software Engineering (FASE 2002),
volume 2306 of Lecture Notes in Computer Science, pages 33–48. Springer, 2002.

[14] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A Transformation-
Based Component Framework for a Generic Integrated Modeling Technique.
Journal of Integrated Design and Process Science, 6(4):78–104, 2003.

[15] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A component
framework for system modeling based on high-level replacement systems.
Software and System Modeling, 3(2):114–135, 2004.

[16] H. Ehrig, J. Padberg, B. Braatz, M. Klein, F. Orejas, S. Perez, and E. Pino.
A Generic Framework for Connector Architectures based on Components
and Transformations. In Formal Foundations of Embedded Software and
Component-Based Software Architectures (FESCA), volume 108 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2004.

[17] G. Estrin, R. S. Fenchel, R. R. Razouk, and M. K. Vernon. Sara (system
architects apprentice): modeling, analysis, and simulation support for design of
concurrent systems. IEEE Trans. Softw. Eng., 12(2):293–311, 1986.

[18] J. L. Fiadeiro and T. Maibaum. Categorical semantics of parallel program
design. Science of Computer Programming, 28:111–138, 1997.

[19] J.L. Fiadeiro, A. Lopes, and M. Wermelinger. A mathematical semantics for
architectural connectors. In R. C. Backhouse and J. Gibbons, editors, Generic
Programming, volume 2793 of Lecture Notes in Computer Science, pages 178–
221. Springer, 2003.

[20] D. Garlan. Formal modeling and analysis of software architecture: connectors,
and events. In Formal Methods for Software Architecture, volume 2804 of
Lecture Notes in Computer Science, pages 1–24. Springer, 2003.

[21] F. Griffel. Componentware – Konzepte und Techniken eines
Softwareparadigmas. dpunkt Verlag, 1998.

Klein, Padberg, Orejas

[22] V. Gruhn and A. Thiel. Komponentenmodelle: DCOM, JavaBeans,
EnterpriseJavaBeans, CORBA. Addison-Wesley, 2000.

[23] L. Grunske. Strukturorientierte Optimierung der Qualitätseigenschaften von
softwareintensiven technischen Systemen im Architekturentwurf. PhD thesis,
Universität Potsdam, 2004.

[24] W. Hasselbring. Component-based software engineering. In S.K. Chang, editor,
Handbook of Software Engineering and Knowledge Engineering, pages 289–305.
World Scientific Publishing, New Jersey, 2002. ISBN 981-02-4974-8.

[25] M. Klein. A Component Concept for System Modeling Based on High-
Level Replacement Systems. Forschungsbericht 2003/09, Fakultät IV –
Elektrotechnik und Informatik, TU Berlin, 2003.

[26] M. Klein. Compatibility constructions for multiple access in generic component
architectures. Forschungsbericht 2006/01, Fakultät IV – Elektrotechnik und
Informatik, TU Berlin. To appear.

[27] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. In W. Schafer and P. Botella, editors, Proc. 5th European
Software Engineering Conf. (ESEC 95), Lecture Notes in Computer Science
989, pages 137–153. Springer, 1995.

[28] J. Magee and J. Kramer. Dynamic Structures in Software Architecture.
In Proc. 4th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 3–14, 1996.

[29] J. Padberg. Abstract Petri Nets: A Uniform Approach and Rule-Based
Refinement. PhD thesis, Technical University Berlin, 1996. Shaker Verlag.

[30] J. Padberg. Petri net modules. Journal on Integrated Design and Process
Technology, 6(4):105–120, 2002.

[31] J. Padberg. Formale Techniken für die Beschreibung von Software-
Architekturen. In R. Reussner and W. Hasselbring, editors, Handbuch der
Software-Architektur. d-punkt Verlag, 2005. Accepted.

[32] J. Padberg. Integration of the generic component concepts for system modeling
with adhesive HLR systems. EATCS Bulletin, 87:138–155, 2005.

[33] M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[34] C. Szyperski. Component Software – Beyond Object-Oriented Programming.
Addison-Wesley, 1997.

[35] P.S. Thiagarajan. Elementary Net Systems. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets : Central Models and Their Properties,
number 254 in LNCS, pages 26–59. Springer Verlag, 1987.

[36] J. Woodcock and J. Davies. Using Z. Prentice-Hall, 1996.

	Introduction
	Example: Web Browser Suite
	The Generic Framework
	General Requirements
	Components and Composition
	Compatibility of Composition

	Instantiation to Elementary Nets
	Conclusion
	References

