
Efficient Detection of Conflicts in

Graph-based Model Transformation

Leen Lambers , Hartmut Ehrig 2,1

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin

Germany

Fernando Orejas 3

Dept. L.S.I.
Tech. Univ. Catalonia

Barcelona, Spain

Abstract

Using graph transformation as a formalism to specify model transformation, termination and con-
fluence of the graph transformation system are often required properties. Only under these two
conditions, existence and uniqueness of the outcoming model is ensured. Verifying confluence of a
graph transformation system can be reduced to checking both local confluence and termination.
A graph transformation system is locally confluent, if all its conflicts in a minimal context can be
resolved. Formally, this means, that all critical pairs of the graph transformation system should
be strictly confluent. Thus, answering the question of local confluence of a graph transformation
system, requires the following two steps. At first the computation of all critical pairs is necessary.
Secondly this set of critical pairs has to be tested for strict confluence. This paper concentrates on
the first step, proposing an efficient method to compute the set of all critical pairs of a given graph
transformation system. Efficiency is obtained because of the following two main reasons. At first
all pairs of rules are analyzed to check if they can actually cause a conflict. Then for each conflict
inducing pair of rules, the set of critical pairs is computed in a constructive way, avoiding needless
computations.
The overall goal of this paper is to encourage tool development and enhancement concerning the
detection of conflicts in a graph transformation system. It should be an aid to translate the main
theoretical results concerning confluence of a graph transformation system into practical methods
for the analysis of model transformations specified with graph transformation.

Keywords: conflict, confluence, critical pair, model transformation, graph transformation

Electronic Notes in Theoretical Computer Science 152 (2006) 97–109

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.01.017

http://www.elsevier.com/locate/entcs


1 Introduction

A graph transformation system (gts) exhibits functional behavior if it is ter-
minating and confluent. This is an important feature if graph transformation
is used, to specify model transformation [3]. Imagine, that we use a confluent
and terminating gts S, to translate one model into another one. In praxis,
some graph transformation tool executes the model transformation. Despite
the nondeterministic rule application, the transformation has the following
two characteristics. On the one hand, we can be sure, that the outcoming
model exists, since the gts S is terminating. On the other hand, the outcom-
ing model is unique, because of confluency of S. Thus, each run of S to an
input model yields one specific output model. Formally, this means, that S
operates as a function S: M1 → M2 on the set M1 of input models, generating
a unique element of M2, the set of output models of the model transformation.
How to ensure termination of a gts is described in [4]. An established result
in term rewriting [8] is, that if a rewrite system is locally confluent and termi-
nating, it is also confluent. So the question is, how to ensure local confluence
of a gts. In [6], the so called critical pair lemma states, that a gts is locally
confluent if all its critical pairs are strictly confluent. Critical pairs are con-
flict situations of the graph transformation system in a minimal context. This
paper is concerned with the efficient detection of these critical pairs. Once
detected, they should be checked for strict confluence to conclude local con-
fluence of the gts.
Efficient conflict detection is obtained, because of the following two reasons.
At first, rules are analyzed, to check if they can actually cause a conflict.
Secondly, the minimal context of each conflict is computed in a constructive
way. Therefore needless computations, checking for a conflict in each possible
minimal context, are avoided. AGG [10] is a graph transformation tool, which
allows an automatic detection of the set of critical pairs of a gts. Implement-
ing the optimizations, explained in this paper, should improve its efficiency.
Moreover an algorithm is recommended for other graph transformation tool
developers, with the intention to implement critical pair detection.
We begin this paper with some definitions for the used graph transformation
approach [2]. Then the concept of critical pair and conflict is rehearsed. The
main part of this paper is concerned with explaining how to compute in an
efficient way the set of all critical pairs of a gts.

1 Email: ehrig@cs.tu-berlin.de
2 Email: leen@cs.tu-berlin.de
3 Email: orejas@lsi.upc.edu

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–10998

mailto:ehrig@cs.tu-berlin.de
mailto:leen@cs.tu-berlin.de
mailto:orejas@lsi.upc.edu


2 Graph Transformation

The theory of confluence and critical pairs has been worked out for different
graph transformation approaches [9]. This paper explains how to apply the
theory of confluence and critical pairs, developed for graph transformation in
the double pushout approach [6]. Thus in this paragraph we shortly repeat
the main definitions.

Definition 2.1 [graph and graph morphism] A graph G = (GE, GV , s, t) con-
sists of a set GE of edges, a set GV of vertices and two mappings s, t : GE →
GV , assigning to each edge e ∈ GE a source q = s(e) ∈ GV and target
z = t(e) ∈ GV . A graph morphism f : G1 → G2 between two graphs Gi =
(Gi,E, Gi,V , si, ti), (i = 1, 2) is a pair f = (fE : GE,1 → GE,2, fV : GV,1 → GV,2)
of mappings, such that fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE. A graph
morphism f : G1 → G2 is injective (resp.surjective) if fV and fE are injec-
tive (resp. surjective) mappings. A graph isomorphism is an injective and
surjective graph morphism. A graph inclusion i : H → G is a graph mor-
phism, with iV : v �→ v and iE : e �→ e. H is a subgraph of G if there
exists a graph inclusion i : H → G. Two graph morphisms m1 : L1 → G
and m2 : L2 → G are jointly surjective if m1,V (L1,V ) ∪ m2,V (L2,V ) = GV

and m1,E(L1,E) ∪ m2,E(L2,E) = GE. A pair of jointly surjective morphisms
(m1, m2) is also called an overlapping of L1 and L2. A graph projection p is
a graph morphism from a subgraph G of G1 × G2 into G1 ( resp. G2) with
pV : GV → G1,V (resp. G2,V ) and pE : GE → G1,E (resp. G2,E) projections.
Remark: Throughout this paper often f is used, instead of explicitly writing
fV and/or fE.

Definition 2.2 [category Graph] The category having graphs as objects and
graph morphisms as arrows is called Graph.

Definition 2.3 [rule] A graph transformation rule p : L
l← K

r→ R consists
of a rule name p and a pair of injective graph morphisms l : K → L and
r : K → R. The graphs L, K and R are called the left-hand side (lhs), the
interface, and the right-hand side (rhs) of p, respectively. The rule p is non-
deleting if l : K → L is an isomorphism. Remark: If l is a graph inclusion,
then a rule is non-deleting if L = K.

Definition 2.4 [graph transformation system] A graph transformation sys-

tem consists of a set of rules (p : L
l← K

r→ R)p∈P with P the set of rule
names.

Definition 2.5 [match] Given a rule p : L
l← K

r→ R and a graph G, one can
try to apply p to G if there is an occurence of L in G i.e. an injective graph

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109 99



morphism, called match m : L → G. Remark: In general a match doesn’t
have to be injective. Here we restrict to injective matches.

Definition 2.6 [direct graph transformation] Given a graph G, a rule p : L
l←

K
r→ R and a match m : L → G, a direct graph transformation from G to H

using p exists if and only if the double pushout (DPO) diagram

L

m

��

K
l�� r ��

��

R

��
G D�� �� H

can be constructed. In this case we write G
p,m⇒ H. Since pushouts in Graph

always exist, the DPO can be constructed if the pushout complement of K →
L → G exists. If so, we say that, the match m satisfies the gluing condition
of rule p. Note, that since a match in this paper is injective, the identification
condition is always fullfilled.

Definition 2.7 [graph transformation] A graph transformation over a graph
transformation system G is either a graph G, or a sequence of direct graph
transformations Gi−1

pi⇒ Gi, with pi a rule in G.

3 Conflicts and Critical Pairs

Given a graph G, we may have several rules that can be applied to G. However,
this situation is not necessarily a conflictive one. In particular if we have two

rules p1 : L1
l1← K1

r1→ R1 and p2 : L2
l2← K2

r2→ R2 such that they can both
be applied to G via the matches m1 and m2, the situation is not a conflict
if, after applying any of the rules, we can still apply the other one, i.e. if the
transformation defined by the former does not destroy the application of the
latter. The following definitions characterize this situation:

Definition 3.1 [parallel independence] Two direct transformations G
(p1,m1)
=⇒

H1 and G
(p2,m2)
=⇒ H2 are parallel independent if

m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2))

This condition can be expressed categorically in the following way:

∃h1 : L1 → D2 : d2 ◦ h1 = m1 ∧ ∃h2 : L2 → D1 : d1 ◦ h2 = m2

R1

��

K1
����

��

L1
h1

��
m1

���
��

��
��

� L2
h2

��
m2

����
��

��
��

K2
�� ��

��

R2

��
H1 D1 d1

��
e1

�� G D2d2

��
e2

�� H2

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109100



Definition 3.2 [conflict] Two direct transformations G
(p1,m1)⇒ H1 and G

(p2,m2)⇒
H2 are in conflict if they are not parallel independent. Remark: This type
of conflict is also called delete-use-conflict. In particular rule p2 deletes some-
thing, what p1 uses if m1(L1)∩m2(L2) �⊆ m2(l2(K2)) and/or p1 deletes some-
thing, what p2 uses if m1(L1) ∩ m2(L2) �⊆ m1(l1(K1)).

A minimal (in the sense that the graphs G considered are as small as
possible) conflict situation can be characterized by the notion of critical pair:

Definition 3.3 [critical pair] A critical pair is a pair of direct transformations

K
(p1,m1)⇒ P1 and K

(p2,m2)⇒ P2 in conflict, s.t. m1 and m2 are jointly surjective
morphisms.

R1

��

K1
����

��

L1

m1
���

��
��

��
� L2

m2
		��

��
��

��
K2

�� ��

��

R2

��
P1 D1 d1

��
e1

�� K D2d2

��
e2

�� P2

Two notions that are important for the rest of the paper are the concepts
of boundary and context introduced in [5]:

Definition 3.4 [boundary - context] The boundary B of an injective graph
morphism f : A → A′ consists of all nodes a ∈ A such that f(a) is adjacent
to an edge in A′ \ f(A). The context C = A′ \ f(A) ∪ f(b(B)) can be glued
to A over the boundary B obtaining the pushout object A′. This situation is
expressed by the following pushout, called boundary pushout with b, c and g
graph inclusions.

B b
��

c

��

A

f
��

C g
�� A′

Remark: As described in [5] the boundary pushout is an inital pushout.

4 Efficient Conflict Detection

Looking at the critical pair definition, a straightforward way of computing the
set of critical pairs of two rules p1 : L1 ← K1 → R1 and p2 : L2 ← K2 → R2

is expressed by the following algorithm:

CP = empty;

compute all jointly surjective m1:L1->K and m2:L2->K;

for each pair (m1,m2)

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109 101



if (m1 and m2 fullfill gluing condition)

compute (T1,T2) induced by (p1,m1) and (p2,m2);

if (T1 and T2 are in conflict)

CP = CP U {(T1,T2)};

return CP;

This way of computing can be made more efficiently because of the following
reasons.

(i) It is not necessary to compute any overlapping (m1, m2) of L1 and L2 if
both rules are non-deleting.

(ii) If one of the rules is non-deleting and the other one is deleting, it is not
necessary to compute all overlappings (m1, m2) of L1 and L2. It is enough
to compute directly those overlappings which will lead to a critical pair.

The next paragraphs explain these two optimization steps in more detail and
show their correctness.

4.1 1st Optimization

In the first optimization step we need to check if rules are deleting or non-
deleting. In that way we can avoid computing overlappings of two non-deleting
rules. This would be redundant since the set of critical pairs of two non-
deleting rules is empty, as shown in the following lemma.

Lemma 4.1 Given two non-deleting rules p1 : L1
l1← K1

r1→ R1 and p2 : L2
l2←

K2
r2→ R2, each pair of direct graph transformations H1

p1,m1⇐ G
p2,m2⇒ H2 is

parallel independent.

Proof. We have to prove, that m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2)).
Since for non-deleting rules l1 : K1 → L1 and l2 : K2 → L2 are isomorphisms,
because of surjectivity l1(K1) = L1 and l2(K2) = L2. Thus, m1(L1)∩m2(L2) ⊆
m1(l1(K1)) ∩ m2(l2(K2)) = m1(L1) ∩ m2(L2) holds. �

A rule p : L
l← K

r→ R is non-deleting if l is an isomorphism. There are
several ways to check this, depending on how graphs and graph morphisms
are stored in the relative system. The following lemma proves, that checking
if l is an isomorphism actually corresponds to checking if the context C of l
is equal to the empty graph. This method is preferred here, since the context
graph C can be reused in the algorithm for detecting the critical pairs. The
2nd optimization in the following paragraph explains why. If graphs are stored
by their adjaceny matrix, the computation of the context graph C of l is of
quadratic complexity in the number of nodes and edges in L.

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109102



Lemma 4.2 A rule L
l← K

r→ R is a non-deleting rule if and only if the
context C of l : K → L is equal to the empty graph.

C
g

��

B

b
��

c��

L K
l�� �� R

Proof.

• Since C = L \ l(K) ∪ l(b(B)) is equal to the empty graph, L \ l(K) is
also equal to the empty graph. Therefore L = l(K) and since l is also an
injective graph morphism, we can conclude, that l is an isomorphism.

• If l is an isomorphism, we know, that L = l(K) or L \ l(K) is equal to the
empty graph. Therefore, also the boundary B is equal to the empty graph.
Conclusion: C = L \ l(K) ∪ l(b(B)) is equal to the empty graph.

�

4.2 2nd Optimization

After detecting the deleting rules we keep only those pairs of rules, with one
non-deleting and one deleting rule. For such a pair of rules, it is possible
to compute only those overlappings, which lead to a critical pair. This can
be achieved by identifying in the overlapping at least one element, which is
deleted by the deleting rule, with an element of the lhs of the other rule.
The construction of such a special overlapping is formulated in detail in the
following definition and theorem. Moreover in the theorem it is shown, that
this optimization is correct. This means, that computing only this kind of
special overlappings, leads us anyhow to the set of all critical pairs.

Definition 4.3 [conflict conditions - compatibility conditions] Given a non-

deleting rule p1 : L1
l1← K1

r1→ R1 and a rule p2 : L2
l2← K2

r2→ R2, with B2 the
boundary, C2 the context of l2 : L2 ← K2

• a graph S and two morphisms o1 : S → L1, o2 : S → C2 satisfy the conflict
conditions if and only if S is a minimal (i.e. there doesn’t exist a graph S ′,
satisfying the following conditions and being a real subgraph of S) graph
such that the following holds:

(i) S is a subgraph of L1 × C2, with injective projections o1 : S → L1 and
o2 : S → C2

(ii) o2(S) is not a subgraph of B2

• two morphisms m1 : L1 → K and m2 : L2 → K satisfy the compatibility
conditions with respect to (S, o1 : S → L1, o2 : S → C2) if and only if

(i) m1 and m2 are jointly surjective

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109 103



(ii) m1 ◦ o1 = m2 ◦ g2 ◦ o2

(iii) m1 (resp. m2) satisfies the gluing condition of p1 (resp. p2)

Theorem 4.4 Given a non-deleting rule p1 : L1
l1← K1

r1→ R1 and a rule

p2 : L2
l2← K2

r2→ R2, the following holds:

• Each (S, o1, o2), satisfying the conflict conditions and each pair of graph
morphisms m1 : L1 → K and m2 : L2 → K, satisfying the compatibility
conditions with respect to (S, o1, o2) gives rise to a critical pair P1

p1,m1⇐
K

p2,m2⇒ P2.

S

o2 ���
��

��
��

�

o1



��
��
��
��
��
��
��
�

C2

g2

��

B2

b2
��

c2
��

R1

��

K1 l1
��

r1
��

��

L1

m1
���

��
��

��
� L2

m2
		��

��
��

��
K2l2

��
r2

��

��

R2

��
P1 D1 d1

��
e1

�� K D2d2

��
e2

�� P2

• For each critical pair P1
p1,m1⇐ K

p2,m2⇒ P2 there exists a graph S and mor-
phisms o1 : S → L1, o2 : S → C2 such that (S, o1, o2) satisfies the conflict
conditions and the matches m1 : L1 → K and m2 : L2 → K satisfy the
compatibility conditions with respect to (S, o1, o2).

Proof.

• Because of the 3rd compatibility condition, the pair of direct transforma-

tions L1
p1,m1⇒ P1 and L2

p2,m2⇒ P2 exists. The 1st compatibility condition
ensures, that m1 and m2 are jointly surjective, thus it suffices to show that
m1(L1) ∩ m2(L2) �⊆ m2(l2(K2)) to prove that the direct transformations

L1
p1,m1⇒ P1 and L2

p2,m2⇒ P2 are in conflict and to conclude that they form
a critical pair. So we should find an element y ∈ m1(L1) ∩ m2(L2) s.t.
y �∈ m2(l2(K2)). Because of the conflict conditions of S, there exists an x
in SV or SE such that o2(x) ∈ C2 \ c2(B2) = C2 \ B2. This is, because
otherwise o2(S) would be a subgraph of B2. Because of o2(x) ∈ C2 \ B2

and the fact that (2) is a pushout, g2(o2(x)) �∈ l2(K2). Since m2 is in-
jective, also m2(g2(o2(x))) �∈ m2(l2(K2)). The 2nd compatibility condition
says, that ∀x ∈ S : m1(o1(x)) = m2(g2(o2(x))). Thus, we have found an
y = m2(g2(o2(x))) ∈ m1(L1) ∩ m2(L2) s.t. y �∈ m2(l2(K2)).

• At first we can build the pullback of m1 and m2 ◦ g2, obtaining a pullback
object S ′ subgraph of L1 × C2 and induced injective graph projections o′1 :

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109104



S ′ → L1 and o′2 : S ′ → C2.

S

i
��

o2 ���
��

��
��

�

o1

��

S ′
o′2

��

(1)

o′1

		��
��

��
��

C2

g2

��

B2

(2) b2
��

c2
��

R1

��

K1 l1
��

r1
��

��

L1

m1
���

��
��

��
� L2

m2
		��

��
��

��
K2l2

��
r2

��

��

R2

��
P1 D1 d1

��
e1

�� K D2d2

��
e2

�� P2

Since the critical pair consists of two direct transformations in conflict and
p1 is a non-deleting rule, we know that, there exists an y ∈ m1(L1) ∩
m2(L2), such that y �∈ m2(l2(K2)). This is, because since m1(L1)∩m2(L2) �⊆
m1(l1(K1)) ∩ m2(l2(K2))) and since l1 is an isomorphism each y ∈ m1(L1)
holds a preimage x in L1 and each x in L1 holds a preimage z in K1.
This means, that m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)). Then, it follows that
m1(L1) ∩ m2(L2) �⊆ m2(l2(K2)). Thus, there exist x1 ∈ L1 and x2 ∈ L2

s.t. m2(x2) = y = m1(x1), but there exists no k ∈ K2 s.t. l2(k) = x2.
Because of this and the fact that (2) is a pushout, there exists c ∈ C2 \ B2

s.t. g2(c) = x2. Thus, we have that m1(x1) = m2(x2) = m2(g2(c)). Since
(1) is a pullback, this means, that S ′ is not equal to the empty graph. In
fact, there exists an s ∈ S ′ s.t. o′2(s) = c and o′1(s) = x1. Since o′2(s) = c
and c ∈ C2 \ B2, o′2(S

′) can’t be a subgraph of B2. Thus (S ′, o′1, o
′
2) fullfills

the conflict conditions if S ′ in addition would be minimal. If it is not, then
we take a minimal subgraph S of S ′, with projections o1 : S → L1 and
o2 : S → C2 s.t. o2(S) is not a subgraph of B2. Then (S, o1, o2) satisfies
the conflict conditions. The matches (m1, m2) of the critical pair are by
definition jointly surjective and they fullfill the gluing condition of p1 resp.
p2. Since (1) is a pullback and S is a subgraph of S ′, m1 ◦ o1 = m2 ◦ g2 ◦ o2.
Thus (m1, m2) fullfill the compatibility conditions with respect to (S, o1, o2).

�

5 Critical Pair Algorithm

The optimization steps in the last paragraph help us to compute in an efficient
way the set of critical pairs of two non-deleting rules or of one deleting and
one non-deleting rule. The following algorithm computes the set of critical

pairs CP = CP1 ∪ CP2, induced by the rules p1 : L1
l1← K1

r1→ R1 and

p2 : L2
l2← K2

r2→ R2. Note, that CP1 (resp. CP2) is the set of critical pairs,
expressing the delete-use-conflicts in which p2 (resp. p1) uses something, what

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109 105



is deleted by p1 (resp. p2), comp. is an abbreviation of compatibility and
T1 (resp. T2) is a direct transformation induced by a match m1 (resp. m2),
satisfying the gluing condition and the rule p1 (resp. p2).

CP_1 = empty;

CP_2 = empty;

compute context C1 of l1;

compute context C2 of l2;

if (C1 != empty and C2 = empty)

compute all S of L2 and C1, satisfying conflict conditions;

for each S

compute all m1:L1->K and m2:L2->K, satisfying comp. conditions;

if (m1 and m2 fullfill gluing condition)

compute (T1,T2) induced by (p1,m1) and (p2,m2);

CP_1 = CP_1 U {(T1,T2)};

if (C2 != empty and C1 = empty)

compute all S of L1 and C2, satisfying conflict conditions;

for each S

compute all m1:L1->K and m2:L2->K, satisfying comp. conditions;

if (m1 and m2 fullfill gluing condition)

compute (T1,T2) induced by (p1,m1) and (p2,m2);

CP_2 = CP_2 U {(T1,T2)};

return (CP_1, CP_2);

Note, that this algorithm avoids computing overlappings of a pair of non-
deleting rules. The first optimization tells us, that this is the case if the context
graphs C1 and C2 are both empty. Secondly, not all possible overlappings m1

and m2 are computed, but only those, satisfying the compatibility conditions
over a graphs S, satisfying the conflict conditions. The second optimization
tells us, that if m1 and m2 fullfill the gluing condition, the pair of induced direct
transformations T1 and T2 is a critical pair. It is not necessary anymore to
check if T1 and T2 are in conflict, because the 1st part of Theorem 4.4 tells us,
that they automatically are. Moreover following this algorithm we definitely
get all critical pairs, because this is proven in the 2nd part of Theorem 4.4.

The computation of critical pairs of a pair of rules, as proposed in the begin-
ning of this paragraph before making the optimizations is exponential in the
number of nodes and edges of L1 and L2 because of the computation of all
overlappings (m1, m2). For example in Figure 1 we have two lhs’s of two rules
and all their possible overlappings. For the case of pairs of rules, consisting of
at least one non-deleting rule we can apply the recommended two optimiza-
tions. For example in Figure 2 we have one deleting and one non-deleting
rule and can apply the second optimization, leading us directly to the only

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109106



Fig. 1. Example: all possible overlappings of L1 and L2

Fig. 2. Example: construction of critical overlapping of L1 and L2

critical pair for this pair of rules. This is because only one graph S satisfies
the conflict conditions of these rules and only one pair of overlappings satisfies
the compatibility conditions with respect to this graph S. In the case of two
non-deleting rules the algorithm is of quadratic complexity in the number of
nodes and edges of L1 and L2, because in this case only the computation of
the context graphs is carried out.

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109 107



6 Summary and Outlook

Conflict detection is a necessary step in checking functional behavior of a
graph-based model transformation. A critical pair describes in a formal way a
conflict situation occuring in a minimal context. The set of critical pairs, i.e.
all minimal conflicts, can be computed in an efficient and constructive way.
At first, each pair of rules is analyzed, filtering out only the conflict inducing
pair of rules. Secondly, the minimal context of each conflict, described by the
critical pair definition, is computed in a constructive way. Therefore needless
computations, checking for a conflict in each possible minimal context, are
avoided. Further necessary steps in checking functional behavior are analysis
of all minimal conflicts for strict confluence and checking for termination of
the graph transformation system.
Note, that in this paper an efficient conflict detection is proposed for a pair
of non-deleting rules or a pair of one deleting and one non-deleting rule. The
case of two deleting rules and the case of having transformations with non-
injective matches still have to be investigated. Moreover we should point out
the possibility of further improvement of the proposed algorithm. Therefore
we would need an extension of the theory which ensures the fact that each
critical pair possesses a unique graph S, satisfying the conflict conditions,
over which the critical pair can be constructed. Then we could rule out the
possibility of computing the same critical pair more than once. This kind of
extensions and the theoretical results already available in this paper can be
formulated as well in the context of adhesive HLR categories [6], which will
be done in a following paper.
Further future work consists of extending conflict detection to other kinds
of conflicts, adding negative application conditions (NAC’s) [1], typing and
attributes [7] to the graph transformation formalism. Therefore, at first the
results in [6] about local confluence and critical pairs should be extended
to gts with NAC’s. In addition we are working on finding a necessary and
sufficient condition for a graph transformation system to be locally confluent.
In [6] only a sufficient condition is formulated. This means, that it is not
known yet if a graph transformation system can be locally confluent if not
all of its critical pairs are strictly confluent. Then for these extended graph
transformation formalism again the mechanism of at first analysing all pairs
of rules and afterwards efficient computation of the minimal context of each
conflict should be worked out.

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109108



Acknowledgement

This work in collaboration partly arose during a research stay of the first au-
thor with a SEGRAVIS (HPRN-CT-2002-00275) grant in february and march
’05 at the UPC in Barcelona. The work of Fernando Orejas has been par-
tially supported by the Spanish project GRAMMARS (TIN2004-07925-C03-
01). Further on we are grateful to Enrico Biermann, Olga Runge and Gabi
Taentzer for the suggestive discussions on the implementation of critical pair
detection in AGG [10].

References

[1] Annegret Habel, R. H. and G. Taentzer, Graph grammars with negative application conditions
(1996).

[2] Corradini, A., U. Montanari, F. Rossi, H. Ehrig, R. Heckel and M. Löwe, Algebraic Approaches
to Graph Transformation I: Basic Concepts and Double Pushout Approach, in: G. Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transformation, Volume 1:
Foundations, World Scientific, 1997 pp. 163–245.

[3] de Lara, J. and G. Taentzer, Automated Model Transformation and its Validation using
AToM3 and AGG, in: A. Blackwell, K. Marriott and A. Shimojima, editors, Diagrammatic
Representation and Inference (2004).

[4] Ehrig, H., K. Ehrig, J. de Lara, G. Taentzer, D. Varró and S. Varró-Gyapay, Termination
criteria for model transformation, in: Proc. Fundamental Approaches to Software Engineering
(FASE), Lecture Notes in Computer Science (2005), pp. 00–00, to appear.
URL http://tfs.cs.tu-berlin.de/∼ehrig/public/EEL+05.pdf

[5] Ehrig, H., K. Ehrig, A. Habel and K.-H. Pennemann, Constraints and application conditions:
From graphs to high-level structures, in: F. Parisi-Presicce, P. Bottoni and G. Engels, editors,
Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), LNCS 3256 (2004), pp. 287–
303.
URL http://www.cs.tu-berlin.de/∼ehrig/publications/ICGT04paper3.pdf

[6] Ehrig, H., A. Habel, J. Padberg and U. Prange, Adhesive high-level replacement categories and
systems, in: F. Parisi-Presicce, P. Bottoni and G. Engels, editors, Proc. 2nd Int. Conference
on Graph Transformation (ICGT’04), LNCS 3256 (2004), pp. 144–160.
URL http://www.cs.tu-berlin.de/∼ehrig/publications/ICGT04paper1.pdf

[7] Ehrig, H., U. Prange and G. Taentzer, Fundamental theory for typed attributed graph
transformation, in: F. Parisi-Presicce, P. Bottoni and G. Engels, editors, Proc. 2nd Int.
Conference on Graph Transformation (ICGT’04), Rome, Italy, LNCS 3256, Springer, 2004
pp. 161–177.
URL http://www.cs.tu-berlin.de/∼ehrig/publications/ICGT04paper2.pdf

[8] Huet, G., Confluent reductions: Abstract properties and applications to term rewriting systems
(1980).

[9] Plump, D., Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence, in: M. Sleep,
M. Plasmeijer and M. C. van Eekelen, editors, Term Graph Rewriting, Wiley, 1993 pp. 201–214.

[10] Taentzer, G., AGG: A Graph Transformation Environment for Modeling and Validation of
Software, in: J. Pfaltz, M. Nagl and B. Boehlen, editors, Application of Graph Transformations
with Industrial Relevance (AGTIVE’03), LNCS 3062, Springer, 2004 pp. 446 – 456.

L. Lambers et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 97–109 109

http://tfs.cs.tu-berlin.de/~ehrig/public/EEL+05.pdf
http://www.cs.tu-berlin.de/~ehrig/publications/ICGT04paper3.pdf
http://www.cs.tu-berlin.de/~ehrig/publications/ICGT04paper1.pdf
http://www.cs.tu-berlin.de/~ehrig/publications/ICGT04paper2.pdf

	Introduction
	Graph Transformation
	Conflicts and Critical Pairs
	Efficient Conflict Detection
	1st Optimization
	2nd Optimization

	Critical Pair Algorithm
	Summary and Outlook
	References



