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Abstract

The well-known notion of critical pairs already allows a static conflict detection,
which is important for all kinds of applications and already implemented in AGG.
Unfortunately the standard construction is not very efficient. This paper introduces
the new concept of essential critical pairs allowing a more efficient conflict detec-
tion. This is based on a new conflict characterization, which determines for each
conflict occuring between the rules of the system the exact conflict reason. This
new notion of conflict reason leads us to an optimization of conflict detection. Ef-
ficiency is obtained because the set of essential critical pairs is a proper subset of
all critical pairs of the system and therefore the set of representative conflicts to
be computed statically diminishes. It is shown that for each conflict in the system,
there exists an essential critical pair representing it. Moreover each essential critical
pair possesses a unique conflict reason and thus represents each conflict not only
in a minimal, but also in a unique way. Main new results presented in this paper
are a characterization of conflicts, completeness and uniqueness of essential critical
pairs and a local confluence lemma based on essential critical pairs. The theory of
essential critical pairs is the basis to develop and implement a more efficient conflict
detection algorithm in the near future.

Key words: conflict, confluence, critical pair, graph
transformation



Lambers - Ehrig - Orejas

1 Introduction

Static conflict detection is a well-known important task for all kinds of rewrit-
ing systems especially also for graph transformation systems. To enable a
static conflict detection the notion of critical pairs was developed at first for
hypergraph rewriting [11] and then for all kinds of transformation systems
fitting into the framework of adhesive high-level replacement categories [6].
Usually a straightforward way (i.e. directly according to the definition) is
used to compute the set of all critical pairs of a graph transformation system.
This is very important for all kinds of applications like for example graph
parsing [2], conflict detection in graph transformation based modeling [8] [1]
and model transformation [3] [4], refactoring [10], etc. Up to now, however,
there is almost no theory which allows an efficient implementation of conflict
detection. Therefore our paper [9] and this paper concentrate on exactly this
subject.

In [9] it was already explained which optimizations lead to a more efficient
conflict detection in a graph transformation system. Unfortunately this effi-
ciency could only be obtained for conflicts induced by a pair of rules with one
of the rules non-deleting. This is quite a strong restriction, since in particular
a lot of conflicts are induced by a pair of deleting rules. Therefore this paper
formulates a characterization of conflicts, covering also these kind of conflicts.
Moreover this conflict characterization leads us to the identification of the
conflict reason of each conflict.

The notion of critical pair introduced in [11], [6] expresses each conflict in
its minimal context. In some cases though two different critical pairs express
the same kind of conflict. Therefore exploiting the uniqueness of each conflict
reason mentioned above, it is possible to further reduce the set of critical
pairs to a subset of essential critical pairs. This subset expresses each kind
of conflict which can occur in a graph transformation system in a minimal
context and moreover in a unique way. This uniqueness property and the
constructive conflict reason definition facilitates the optimization of detecting
all conflicts of a graph transformation system.

The following sections explain how to characterize conflicts and what the
conflict reason is, how we come to the definition of essential critical pairs
and which properties they fullfill. Main new results presented in this paper
are a characterization of conflicts, completeness and uniqueness of essential
critical pairs and a local confluence lemma based on essential critical pairs.
More details concerning well-known definitions and new proofs are given in
the appendix to show the mature status of the theory. The theory of essential
critical pairs is the basis to develop and implement a more efficient conflict
detection algorithm in the near future.

1 Email: leen@cs.tu-berlin.de
2 Email: ehrig@cs.tu-berlin.de
3 Email: orejas@lsi.upc.edu
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Fig. 1. asymmetrical delete-use-conflict

2 Conflict Characterization and Conflict Reason

In this section we formulate a theory which leads us to the identification
of the conflict reason for each occuring conflict in a graph transformation
system where we only consider injective matches. This new notion of conflict
reason will help us consequently in the next sections to detect in a static
way all representative conflicts of a graph transformation system. At first,
we look at an example of two direct transformations H1

p1,m1⇐ G
p2,m2⇒ H2 in

conflict in Fig. 1, generated by two deleting rules p1 : L1 ← K1 → R1 and
p2 : L2 ← K2 → R2. Looking at both direct transformations we can describe
the reason for the conflict between them as follows. The left transformation
deletes edge (1, 4− 2, 5) and that is why rule p2 can not be applied anymore
to the same location on graph H1. The structure (S1, o1, q12), constructed as
pullback of (m1 ◦ g1, m2), captures exactly the conflict reason for this conflict,
because it holds the edge (1, 4− 2, 5) to be deleted by the left transformation,
but used by the other one. The following definitions and theorem explain
how to formalize this new notion of conflict reason. Please note, that for all

subsequent definitions and theorems the following pair of rules pi : Li
li← Ki

ri→
Ri with boundary Bi and context Ci, defining an inital pushout (1) over li
(see [6]) and injective graph morphisms bi, ci, gi, li are given, i.e. bi, ci, gi, li in
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M (i = 1, 2), where M is the set of all injective graph morphisms.

Bi

(1)bi

��

ci
//Ci

gi

��
Ki li

//Li

Definition 2.1 [conflict condition] Given a pair of direct transformations

H1
p1,m1⇐ G

p2,m2⇒ H2

• (S1, o1 : S1 → C1, q12 : S1 → L2) the pullback of (m1 ◦ g1, m2) satisfies the
conflict condition if: 6 ∃s1 : S1 → B1 ∈M such that c1 ◦ s1 = o1

B1

b1
��

c1
//C1

g1

��

S1o1
oo

(1)

q12
  A

AA
AA

AA

R1

(41)

��

K1

(31)

l1 //r1oo

��

L1

m1
  A

AA
AA

AA
A L2

(32)m2
~~}}

}}
}}

}}
K2

(42)

l2oo r2 //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
//H2

• (S2, q21 : S2 → L1, o2 : S2 → C2) the pullback of (m1, m2 ◦ g2) satisfies the
conflict condition if: 6 ∃s2 : S2 → B2 ∈M such that c2 ◦ s2 = o2

S2 o2
//

(1)

q21

~~}}
}}

}}
}

C2

g2

��

B2

b2
��

c2
oo

R1

(41)
��

K1

(31)

l1 //r1oo

��

L1

m1
  A

AA
AA

AA
A L2

(32)m2
~~}}

}}
}}

}}
K2

(42)

l2oo r2 //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
//H2

In the example in Fig. 1 (S1, o1 : S1 → C1, q12 : S1 → L2) satisfies, but
(S2, q21 : S2 → L1, o2 : S2 → C2) doesn’t satisfy the conflict condition. The
idea behind this conflict condition is that a conflict occurs if graph parts which
are deleted are overlapped with parts to be used by the other transformation.
This idea is expressed formally by a new characterization of conflicts in the
next theorem.

Theorem 2.2 (Characterization Conflict) Given a pair of direct transfor-

mations H1
p1,m1⇐ G

p2,m2⇒ H2 with (S1, o1 : S1 → C1, q12 : S1 → L2) the
pullback of (m1 ◦ g1, m2) and (S2, q21 : S2 → L1, o2 : S2 → C2) the pullback of
(m2, m1 ◦ g1) then the following equivalence holds:

H1
p1,m1⇐ G

p2,m2⇒ H2 are in conflict

⇔
(S1, o1, q12) ∨ (S2, q21, o2) satisfies the conflict condition

Theorem 2.2 (proof see appendix B) teaches us, that a pair of direct trans-

formations H1
p1,m1⇐ G

p2,m2⇒ H2 is in conflict, because one of the following three
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Fig. 2. symmetrical conflict

reasons:

(i) (S1, o1, q12) satisfies and (S2, q21, o2) doesn’t satisfy the conflict condition
(asymmetrical delete-use-conflict)

(ii) (S1, o1, q12) doesn’t satisfy and (S2, q21, o2) satisfies the conflict condition
(asymmetrical use-delete-conflict)

(iii) both (S1, o1, q12) and (S2, q21, o2) satisfy the conflict condition (symmet-
rical conflict)

In the case of asymmetrical conflicts rule p1 (resp. p2) deletes something,
what is used by rule p2 (resp. p1), but not the other way round. Let us
consider in more detail the case of symmetrical conflicts. In Fig. 2 you can
see an example of two direct transformations, having a symmetrical conflict.
Then (S1, o1, q12) expresses the part which is deleted by p1 and used by rule
p2 and (S2, p1, o2) expresses the part which is deleted by p2 and used by rule
p1. In order to summarize both parts into one graph expressing exactly the
graph parts of L1 and L2 responsible for the conflict, we make the construction
depicted in Fig. 3. In this construction (S ′, a1, a2) is the pullback of (m1 ◦ g1 ◦
o1 : S1 → G1, m2◦g2◦o2 : S2 → G2) and (S, s′1, s

′
2) is the pushout of (S ′, a1, a2).

This is, we determine the part S ′, which is deleted by both rules and glue S1

and S2 together over this part leading to S. Note, that in the example in Fig.
2 S ′ would be the empty graph. Now we have g1 ◦o1 ◦a1 = q21 ◦a2 and similar
g1◦o2◦a2 = q12◦a1 because m1 is mono and m1◦g1◦o1◦a1 = m2◦g2◦o2◦a2 =
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S ′

a2   A
AA

AA
AA

A

a1~~}}
}}

}}
}}

S1

o1

�� s′
1   A

AA
AA

AA
A S2

s′
2~~}}

}}
}}

}}
o2

��
B1

b1
��

c1
//C1

g1

��

S

s2
  A

AA
AA

AA
A

s1
~~}}

}}
}}

}}
C2

g2

��

B2

b2
��

c2oo

K1

(31)

l1 //

��

L1

m1
  A

AA
AA

AA
A L2

(32)m2
~~}}

}}
}}

}}
K2

l2oo

��
D1 d1

//G D2d2

oo

Fig. 3. construction of the conflict reason for symmetrical conflicts

m1 ◦ q21 ◦a2. Together with the pushout property of S this implies, that there
exists a unique s1 : S → L1 (resp. s2 : S → L2) s.t. g1 ◦ o1 = s1 ◦ s′1 and
q21 = s1 ◦ s′2 (resp. g2 ◦ o2 = s2 ◦ s′2 and q12 = s2 ◦ s′1). Moreover using
PO-property of S we can conclude m1 ◦ s1 = m2 ◦ s2. Please note, that in
Fig. 3 we left out q21 and q12. Thus in the end (S, s1, s2) summarizes which
parts of L1 and L2 are responsible for the symmetrical conflict. Remark:
S = S1 = S2 if and only if all elements deleted by p1 are also deleted by p2

and the other way round (pure delete-delete-conflict). S ′ = ∅ if and only if
all elements deleted by p1 are not deleted, but used by p2 and the other way
round (pure delete-use-conflict as in the example in Fig. 3).
We can resume these observations into the following definition.

Definition 2.3 [conflict reason span] Given a pair of direct transformations

H1
p1,m1⇐ G

p2,m2⇒ H2 in conflict, the conflict reason span of H1
p1,m1⇐ G

p2,m2⇒ H2

is one of the following spans using the notation of Def.2.1:

• (S1, g1 ◦ o1, q12) if (S1, o1, q12) satisfies and (S2, q21, o2) doesn’t satisfy the
conflict condition

• (S2, q21, g2 ◦ o2) if (S1, o1, q12) doesn’t satisfy and (S2, q21, o2) satisfies the
conflict condition

• (S, s1, s2) if (S1, o1, q12) and (S2, q21, o2) both satisfy the conflict condition
and (S, s1, s2) is constructed as above

3 Definition of Essential Critical Pairs

By means of the new notion of conflict reason it is possible to define the new
notion of essential critical pairs. The idea behind this notion is that for each
conflict reason we have an essential critical pair, expressing the conflict caused
by exactly this conflict reason in a minimal context.

Definition 3.1 [essential critical pair] A pair of direct transformations P1
p1,m1⇐
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K
p2,m2⇒ P2 is an essential critical pair for the pair of rules (p1, p2) if the fol-

lowing holds: P1
p1,m1⇐ K

p2,m2⇒ P2 are in conflict and (K, m1, m2) is a pushout
of the conflict reason span (S1, g1 ◦ o1, q12),(S2, q21, g2 ◦ o2) or (S, s1, s2) of

P1
p1,m1⇐ K

p2,m2⇒ P2 according to Definition 2.3.

Fact 3.2 Each essential critical pair P1
p1,m1⇐ K

p2,m2⇒ P2 of (p1, p2) is a critical
pair of (p1, p2).

Proof. Each essential critical pair is a pair of direct transformations in con-
flict. The overlappings (m1, m2) of an essential critical pair are jointly surjec-
tive, because they are constructed via a pushout. 2

Remark: The main idea shown in the next section is that it is sufficient
to consider essential critical pairs and not every critical pair is an essential
critical pair. This is shown in the example in Fig. 4. The essential critical pair
P1

p1,m1⇐ K
p2,m2⇒ P2 of (p1, p2) only overlaps the edge (1− 2) with (4− 5), since

this is exactly the reason for the delete-use-conflict. However the matches

(m′
1, m

′
2) of the critical pair P ′

1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2 (with m′

1 = m1 ◦ m and
m′

2 = m2◦m) overlap in addition node 7 with node 3, which are not responsible
for the conflict at all. The pair of rules, used in the example in Fig. 1,2 and 4
induces, according to the critical pair detection in [12] AGG 14 critical pairs,
but only 3 of them are essential critical pairs.

4 Properties of Essential Critical Pairs

In this section we will prove that it is enough to compute all essential crit-
ical pairs to detect all conflicts, occuring in a graph transformation system.
Therefore we show, that the set of essential critical pairs fullfills the follow-
ing three properties. At first, we demonstrate that each conflict, occuring
in the system can be expressed by an essential critical pair (completeness).
The second property says, that each essential critical pair is induced by a
unique conflict reason. Finally we will prove a local confluence lemma based
on essential critical pairs.

Theorem 4.1 (Completeness and Uniqueness of Essential Critical Pairs)

For each critical pair P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2 of (p1, p2) there exists a unique es-

sential critical pair P1
p1,m1⇐ K

p2,m2⇒ P2 of (p1, p2) with the same conflict reason
span and extension diagrams (1) and (2).

P1

��
(1)

Kks +3

(2)m

��

P2

��
P ′

1 K ′ks +3P ′
2

Remark: m : K → K ′ is an epimorphism, but not necessarily a monomor-
phism.

The proof of this theorem is given in appendix C.
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Fig. 4. essential crit. pair P1
p1,m1⇐ K

p2,m2⇒ P2 into crit. pair P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2

The set of essential critical pairs is unique in the following sense:

Theorem 4.2 (Uniqueness of Essential Critical Pairs) Each essential crit-
ical pair possesses a unique conflict reason span.

Proof. This follows directly from Theorem 4.1 and Fact 3.2. 2

Note, that the set of critical pairs doesn’t possess this uniqueness property.
The example in Fig. 4 shows two different critical pairs (a normal critical

pair P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2 and an essential critical pair P ′

1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2)

possessing the same conflict reason span.

The following theorem states that it is enough to check each essential
critical pair for strict confluence as defined in [11][6] to obtain local confluence
of a graph transformation system.

Theorem 4.3 (Local Confluence Lemma based on Essential Critical Pairs)
If all essential critical pairs of a graph transformation system are strictly con-
fluent, then this graph transformation system is locally confluent.

The proof of this theorem is given in appendix D. It is similar to the proof
of the local confluence lemma in [6], but avoids to assume that m : K → K ′
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is a monomorphism. Note, that the theory of essential critical pairs not only
simplifies static conflict detection, but in addition confluence analysis of the
conflicts in the system. This is because the number of conflicts to be analyzed
for strictly confluence diminishes, since the essential critical pairs are a subset
of the critical pairs.

5 Summary and Outlook

In this paper we have introduced the new notion of essential critical pairs and
corresponding results which are the basis of a more efficient conflict detection
and local confluence analysis than the standard techniques based on usual
critical pairs. In a forthcoming paper we will give on this basis an efficient
correct construction of all essential critical pairs for each pair of rules and
a corresponding algorithm which will improve the current critical pair algo-
rithm of AGG [12]. In addition we assume and will verify that an extension
of this theory to graph transformation with non-injective matches is possi-
ble, provided that the conflict condition is slightly generalized. Moreover the
following question in the context of conflict detection for graph transforma-
tion systems is subject of future work. What kind of new conflicts occur and
which new critical pair notion is necessary to describe the conflicts in graph
transformation systems with application conditions and constraints [5] and
what about the more general case of typed, attributed graph transformation
systems [7]?
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APPENDICES

A DPO Graph Transformation: Basic Definitions, Con-
flicts and Critical Pairs

The theory of confluence and critical pairs has been worked out for different
graph transformation approaches [11]. This paper explains how to apply the
theory of confluence and critical pairs, developed for graph transformation
in the double pushout approach (DPO) [6]. Therefore we repeat some main
definitions.

Definition A.1 [graph transformation system] A graph transformation sys-

tem consists of a set of rules (p : L
l← K

r→ R)p∈P with P the set of rule

names. Given a rule p : L
l← K

r→ R and a graph G, one can try to apply p to
G if there is an occurence of L in G i.e. an injective graph morphism, called
match m : L→ G. Remark: In general a match doesn’t have to be injective.

Here we restrict to injective matches. Given a graph G, a rule p : L
l← K

r→ R
and a match m : L → G, a direct graph transformation from G to H using p
exists if and only if the double pushout (DPO) diagram

L

m

��

K
loo r //

��

R

��
G Doo //H

can be constructed. In this case we write G
p,m⇒ H. Since pushouts in

Graph always exist, the DPO can be constructed if the pushout comple-
ment of K → L → G exists. If so, we say that, the match m satisfies the
gluing condition of rule p. Note, that since a match in this paper is injective,
the identification condition is always fullfilled. A graph transformation for a
graph transformation system G is a sequence of direct graph transformations
Gi−1

pi⇒ Gi, with pi a rule in G (i = 1, · · · , n) , where for n = 0 we have the
identical transformation of G0.

Given a graph G, we may have several rules that can be applied to G.
However, this situation is not necessarily a conflictive one. In particular if we

have two rules p1 : L1
l1← K1

r1→ R1 and p2 : L2
l2← K2

r2→ R2 such that they
can both be applied to G via the matches m1 and m2, the situation is not a
conflict if, after applying any of the rules, we can still apply the other one, i.e.
if the transformation defined by the former does not destroy the application
of the latter. The following definitions characterize this situation:

Definition A.2 [parallel independence] Two direct transformations G
(p1,m1)
=⇒

H1 and G
(p2,m2)
=⇒ H2 are parallel independent if

m1(L1) ∩m2(L2) ⊆ m1(l1(K1)) ∩m2(l2(K2))

11
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This condition can be expressed categorically in the following way:

∃h1 : L1 → D2 : d2 ◦ h1 = m1 ∧ ∃h2 : L2 → D1 : d1 ◦ h2 = m2

R1

��

K1
//oo

��

L1
h1

''
m1

��@
@@

@@
@@

@ L2
h2

ww
m2

��~~
~~

~~
~~

K2
oo //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
//H2

Definition A.3 [conflict] Two direct transformations G
(p1,m1)⇒ H1 and G

(p2,m2)⇒
H2 are in conflict if they are not parallel independent. Remark: This type
of conflict is also called delete-use-conflict. In particular rule p2 deletes some-
thing, what p1 uses if m1(L1)∩m2(L2) 6⊆ m2(l2(K2)) and/or p1 deletes some-
thing, what p2 uses if m1(L1) ∩m2(L2) 6⊆ m1(l1(K1)).

A conflict situation in a minimal context can be characterized by the notion
of critical pair:

Definition A.4 [critical pair] A critical pair for the pair of rules (p1, p2) is a

pair of direct transformations K
(p1,m1)⇒ P1 and K

(p2,m2)⇒ P2 in conflict, s.t. m1

and m2 are jointly surjective morphisms.

R1

��

K1
//oo

��

L1

m1
  @

@@
@@

@@
@ L2

m2
~~~~

~~
~~

~~
K2

oo //

��

R2

��
P1 D1 d1

//
e1
oo K D2d2

oo
e2
//P2

The context is minimal, because m1 and m2 are required to be jointly surjective
morphisms or so-called overlappings.

Two notions that are important for the rest of the paper are the concepts
of boundary and context introduced in [5]:

Definition A.5 [boundary - context] The boundary B of an injective graph
morphism f : A → A′ consists of all nodes a ∈ A such that f(a) is adjacent
to an edge in A′ \ f(A). The context C = A′ \ f(A) ∪ f(b(B)) can be glued
to A over the boundary B obtaining the pushout object A′. This situation
is expressed by the following pushout, called boundary pushout with b and g
graph inclusions.

B b
//

c

��

A

f
��

C g
//A′

Remark: As described in [5] the boundary pushout is an inital pushout.

B Proof of Theorem 2.2: Characterization Conflict

Given a pair of direct transformations H1
p1,m1⇐ G

p2,m2⇒ H2 with (S1, o1 : S1 →
C1, q12 : S1 → L2) the pullback of (m1 ◦ g1, m2) and (S2, q21 : S2 → L1, o2 :

12
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S2 → C2) the pullback of (m2, m1 ◦ g1) then the following equivalence holds:

H1
p1,m1⇐ G

p2,m2⇒ H2 are in conflict

⇔
(S1, o1, q12) ∨ (S2, q21, o2) satisfies the conflict condition

Remark: The proof of this Theorem is given in the context of AHLR systems
[6], which implies that the conflict characterization proposed here holds not
only for graph transformation systems as introduced in this paper, but for
AHLR systems with matches that are monomorphisms.

Proof.

• Given (S2, q21, o2)∨ (S1, o1, q12) satisfying the conflict condition. It remains

to show that H1
p1,m1⇐ G

p2,m2⇒ H2 are in conflict. Assume parallel indepen-
dence, than we have m′

1 : L1 → D2 with d2 ◦m′
1 = m1 and m′

2 : L2 → D1

with d1 ◦ m′
2 = m2. It suffices to construct s2 : S2 → B2 ∈ M (resp.

s1 : S1 → B1 ∈ M) with c2 ◦ s2 = o2 (resp.c1 ◦ s1 = o1) which violates the
conflict condition for (S2, q21, o2) (resp. (S1, o1, q12)).

S2 o2
//

(1)

q21

~~}}
}}

}}
}

C2

g2

��

B2

(22) b2
��

c2
oo

R1

(41)
��

K1

(31)

l1 //r1oo

��

L1 m′
1

''
m1

  A
AA

AA
AA

A L2m′
2

ww
(32)m2

~~}}
}}

}}
}}

K2

(42)

l2oo r2 //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
//H2

We have pushout and hence also pullback (22) + (32) and o2 : S2 → C2

and m′
1 ◦ q21 : S2 → D2 with m2 ◦ g2 ◦ o2 = m1 ◦ q21 = d2 ◦m′

1 ◦ q21 which
implies by the pullback property a unique s2 : S2 → B2 with c2 ◦ s2 = o2

and k2 ◦ b2 ◦ s2 = m′
1 ◦ q21. Now o2, c2 ∈ M implies s2 ∈ M , because M is

closed under decomposition.

S2o2

��

s2

~~

m′
1◦q21

||

C2

m2◦g2

��

B2

k2◦b2
��

c2oo

K D2
d2oo

Analogously we can construct s1 : S1 → B1 ∈M s.t. c1 ◦ s1 = o1. This is a
contradiction and proves, that H1

p1,m1⇐ G
p2,m2⇒ H2 are in conflict.

• Given P1
p1,m1⇐ K

p2,m2⇒ P2 in conflict and neither (S1, o1, q12), nor (S2, q21, o2)
satisfy the conflict condition. Then there exists a morphism s1 : S1 → B1 ∈
M with c1 ◦ s1 = o1 and there exists a morphism s2 : S2 → B2 ∈ M with
c2 ◦s2 = o2. It suffices to show parallel independence of H1

p1,m1⇐ G
p2,m2⇒ H2.

This is equivalent to constructing m′
1 : L1 → D2 with d2 ◦ m′

1 = m1 and

13
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m′
2 : L2 → D1 with d1◦m′

2. We begin with the construction of m′
1. Therefore

consider the following picture:

S2

o2

��

q21

~~}}
}}

}}
}}

S2

x3

}}
s2

��

idS

oo

L1

m1

��

P

x2

��

x1oo

C2

m2◦g2
~~}}

}}
}}

}}
B2

c2oo

k2◦b2}}||
||

||
||

G D2
d2oo

Let (P, x1, x2) be the pullback of (G, m1, d2) in the front square. The left
square is a pullback by construction. The back square is a pullback because
c2 is a monomorphism. The front pullback leads to a unique morphism
x3 : S2 → P s.t. q21 = x1 ◦ x3 and x2 ◦ x3 = k2 ◦ b2 ◦ s2. The top
square is a pullback because x1 is a monomorphism. The bottom square is
a pushout by construction and hence also pullback. This implies by pullback
composition and decomposition that also the right square is a pullback. Now
the Van Kampen property with bottom pushout and c2 ∈ M implies that
the top is a pushout as well. This implies x1 is an isomorphism. Now let
m′

1 = x2 ◦ (x1)
−1 : L1 → D2, then d2 ◦ m′

1 = d2 ◦ x2 ◦ (x1)
−1 = m1 ◦ x1 ◦

(x1)
−1 = m1. Analogously we can construct m′

2. This is a contradiciton

since H1
p1,m1⇐ G

p2,m2⇒ H2 are direct transformations in conflict.

2

C Proof of Theorem 4.1: Completeness and Uniqueness
of Essential Critical Pairs

For each critical pair P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2 there exists an essential critical pair

P1
p1,m1⇐ K

p2,m2⇒ P2 with extension diagrams (1) and (2).

P1

��
(1)

Kks +3

(2)m

��

P2

��
P ′

1 K ′ks +3P ′
2

Remark: m : K → K ′ is an epimorphism, but not necessarily a monomor-
phism. The proof of this theorem is not given in the context of AHLR systems
[6], thus it is not known yet if the completeness property of essential critical
pairs can be generalized from graph transformation to AHLR systems. This
is subject of ongoing work.

14
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Proof.

R1

��

K1
l1 //r1oo

k′
1
��

L1

m′
1   A

AA
AA

AA
A L2

m′
2~~}}

}}
}}

}}
K2

l2oo r2 //

k′
2
��

R2

��
P ′

1 D′
1 d′

1

//
e′
1

oo K ′ D′
2d′

2

oo
e′
2

//P ′
2

Since a critical pair is in particular a pair of direct transformations in conflict
according to Theorem 2.2 one of the following cases occurs:

(i) (S1, o1, q12) satisfies and (S2, q21, o2) doesn’t satisfy the conflict condition
(asymmetrical conflict)

(ii) (S1, o1, q12) doesn’t satisfy and (S2, q21, o2) satisfies the conflict condition
(asymmetrical conflict)

(iii) both (S1, o1, q12) and (S2, q21, o2) satisfy the conflict condition (symmet-
rical conflict)

with (S1, o1 : S1 → C2, q12 : S1 → L2) the pullback of (m1 ◦ g1, m2), (S2, q21 :
S2 → L1, o2 : S2 → C2) the pullback of (m1, m2◦g1) and (S, s1, s2) constructed
out of (S1, o1, q12) and (S2, q21, o2).

(i) Analog to the following case.

(ii) Construct the pushout (9) (K, m1 : L1 → K, m2 : L2 → K) of the conflict
reason span (S2, q21, g2 ◦ o2).

S2 o2
//

(9)

q21

~~}}
}}

}}
}}

C2

g2

��

B2

b2
��

c2
oo

R1

(1)f1

��

K1

(2)

l1 //r1oo

k1

��

L1

m1
  B

BB
BB

BB
B

m′
1

��

L2

(5)

m′
2

��

m2
~~||

||
||

||
K2

(6)

l2oo r2 //

k2

��

R2

f2

��
P1

(3)
��

D1

a′
1
��

(4)

d1 //
e1
oo K

m

��
(7)

D2

a′
2
��

(8)

d2oo
e2
//P2

��
P ′

1 D′
1 d′

1

//
e′
1

oo K ′ D′
2d′

2

oo
e′
2

//P ′
2

Since (9) is a pushout and m′
1 ◦ q21 = m′

2 ◦ g2 ◦ o2 a unique morphism
m : K → K ′ exists such that m′

1 = m ◦ m1 and m′
2 = m ◦ m2. Now

we can construct the pullback (4) (D1, d1 : D1 → K, a′1 : D1 → D′
1)

of (d′1, m) and the pullback (7) (D2, d2 : D1 → K, a′2 : D2 → D′
2) of

(d′2, m). Since (4) (resp. (7)) is a pullback and d′1 ◦k′1 = m◦m1 ◦ l1 (resp.
d′2 ◦ k′2 = m ◦m2 ◦ l2) a morphism k1 : K1 → D1 resp. (k2 : K2 → D2)
exists s.t. a′1 ◦ k1 = k′1 (resp. a′2 ◦ k2 = k′2) and d1 ◦ k1 = m1 ◦ l1 (resp.
d2 ◦ k2 = m2 ◦ l2). Now we prove, that (d1, m1) and (d2, m2) are jointly
surjective.
(a) We start with proving that (d1, m1) is jointly surjective. Since (m1, m2)

are jointly surjective K can also be written as K = KL2\L1∪KL1 with
KL2\L1 = m2(L2) \ m1(L1) and KL1 = m1(L1). For all x ∈ KL2\L1

we have to prove that they have a preimage in D1. So we assume,

15
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that ∃y2 ∈ L2 : m2(y2) = x and 6 ∃y1 ∈ L1 : m1(y1) = x. Since
(m′

1, m
′
2) are also jointly surjective K ′ = K ′

L2\L1
∪K ′

L1
with K ′

L2\L1
=

m′
2(L2) \m′

1(L1) and K ′
L1

= m′
1(L1).

• m(x) ∈ K ′
L2\L1

implies, that m(x) doesn’t have a preimage in L1.

But since (m′
1, d

′
1) jointly surjective, ∃x1 ∈ D′

1 : d′1(x1) = m(x) and
since (4) is a pullback we have (x1, x) ∈ D1 with d1(x1, x) = x.

• m(x) ∈ K ′
L1

implies, that there exists an y1 ∈ L1 s.t. m′
1(y1) =

m(x). Now again we distinguish two cases:
· Let y1 ∈ L1 \ C1. Then ∃x1 ∈ K1 : l1(x1) = y1 and m(x) =

m′
1(y1) = m′

1(l1(x1)) = m(m1(l1(x1))) = d′1(a
′
1(k1(x1))). This im-

plies, that (a′1(k1(x1)), x) ∈ D1 with d1(a
′
1(k1(x1), x) = x, since (4)

is a pullback.
· On the other hand, if y1 ∈ C1 then y1 = g1(y1).

B1

b1
��

c1
//C1

g1

��

S1

(9)

o1
oo

q12
  B

BB
BB

BB
B

R1

��

K1
l1 //r1oo

��

L1

m′
1   A

AA
AA

AA
A L2

m′
2~~}}

}}
}}

}}
K2

l2oo r2 //

��

R2

��
P ′

1 D′
1 d′

1

//
e′
1

oo K ′ D′
2d′

2

oo
e′
2

//P ′
2

Moreover since ∃y2 ∈ L2 : m2(y2) = x it follows that m′
2(y2) =

m(m2(y2)) = m(x). Then m′
1(g1(y1)) = m′

1(y1) = m(x) = m′
2(y2)

and since (S1, o1, q12) is a pullback of (m′
1 ◦ g1, m

′
2) it follows that

(y1, y2) ∈ S1 with o1(y1, y2) = y1. Since (S1, o1, q12) doesn’t satisfy
the conflict condition there exists an s1 : S1 → B1 s.t. o1 = c1 ◦ s1.
This implies y1 = o1(y1, y2) = c1(s1(y1, y2)) with s1(y1, y2) ∈ B1.
Because of the initial pushout over l1 : K1 → L1 we know, that
y1 = g1(y1) = g1(c1(s1(y1, y2)) = g1(c1(y1)) = l1(b1(y1)) = l1(y1)
since b1 is an inclusion. Thus l1(y1) = y1 with y1 ∈ K1. Since
m(x) = m′

2(y2) = m′
1(y1) = m(m1(l1(y1)) = d′1(a

′
1(k1(y1))) we

know that (a′1(k1(y1)), x) ∈ D1 with d1(a
′
1(k1(y1)), x) = x since (4)

is a pullback.
(b) Now we prove, that (d2, m2) are jointly surjective. Since (m1, m2)

are jointly surjective K = KL1\L2 ∪KL2 . It suffices, to show that for
each x ∈ KL1\L2 there exists y′2 ∈ D2 : d2(y

′
2) = x. So we assume,

that ∃y1 ∈ L1 : m1(y1) = x and 6 ∃y2 ∈ L2 : m2(y2) = x. Since also
(m′

1, m
′
2) are jointly surjective K ′ = K ′

L1\L2
∪K ′

L2
we distinguish the

following two cases:
• m(x) ∈ K ′

L1\L2
implies, that m(x) doesn’t have a preimage in L2.

Since (m′
2, d

′
2) are jointly surjective then there exists x2 ∈ D′

2 :
d′2(x2) = m(x). Because (7) is a pullback (x2, x) ∈ D2 with d2(x2, x) =
x.

• m(x) ∈ K ′
L2

implies, that there exists y2 ∈ L2 : m′
2(y2) = m(x).
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Now again we distinguish two cases:
· Let y2 ∈ L2 \ C2. Then ∃x2 ∈ K2 : l2(x2) = y2 and m(x) =

m′
2(y2) = m′

2(l2(x2)) = m(m2(l2(x2))) = d′2(a
′
2(k2(x2))). This im-

plies, that (a′2(k2(x2)), x) ∈ D2 with d2(a
′
2(k2(x2), x) = x, since (7)

is a pullback.
· On the other hand, if y2 ∈ C2 then g2(y2) = y2 and m′

2(g2(y2)) =
m′

2(y2) = m(x) = m(m1(y1)) = m′
1(y1) and since (S2, q21, o2) is

a pullback of (m′
1, m

′
2 ◦ g2) it follows that (y1, y2) ∈ S2. But

since (9) is a pushout this implies m1(y1) = m1(q21(y1, y2)) =
m2(g2(o2(y1, y2))) = m2(y2). This is a contradiction since now
m1(y1) = x = m2(y2), but 6 ∃y2 ∈ L2 : m2(y2) = x.

(iii) If both (S1, o1, q12) and (S2, q21, o2) satisfy the conflict condition at first
we construct the conflict reason span (S, s1, s2).

S ′

a2 !!B
BB

BB
BB

B

a1}}||
||

||
||

S1

o1

�� s′
1   B

BB
BB

BB
B S2

s′
2~~||

||
||

||
o2

��
B1

b1
��

c1
//C1

g1

��

S

(9′)

s2
  B

BB
BB

BB
B

s1
~~||

||
||

||
C2

g2

��

B2

b2
��

c2oo

K1
l1 //

��

L1

m′
1

��1
11

11
11

11
11

11
11

m1

!!

L2

m′
2

��








m2

}}

K2
l2oo

��

K

m

��
D′

1 d′
1

//K ′ D′
2d′

2

oo

Remember that for this construction g1 ◦ o1 = s1 ◦ s′1, q21 = s1 ◦ s′2, q12 =
s2 ◦ s′1 and g2 ◦ o2 = s2 ◦ s′2. Then we construct the pushout (K, m1, m2)
of the conflict reason span (S, s1, s2). Since m′

1 ◦ s1 ◦ s′1 = m′
1 ◦ g1 ◦ o1 =

m′
2◦q12 = m′

2◦s2◦s′1 and m′
1◦s1◦s′2 = m′

1◦q21 = m′
2◦g2◦o2 = m′

2◦s2◦s′2 and
(s′1, s

′
2) jointly surjective we can conclude that m′

1 ◦s1 = m′
2 ◦s2. Because

of the pushout property of (9’) then ∃m : K → K ′ s.t. m ◦m1 = m′
1 and

m ◦m2 = m′
2. In the same way as in case (i) and (ii) we build pushouts

(4) and (7) and get morphisms k1 : K1 → D1 and k2 : K2 → D2. Now
we prove, that (d1, m1) and (d2, m2) are jointly surjective.
(a) We start proving, that (d1, m1) are jointly surjective. Since (m1, m2)

are jointly surjective we can assume that K = KL1 ∪ KL2\L1 . It
suffices to show, that for each x ∈ KL2\L1 : ∃y′1 : d1(y

′
1) = x. Thus

we assume that ∃y2 ∈ L2 : m2(y2) = x and 6 ∃y1 ∈ L1 : m1(y1) = x.
Since (m′

1, m
′
2) are also jointly surjective K ′ = K ′

L1
∪ K ′

L2\L1
. Now

we distinguish two cases:
• Let m(x) ∈ K ′

L2\L1
, then 6 ∃y1 ∈ L1 : m′

1(y1) = m(x). But since

17
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(m′
1, d

′
1) are jointly surjective then ∃x1 ∈ D′

1 : m(x) = d′1(x1). Since
(4) is a pullback (x1, x) ∈ D1 with d1(x1, x) = x.

• Let m(x) ∈ K ′
L1

. Then ∃y1 ∈ L1 : m′
1(y1) = m(x). Now we

distinguish two cases:
· Let y1 ∈ L1 \ C1 then ∃x1 ∈ K1 with l1(x1) = y1. Since m(x) =

m′
1(y1) = m′

1(l1(x1)) = d′1(a
′
1(k1(x1))) we have found an (a′1(k1(x1)), x) ∈

D1 with d1(a
′
1(k1(x1)), x) = x.

· Let y1 ∈ C1, then y1 = g1(y1) since g1 is an inclusion. Then
m′

1(g1(y1)) = m′
1(y1) = m(x) = m(m2(y2)) = m′

2(y2) and because
of (S1, o1, q12) pullback of (m′

1◦g1, m
′
2), (y1, y2) ∈ S1 ⇒ (y1, y2) ∈ S.

This implies since (9’) is a pushout that m1(y1) = m2(y2) = x which
is a contradiction since 6 ∃y1 ∈ L1 : m1(y1) = x.

(b) Analogously we can prove, that (d2, m2) is jointly surjective.

Now we know that if we build (K, m1, m2) as a pushout of the conflict reason

span of P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2, (d1, m1) and (d2, m2) are jointly surjective. Now

we can conclude that (2) (resp. (5)) is a pullback since (d1, m1) (resp.(d2, m2))
are jointly surjective, (4) (resp. (7)) is a pullback and (2)+(4) (resp. (5)+(7))
is a pushout and also a pullback. Since l1 (resp. l2) is injective, (2)+(4)
(resp. (5)+(7)) is a pushout and (2),(4) (resp.(5),(7)) are pullbacks, this
implies that (2),(4) (resp.(5),(7)) are also pushouts. Than we can construct
P1 and P2 as pushouts of (r1, k1) resp. (r2, k2) and because of the pushout
property the two lacking morphisms f1 and f2 for the essential critical pair are
constructed. Because of pushout-pushout decomposition now we can deduce
that (1),(3),(6) and (8) are pushouts. Now we know that P1

p1,m1⇐ K
p2,m2⇒ P2

is a pair of direct transformations.

Since (K, m1, m2) was constructed as a pushout over the conflict reason

span of P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P2 we still have to prove that the conflict reason span

stays the same for P1
p1,m1⇐ K

p2,m2⇒ P2. Therefore at first, we have to show
that if (S2, q21, o2) is a pullback of (m′

1, m
′
2 ◦ g2) then it is also a pullback of

(m1, m2 ◦ g2).

X

x
��

x2

��1
11

11
11

11
11

11
11

x1

��








S2

(9)

o2
  B

BB
BB

BB
B

q21
~~}}

}}
}}

}}

L1

m′
1

��1
11

11
11

11
11

11
1

m1

!!B
BB

BB
BB

B C2

m′
2◦g2

��





m2◦g2

}}||
||

||
||

K

m

��
K ′
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m1 ◦ q21 = m2 ◦ g2 ◦ o2 because (9) is a pushout. Moreover if we take an
other graph X and morphisms x1 : X → L1 and x2 : X → L2 such that
m1 ◦ x1 = m2 ◦ g2 ◦ x2, this implies m′

1 ◦ x1 = m ◦m1 ◦ x1 = m ◦m2 ◦ g2 ◦ x2 =
m′

2 ◦ g2 ◦ x2 and because of the pullback property of the outer pullback a
unique morphism x : X → S2 exists s.t. q21 ◦ x = x1 and o2 ◦ x = x2.
Thus (S2, q21, o2) is also a pullback of (m1, m2 ◦ g2). Analogously we can
prove, that (S1, q12, o1) is also a pullback of (m1 ◦ g1, m2). Since the conflict
reason span (S, s1, s2) is constructed from (S2, q21, o2) and (S1, q12, o1) and
since furter on the satisfaction of the conflict condition only depends on the
structure of the rules we know that the conflict reason span (S1, g1 ◦ o1, q12),

(S2, q21, g2 ◦ o2) or (S, s1, s2) stays the same for P1
p1,m1⇐ K

p2,m2⇒ P2 which

implies by Theorem 2.2 that also P1
p1,m1⇐ K

p2,m2⇒ P2 is in conflict. Now we
have constructed an essential critical pair P1

p1,m1⇐ K
p2,m2⇒ P2 with extension

morphism m : K → K ′.
The essential critical pair P1

p1,m1⇐ K
p2,m2⇒ P2 is unique up to isomorphism,

since (K, m1, m2) is the pushout of conflict reason span (S1, g1 ◦ o1, q12) for
case (i), (S2, q21, g2 ◦o2) for case (ii) and (S, s1, s2) for case (iii) and a pushout
construction is unique up to ismorphism. 2

D Proof of Theorem 4.3 (Essential Critical Pair Lemma)

If all essential critical pairs of a graph transformation system are strictly con-
fluent, then this graph transformation system is locally confluent.

Proof. In the proof of the critical pair lemma in [6] for AHLR systems it
is demanded that the extension morphism m belongs to a special subset of
monomorphisms M . For the proof of this lemma though it is sufficient to
demand the existence of an initial pushout over the extension morphism m.
In the case of essential critical pairs m is not necessarily an injective morphism,
as shown in Theorem 4.1, but an inital pushout over a non-injective morphism
m in the AHLR-category Graph always exists. Therefore the proof of the
critical pair lemma can be repeated restricting the set of critical pairs to the
set of essential critical pairs. 2
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