
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Termination Criteria for DPO Transformations
with Injective Matches

Tihamér Levendovszky 1

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Hungary

Ulrike Prange 2 Hartmut Ehrig 2

Department of Software Engineering and Theoretical Computer Science
Technical University of Berlin

Germany

Abstract

Reasoning about graph and model transformation systems is an important means
to underpin model-driven software engineering, such as Model-Driven Architecture
(MDA) and Model Integrated Computing (MIC). Termination criteria for graph and
model transformation systems have become a focused area recently. This paper pro-
vides termination criteria for graph and model transformation systems with injective
matches and finite input structure. It proposes a treatment for infinite sequences
of rule applications, and takes attribute conditions, negative application conditions,
and type constraints into account. The results are illustrated on case studies ex-
cerpted from real-world transformations, which show the termination properties of
the frequently used ”transitive closure” and ”leaf collector” transformation idioms.
An intuitive comparison with other approaches is also given.

Key words: Termination Criteria, Graph Transformation, Model
Transformation, DPO Approach

1 Introduction

Statements about termination of graph and model transformation systems
have been proven recently, and a few transformation tools already support
checking termination criteria [12]. This issue has mainly arisen for the follow-
ing reason. When graph transformation is used for model transformation, the

1 Email: tihamer@aut.bme.hu
2 Email: {uprange,ehrig}@cs.tu-berlin.de

c©2006 Published by Elsevier Science B. V.

102

Levendovszky et al.

objective is to create an output mode either from the ground up or modify-
ing existing models. If an output model must be achieved, a transformation
must provide it within a finite number of steps. Therefore, examining the
termination properties of the transformation can help to find an error in the
model transformation. Taking into account that one of the most important
applications of graph transformation is model transformation, well-developed
termination criteria can be useful support for this application area.

When transforming a model, one or more input graph, a set of rules and
constraints are available along with a control structure. The nontermination
can be caused by the (i) input graph or (ii) the executed sequence of the
rules. In the first case several examples can be constructed that illustrate
nontermination. Assume a transformation rule takes an attribute of a node,
and decrements it each time when the rule is fired. The rule has a constraint
that it cannot be applied for zero attribute value. When infinity is allowed
as the initial value of the attribute, this rule can be applied forever. A more
obvious example is an input graph with infinite size. However, in practical
model transformation applications, the input model is stored on a computer
or on a distributed computer system. Therefore, assuming finite input graphs
does not restrict the practical scope of the results.

The nontermination caused by a sequence of finite rules is more interesting
for model transformation and its tool support. In this case the transformation
either becomes stagnant or starts consuming the available system resources.
An example for the stagnation case would be a transformation consisting of
two rules executed in a loop after each other. The first rule creates an element,
the second one deletes it. The transformation does not consume all the avail-
able system resources, but never stops. In our experience, the most prevalent
reason is that the designer must have forgotten a constraint from the rules,
and it is really useful to warn him of this fact. When a transformation needs
a growing amount of system resources, the underlying reason can be twofold.
(i) This transformation needs a stronger execution environment, or (ii) the
transformation is nonterminating in nature, thus, there is no execution envi-
ronment strong enough to perform this transformation. For instance, if a rule
creates a node and can be executed exhaustively, it never stops creating nodes.
Termination analysis can be a basis to prove that a stronger computational
environment is needed, or the transformation suffers from an unintended side
effect.

We use the formal framework of Adhesive High-Level Replacement (AHLR)
Systems [6] applied to typed attributed graphs. We assume finite input struc-
tures and rules. Since this problem is algorithmically undecidable, we prove
termination properties which can be used to examine the termination proper-
ties of the individual transformations analytically.

The main line of thought in this paper is as follows. The sequential rule
applications are substituted with the composition of the rules. If one can show
for the infinite rule sequences that the left-hand side of their composition tends

2

103

Levendovszky et al.

to infinity, then the rule sequence terminates, since only finitely many elements
are available in the start graph. This does not necessarily hold if one element
in the rule can be matched to multiple elements in the host graph. Therefore,
injective matches are assumed.

2 Backgrounds

Since we use the formalism and the results of the AHLR approach, we sum-
marize the necessary definitions and results, based on [6]. In these definitions,
we always mean typed, attributed graphs by mentioning graphs, which are
defined as follows.

Definition 2.1 An E-graph EG = (VG, VD, EG, ENA, EEA, (srcj, tarj)j∈{G,NA,

EA}) consists of graph and data nodes VG and VD, and graph, node attribute
and edge attribute edges EG, ENAand EEA, respectively. The domains and
codomains of the source and target functions srcj and tarj for the correspond-
ing edges Ej are depicted below.

VG EGtarG
ll

srcGrr

ENA

srcNA

OO

tarNA

EE
E

""E
EE

EEA

srcEA

OO

tarEA
yy

y

||yy
y

VD

Given a signature DSIG = (S, OP) with attribute value sorts SD ⊆ S, an
attributed graph AG = (EG, D) is an E-graph EG together with a DSIG-

algebra D such that VD =
•⋃

s∈SD

Ds.

Given an attributed graph TG as type graph, a (typed attributed) graph
G = (AG, t) is an attributed graph AG together with a typing morphism
t : AG→ TG.

Typed attributed graphs and the corresponding morphisms form the cat-
egory AGraphsATG.

We define a function to measure the size of a graph G.

Definition 2.2 Given a graph G = ((VG, VD, EG, ENA, EEA, (srcj, tarj)j∈{G,

NA,EA}), D), the size of G is denoted by |G| and calculated as follows: |G| =
|VG|+ |EG|+ |ENA|+ |EEA|. G is finite if |G| <∞.

We do not count the data nodes, since there may be infinitely many of
them, but those relevant for the actual graph are linked by the attribute
edges, which we do count. Moreover, the data part cannot be changed by
applying a production.

3

104

Levendovszky et al.

Definition 2.3 A production p = (L
l←− K

r−→ R) consists of finite graphs L,
K and R, called left hand side, gluing graph and right hand side respectively,
and two injective graph morphisms l and r that preserve the data part.

For practical purposes, it is important to restrict the applicability of a pro-
duction by application conditions. In particular, we use negative application
conditions, which forbid the existence of a certain subgraph.

Definition 2.4 A negative application condition of a production p = (L
l←−

K
r−→ R) is of the form NAC(x), where x : L → X is an injective graph

morphism. A graph morphism m : L→ G satisfies NAC(x) if there does not
exist an injective graph morphism p : X → G with p ◦ x = m.

X

p�
@@

@

 @
@@

Lxoo

m

��

Kloo r // R

G

Two graph productions (rules) are presented in Figure 1. The upper rule is
applied first, as long as it can be matched against the input graph. A negative
application condition ensures that at most one dashed arrow can be created
between two vertices. The rule below ”short-circuits” a dashed path with a
length of two edges as long as possible. The resulted construct is referred to
as transitive closure.

Fig. 1. Two productions computing the transitive closure

Definition 2.5 Given a graph production p = (L
l←− K

r−→ R) and a graph G
with a graph morphism m : L → G, called match. If m satisfies all negative
application conditions of p, a direct graph transformation G

p,m +3H from G to
a graph H is given by the following double pushout (DPO) diagram, where
(1) and (2) are pushouts.

X

p�
@@

@

 @
@@

Lxoo

m

��
(1)

Kloo

k
��

r //

(2)

R

n

��
G Dfoo g // H

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct graph transformations is called a

4

105

Levendovszky et al.

graph transformation and is denoted as G0

∗ +3 Gn . For n = 0 we have the

identical graph transformation G0

id +3 G0 .

We say p is applicable to G via m, if m satisfies the NACs of p, pushouts (1)
and (2) exist, and the resulting graph H satisfies additional constraints given
by the system. In this paper we assume injective matches m and comatches
n.

Definition 2.6 A graph transformation system GTS = (P) consists of a set
of graph productions P with or without negative application conditions. For a
graph transformation system, there may be given a set of finite input graphs.

Remark 2.7 In Definition 2.6, we do not take arbitrary constraints into ac-
count. However, the results in this paper can treat all sorts of constraints,
including those that are not formally defined, since their satisfaction is con-
tained in the applicability of a production, therefore, they have been integrated
into the definition dealing with the applicability of a production, and thus, it
appears in Definition 3.1.

Primarily, we need a definition for the termination of a graph transforma-
tion system. We extend the definition used in [10]. In [5], the treatment of a
layering control structure is added to this definition. We extend the definition
in such a way that an arbitrary control structure can be handled.

Definition 2.8 A graph transformation system GTS = (P) terminates if
there is no infinite sequence of direct graph transformations G0 ⇒ G1 ⇒ ...
applying rules from P starting from any input graph G0, with respect to the
control structure of the given graph transformation system.

Up to now, the following definition of E-concurrent productions and the
Concurrency Theorem have not been extended to productions with some kind
of application conditions. Therefore we consider only plain productions in the
following definition and theorem, as given in [6]. The results contributed in
Section 3 are also valid when the rules contain negative application conditions.

Definition 2.9 Given two productions p1 = (L1
l1←− K1

r1−→ R1) and p2 =

(L2
l2←− K2

r2−→ R2), an E-dependency relation (E, e1, e2) is given by a graph
E and injective morphisms e1 : R1 → E, e2 : L2 → E, which are jointly

surjective. The E-concurrent production p1 ∗E p2 is a production p = (L
l←−

K
r−→ R) computed based on the following diagram, where double squares

(1)(2) and (3)(4) form double pushouts, and (5) is a pullback. Note that the
injectivity of e1 and e2 implies that of k1, m1, k2, and n2.

5

106

Levendovszky et al.

L1

m1

��
(1)

K1l1oo

k1

��

r1 //

(2)

R1

e1

???
?

��?
??

?

L2

e2
��

�

�����
� (3)

K2l2oo

k2

��

r2 //

(3) (4)

R2

n2

��
L K

′
1l′oo //E

(5)

K
′
2

oo r′ //R

K

k′
1PPPPPPP

ggPPPPPPP
k′
2nnnnnnn

77nnnnnn
lUUUUUUUUUUUU

jjUUUUUUUUUUUU riiiiiiiiiii

44iiiiiiiiiiii

This definition can be applied recursively, using an E-concurrent produc-
tion for p1.

A transformation G
p1,m1 +3H

p2,m2 +3G′ is called E-related to p1 ∗E p2 if there
exist morphisms h : E → H, c1 : K

′
1 → D1 and c2 : K

′
2 → D2 such that

h ◦ e1 = n1, h ◦ e2 = m2, (6) and (7) commute and (8) and (9) are pushouts.

L1

m1

��

K1l1oo

k1

��

r1 //

��

R1

e1

???
?

��?
??

?

n1

��

L2

e2
��

�

�����
�

m1

��

K2l2oo

k2

��

r2 //

��

R2

n2

��

K
′
1

(6)

c1

��

//

(8)

E

h

��

K
′
2

oo

c2

��
(9)

(7)

G D1
oo //H D2

oo //G′

Theorem 2.10 (Concurrency Theorem) Let (E, e1, e2) be an E-dependency
relation for the productions p1 and p2 leading to the E-concurrent production
p1 ∗E p2.

(i) Synthesis: Given an E-related transformation sequence G ⇒ H ⇒ G′

via p1 and p2, then there is a synthesis construction leading to a direct
transformation G⇒ G′ via p1 ∗E p2.

(ii) Analysis: Given a direct transformation G⇒ G′ via p1 ∗E p2, then there
is an analysis construction leading to an E-related transformation G ⇒
H ⇒ G′ via p1 and p2.

(iii) Bijective correspondence: The synthesis and analysis constructions are
inverse to each other up to isomorphism.

H

p2

NNN
NNN

NNN
NNN

"*NNN
NN

NNN
NN

G

p1qqqqqq
qqqqqq

4<qqqqq
qqqqq

p1∗Ep2 +3G′

3 A General Criterion for Injective Matches

In this section, we provide a general approach for termination within the scope
of the DPO approach. These results also apply when the rules contain negative
application conditions and other constraints.

Definition 3.1 An E-concurrent production p∗ is an E-based composition
if there is at least one input graph G0 with an E-related transformation

6

107

Levendovszky et al.

G0
p∗ +3H.

This definition is required, because for the DPO approach, the definition
of E-concurrent productions and the Concurrency Theorem have not been ex-
tended to handle negative application conditions and other constraints. More-
over, this definition guarantees, among others, that the constraints enforced
by p1 do not contradict to the constraints necessary for the application of
p2. Typical examples for constraints are attribute constraints, negative ap-
plication conditions, type conformance for metamodels, constraints from the
control flow branches, but other constructs are also possible.

In most of the practical cases it is simple to find such an input graph for
an E-concurrent production, when there is no contradiction between the rules.
Then, the left hand side of this rule is already an input graph, or it can be
extended with regard to possible constraints.

An example for composing the bottom rule in Figure 1 with itself via a
chosen E1 is depicted in Figure 2.

Fig. 2. An E-based composition of Rule 2 with itself

Definition 3.2 Consider a possibly infinite sequence of graph productions pi,
(i = 1, 2, ...) and a sequence of E-dependency relations ((Ei, e

∗
i , ei+1)) leading

to a sequence of their E-based compositions (p∗i = (L∗
i ← K∗

i → R∗
i)) with

p∗1 = p1 and p∗n = (p1 ∗E1 p2) ∗E2 ... ∗En pn.

A cumulative LHS series of this sequence is the graph series L∗
n consisting

of the left-hand side graphs of p∗n. Moreover, a cumulative size series of a
production sequence is the nonnegative integer series |L∗

n|.

It is possible that there are several cumulative LHS series of a given pro-
duction sequence, since, in general, two rules can be composed in different
ways, choosing different E-dependency relations. For instance, if we want to
compute p∗3 for our example, then we take the cumulative rule p∗2, and com-
pose it with the bottom rule from Figure 1. There are several possibilities to
choose E2: (i) we can short-circuit the path 1− 2− 3

′
, (ii) 1− 3− 3

′
, or (iii)

R∗
2 and L do not fully overlap. It is easy to see that in the first two cases L∗

3

is isomorphic to L∗
2, but in the third case L∗

2 must be extended to obtain L∗
3.

7

108

Levendovszky et al.

However, there is no case, when L∗
3 is smaller than L∗

2. If we consider injective
matches only, this is true for the DPO approach in general.

Lemma 3.3 The sequence |L∗
i | (Def. 3.2) is monotonic nondecreasing. If

Ei
∼= R∗

i , L∗
i remains unchanged, thus, |L∗

i | =
∣∣L∗

i+1

∣∣. Otherwise, L∗
i � L∗

i+1

and |L∗
i | <

∣∣L∗
i+1

∣∣, but L∗
i+1 always contains an isomorphic subgraph of L∗

i .

Proof. Since there is an injective morphism m∗
i : L∗

i → L∗
i+1, we have |L∗

i | ≤∣∣L∗
i+1

∣∣, and L∗
i+1 contains an isomorphic subgraph of L∗

i .

Pushouts along isomorphisms are pullbacks, and pushouts and pullbacks
are closed under isomorphism. Therefore, if Ei

∼= R∗
i , we have isomorphisms

k∗i and m∗
i , which means that L∗

i
∼= L∗

i+1 and |L∗
i | =

∣∣L∗
i+1

∣∣.
If Ei � R∗

i , there are items x ∈ Ei\e∗i (R∗
i), which have preimage in K∗′

i+1 but
not in K∗

i , because (2) is a pushout. For (1) being a pushout, these items have
to be added to L∗

i to obtain L∗
i+1, therefore L∗

i � L∗
i+1, and |L∗

i | <
∣∣L∗

i+1

∣∣. 2

L∗
i

m∗
i

��
(1)

K∗
i

l∗i
oo

k∗
i
��

r∗i
//

(2)

R∗
i

e∗i

CC
C

!!C
CCC

Li+1

ei+1
xxx

x

||xx
xx

(3)

Ki+1li+1oo

��

ri+1 //

(3) (4)

Ri+1

��
L∗

i+1 K∗′
i+1l∗

′
i

oo //Ei

(5)

K
′
i+1

oo r
′
i+1
//R∗

i+1

K∗
i+1

k1iQQQQQQ

hhQQQQQQ
k2illlllll

55llllllll∗i+1VVVVVVVVVVV

jjVVVVVVVVVVV
r∗i+1hhhhhhhhhhhh

33hhhhhhhhhhhh

Theorem 3.4 A GTS = (P) (Def. 2.6)terminates if for all infinite cumula-
tive LHS sequences (L∗

i) of the graph productions created from the members of
P , it holds that

lim
i→∞
|L∗

i | =∞.

Note that we assume finite input graphs and injective matches.

Proof. We rely on the fact that if the constraints are satisfied, the E-based
compositions are E-concurrent productions as well. Therefore, we can apply
Theorem 2.10 for the topological part of the transformation, when we can
assume that the constraints hold, which means the existence of the E-based
composition.

In AGraphsATG, Theorem 2.10 holds. Suppose there is an infinite trans-

formation G0

p1
+3 G1

+3 Then there is a sequence of E-concurrent pro-

ductions p∗i leading to the transformations G0

p∗i +3 Gi (Theorem 2.10). All

these productions are also E-based compositions with cumulative LHS series
L∗

i . Since limi→∞ |L∗
i | = ∞, there exists an N ∈ N with |G0| < |L∗

N |. But
this means that there is no injective match m∗

N : L∗
N → G0, i.e. p∗N is not

applicable to G0. 2

8

109

Levendovszky et al.

The opposite direction of Theorem 3.4 does not hold in general, but for a
finite number of input graphs. In this case, no infinite sequences of E-based
compositions can be constructed.

Theorem 3.5 If a GTS = (P) (Def. 2.6) terminates and we have only a
finite number of input graphs up to isomorphism, then there are no infinite
cumulative LHS sequences (L∗

i) of graph productions created from the members
of P .

Proof. Assume that GTS terminates and there is an infinite sequence (p∗i)
of E-based compositions.

For each p∗i there exists an input graph Gi with an E-related transformation

Gi
p∗i ,mi +3Hi. Since there are only finite many input graphs, at least one of them

has to appear infinitely many often. This means we have an input graph G

with ∀N ∈ N∃j > N : G
p∗j +3Hj. From Theorem 2.10 it follows that all p∗i

are applicable to G leading to an infinite transformation sequence. 2

From Theorem 3.4 the next statement follows:

Lemma 3.6 If L∗
i � L∗

i+1,∀i for every cumulative LHS series (Def. 3.2),
then the GTS terminates. If each graph appears only finitely many times in
all cumulative LHS series, the GTS still terminates.

Proof. Considering the first statement of the lemma, if two subsequent graphs
in the cumulative LHS sequence are not isomorphic, they must grow in size
because of Lemma 3.3. According to Theorem 3.4, this means that the GTS
terminates.

Taking a cumulative LHS series at any position i, it grows in size within
finite number of steps if there are only finite number of graphs in the series
that are isomorphic to L∗

i . The series must grow because of Lemma 3.3. Then
we have limi→∞ |L∗

i | =∞, and the GTS terminates because of Theorem 3.4.2

4 Case Studies

To show the practical relevance of the presented termination criteria, two case
studies are provided. We take two transformation idioms from [1], and ana-
lyze their termination properties. Obviously, there are other proofs for these
case studies, but we would like to illustrate how the technique contributed in
this paper works for practical software model transformations, where the tool
supports strict control flow constructs.

4.1 Transitive Closure

Using Theorem 3.4, we show that the transitive closure terminates. This is
a frequently used transformation pattern. In case of variation of the ’class

9

110

Levendovszky et al.

model to relational database management system (RDBMS) model’ transfor-
mation [12] (also referred to as object-relational mapping), the traversal of
the inheritance hierarchy and the association chains are performed using the
transitive closure pattern.

Lemma 4.1 The injective application of the transitive closure rule (the bot-
tom rule in Figure 1) terminates for all finite input graphs.

Proof. There are two cases. (i) When constructing Ek, it is not isomorphic
to R∗

k. This means that in this case L∗
k must be extended to obtain L∗

k+1

by Lemma 3.3. Therefore, in these steps, the cumulative LHS series grows.
(ii) The other case needs more attention, since the cumulative LHS series
does not grow in every step this time. We show that at a given stage of the
transformation, this is possible finite times only. Suppose Ek

∼= R∗
k when

constructing p∗k+1 from p∗k and the original rule p. This leads only to a valid
E-based composition if there is no dashed edge between ek+1(1) and ek+1(3)
in Ek. In R∗

k+1 no new nodes are added, but an additional edge (compared
with R∗

k). Thus, after finite many steps we can only construct E-concurrency
relations not isomorphic to the right hand side. This stems from the fact that
the negative application condition forbids creating dashed edges between the
nodes where there is one already. This means that an LHS can appear only a
finite number of times in the cumulative LHS sequence, therefore, according
to Lemma 3.6 the GTS terminates. 2

4.2 Leaf Collector

The LeafCollector pattern is used to find the leaf elements in a tree struc-
ture. This idiom has been distilled from the transformation flattening a hi-
erarchical data flow diagrams to a flat data flow representation [1]. In fact,
LeafCollector does not modify the input graph, but finds a place where the
next rule can be applied. Therefore, LeafCollector is a useful idiom of many
software model transformations, and it is worth examining its termination
properties.

Fig. 3. The Leaf Collector Transformation Idiom

A possible formulation of the pattern is depicted in Figure 3. This idiom
is particularly interesting, because it strongly builds on a sophisticated con-
trol structure of the transformation tool. The diamond in the figure can be
implemented in several ways. In GReAT [1], it is implemented as test rule,

10

111

Levendovszky et al.

whereas it is a branch condition in VIATRA [13] and VMTS [11]. The other
required feature is parameter passing. This means that host graph nodes and
edges matched in one of the previous rules can be passed to a subsequent
rule. The matching algorithm considers these elements already bound. This
can accelerate the matching process, and facilitates the separation of complex
rules. If there are no passed parameters, the matching algorithm starts to
match with unbound elements. In our example, the rule is bound to any of
the suitable places in the input graph on the first execution. On the subse-
quent runs, the graph node matched to the rule node 2 is passed to the rule
node 1. Therefore, the matching algorithm finds a node adjacent to the one
passed as a parameter. The output of this idiom is node1 when it is a leaf.
Therefore, node1 is passed further along the branch where the ellipses are
depicted. The parameter passing mechanism is implemented with different
syntax in the aforementioned tools, thus, we focus on the notion only without
formalizing it. From the mathematical point of view, this construct is modeled
as a restriction on the possible E-based compositions.

Since the idiom is obviously not concerned with self-loops, injective matches
are assumed. Then we compute the E-based composition of the rule with it-
self. In this case it is rather simple, because the parameter passing reduces
the number of the possible E-dependency relations to one.

Fig. 4. E-based Composition for Leaf Collector - Acyclic Case

Lemma 4.2 The transformation Leaf Collector (depicted in Figure 3) termi-
nates if and only if the input graph does not contain a directed cycle.

Proof. Firstly, we compute the E-based composition of the rule with itself.

Because of the parameter passing, the Ei is created as follows: R∗
i contains

only one node ni that is a target of an incoming edge and it is not a source
of any outgoing edge. Then the node 1(i) in Li+1 is mapped to ni in Ei, the
others are mapped to different vertices and edges.

1(i) in Li+1 can either be mapped to an Ei element that is not mapped to
any R∗

i element, or otherwise. Based on that there are two possible categories
of E-dependency relations. The first option is depicted in Figure 4 for p∗2.

11

112

Levendovszky et al.

Since there are only control conditions, it is the same as the E-concurrent
production, where the E1 is determined by the parameter passing. The control
structure limits the number of the composed productions only. Obviously, L∗

i ,
Ki∗, and R∗

i are the same, because the rule does not change the input graph:
it searches for a specific element.

Pushouts along isomorphisms are pullbacks, and pushouts and pullbacks
are closed under isomorphism. Therefore, Ei

∼= L∗
i+1. Thus, L∗

i is a directed
path consisting of i edges. This means that in this case the transformation
terminates according to Theorem 3.4.

When 1(i) in Li+1 is mapped to an Ei element that is mapped to any
R∗

i element, it automatically creates a directed cycle. An example for this
structure is depicted in Figure 5. In this case it is possible that we have a
nonincreasing cumulative size series. According to Theorem 3.5, it is possible
that this structure does not terminate. 2

Fig. 5. E-based Composition for Leaf Collector - Cyclic Case

According to Lemma 4.2, if the input graph does not contain directed
cycles, the transformation terminates, otherwise it is possible that the trans-
formation does not terminate. In practice, this condition can be guaranteed in
model transformation systems. (i) Most of the modeler tools offer a contain-
ment hierarchy, and along this hierarchy it is ensured by the tool that there
are no directed cycles. (ii) Directed cycles in inheritance hierarchy causes
semantical problems, it may also be forbidden by the tool.

If there are no such constraints in the model, the Leaf Collector should
be extended with additional construct in order to avoid nontermination. A
possible solution is to add an isProcessed attribute to the nodes, which is
false by default, and set by the rule if it is matched. Another solution is to
introduce helper edges between the processed nodes, and introduce NACs to
forbid the match at the same place again.

This case study illustrates that with the proposed termination analysis
method, we could obtain the structure that causes the nontermination. There-
fore, this technique is suitable for constructive analysis besides the decision
issues.

12

113

Levendovszky et al.

5 Related Work

In [2], termination criteria have been developed for graph rewriting applied
to program transformation. The criteria aim at this specific problem domain.
The approach assumes that there can be no parallel edges with the same
labels between two nodes. This leads to a termination criteria for specific
(edge-accumulative) rules if the label and node sets are finite. Moreover,
subtractive rules are investigated, which are conceptually similar to deletion
layers examined in [5]. These results assume more restricted types of rules,
compared to those analyzed in this paper.

In [3], a theory has been developed for the DPO approach. It provides
abstract termination criteria by a measure function F . The paper also shows
concrete termination criteria such as the number of nodes, the number of
edges. Based on this assumption, it proves termination criteria for other
control structures. However, these criteria are violated in the second case
study with respect to the concrete criteria of edge and node numbers. However,
no explicit relationship has been established between the proposed definition
of a termination criterion and the notion that the transformation stops within
a finite number of steps.

In [5], results have been developed for layered grammars. These results for-
malize and extend the contributions provided in [7] [4]. The provided criterion
ensures that the creation of all objects of a type should precede the deletion
of the object of this type. Therefore, a layer deleting an object of a given type
cannot create such an object, nor the subsequent rules. This means that the
productions in a deletion layers terminate for the reasons detailed above if the
types are taken into consideration.

A nondeletion layer cannot contain rules that delete a node. It is ensured
by a negative application condition that a rule cannot be applied twice at the
same match. Furthermore, if a rule creates an object of a given type, it is not
allowed to match any object of that type in that or any subsequent layers.
Since Layer 0 uses the finite input graph, and there cannot be a match at the
same place, and the rules in Layer 0 cannot create elements of a type whose
instances they match, the rules can be executed only a finite number of times.
The next layer terminates for similar reasons: it can only use elements of a
type whose instances have already been created. Since Layer 0 has terminated,
Layer 1 is passed a finite graph, thus, the situation is similar to that in case
of Layer 0.

In our context, this means that only a finite fully overlapping (Ei
∼= R∗

i)
sequences are possible, since the the NAC forbids the E-based composition at
a given position more than once. Otherwise |L∗

i |must increase. Unfortunately,
there are situations, where these criteria do not hold. In our first case study,
the second rule matches and creates an element of the same type.

The methods discussed as related work are not restricted to injective
matches as opposed to our approach.

13

114

Levendovszky et al.

6 Conclusions

A novel contribution of this paper is to provide termination criteria for general
productions allowing recursion within the scope of DPO and typed attributed
graph transformation, assuming injective matches. This can be a theoretical
basis to prove that certain control flows of rules are terminating, where the
other - algorithmically underpinned - criteria cannot be applied. In general,
however, it is hard to find all the possible sequences of graph productions, and
prove that the corresponding series |L∗

i | exceeds all limits. This is expected,
since the termination of a GTS is undecidable [10]. However, the stricter and
the more deterministic the ordering of the rules is, the higher is the chance
that we can deal with the sequences. For example, in the tool Visual Modeling
and Transformation System (VMTS) [11], the control structures are as strict
as possible, and nondeterminism is avoided if possible. Moreover, parameter
passing between the rules (external causalities) decrease the number of the
possible Ek graphs, since the nodes and edges connected by a morphism from
R∗

k to Lk+1 must be mapped to the same nodes and edges in Ek. We have
also contributed two case studies, which solve the termination issue of two
frequently used transformation idioms called ”transitive closure” and ”leaf
collector”.

Another contribution is that in the composition of the productions in Def-
inition 3.1, attributes are also considered, and the proposed method is open
to other constraint specification approaches. Furthermore, it regards control
structures and parameter passing.

Future work includes the extension of these results to noninjective matches.
Furthermore, constraint checking to decide whether a composition rule exists
is not simple in the general case, when not only the attributes set by the
transformation steps are considered. Also, we would like to analyze more id-
ioms and frequent building blocks. A library of building blocks with proven
termination properties may help the tools to overcome the algorithmic unde-
cidability. Since where the algorithms fail, the structural investigation can
offer a solution.

7 Acknowledgments

The activities described in this paper were supported, in part, by the SegraVis
Training Network and by the National Office for Research and Technology
(Hungary).

References

[1] Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G:
Reusable Idioms and Patterns in Graph Transformation Languages 2004. Proc.

14

115

Levendovszky et al.

2nd International Workshop on Graph Based Tools (GraBaTs 2004). Satellite
workshop of ICGT 2004, Rome, Italy, 2004.

[2] Assmann, U., Graph rewrite systems for program optimization, ACM TOPLAS
22, 2000, pp. 583-637

[3] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: “Termination of High-
Level Replacement Units with Application to Model Transformation”, VLFM
2004, Electronic Notes of Theoretical Comp.Sci. (ENTCS) vol.127, no.4 (2005),
Elsevier, pp. 71-86.

[4] Bottoni, P., Taentzer, G., Schuerr, A. Efficient Parsing of Visual Languages
based on Critical Pair Analysis and Contextual Layered Graph Transformation.
In Proc. Visual Languages 2000 IEEE Computer Society. pp.: 59-60.

[5] Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay,Sz.:
“Termination Criteria for Model Transformation”, FASE 2005, LNCS, pp. 49-
63.

[6] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: “Fundamentals of Algebraic
Graph Transformation”, EATCS Monographs in Theoretical Computer Science,
Springer, 2006

[7] de Lara, J., Taentzer, G. 2004. Automated Model Transformation and its
Validation with AToM3 and AGG. In DIAGRAMS2004 (Cambridge, UK).
Lecture Notes in Artificial Intelligence 2980, pp.: 182198. Springer.

[8] Lengyel, L., Levendovszky, T., Charaf, H.: “Eliminating Crosscutting
Constraints from Visual Model Transformation Rules”, ACM/IEEE 7th
International Workshop on Aspect-Oriented Modeling, Montego Bay, Jamaica,
October 2, 2005.

[9] Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: “A Systematic Approach
to Metamodeling Environments and Model Transformation Systems in VMTS”,
Electronic Notes in Theoretical Computer Science, International Workshop on
Graph-Based Tools (GraBaTs) Rome, 2004.

[10] Plump, D.: “Termination of graph rewriting is undecidable”, Fundamenta
Informaticae, 33(2):201209, 1998

[11] VMTS Web Site, http://avalon.aut.bme.hu/∼tihamer/research/vmts

[12] Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky,
T., Prange, U., Varró, D., Varró-Gyapay, Sz.: Model Transformation by
Graph Transformation: A Comparative Study,ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems, Montego
Bay, Jamaica, 2005

[13] Varró, D.: Automated Model Transformations for the Analysis of IT Systems.
PhD thesis, Budapest University of Technology and Economics, Department of
Measurement and Information Systems (2004)

15

116

