
Transformation dependency analysis
A comparison of two approaches

T. Mens† — G. Kniesel‡ — O. Runge*

† Service de Génie Logiciel, Université de Mons-Hainaut
Av. du Champ de Mars 8, 7000 Mons, Belgium
tom.mens@umh.ac.be
‡Computer Science Department III, University of Bonn
Römerstr 164, 53117 Bonn, Germany
gk@informatik.uni-bonn.de
* Technische Universität Berlin, 10587 Berlin, Germany
olga@cs.tu-berlin.de

ABSTRACT. Transformation dependency analysis is crucial to provide better tool support for
current-day software development techniques – two prominent examples are program refact-
oring and model transformation. Unfortunately, it is unclear how existing tools that provide
generic support for these techniques relate to each other, due to their difference in terminology,
concepts and formal foundations (graphs versus logic). This article reports on the results of an
experimental comparison between two tools: AGG and Condor. Among others, we noticed a
performance advantage of several orders of magnitude for the logic-based approach.

RÉSUMÉ. L’analyse de dépendance de transformations est essentiel pour améliorer le support
de techniques actuelles de développement logiciel – deux exemples sont la restructuration de
programmes et la transformation de modèles. Or, il est peu clair comment les outils de support
actuels peuvent être comparés, à cause d’une différence de terminologie, de concepts utilisés, et
de fondations formelles (graphes versus logique). Dans cet article nous discutons d’une com-
paraison experimentale de deux outils : AGG et Condor. Entre autres, nous avons trouvé un
gain d’efficacité de plusieurs ordres de magnitude en utilisant l’approche basée sur la logique.

KEYWORDS: software evolution, conditional transformation, dependency analysis, graph trans-
formation, logic programming.

MOTS-CLÉS : évolution logicielle, transformation conditionnelle, analyse des dépendances, trans-
formation de graphes, programmation logique.



168 LMO 2006

1. Introduction

Program transformation has been, and still remains, an essential ingredient of soft-
ware engineering, as all compiler technology heavily depends on it. An active research
domain within program transformation is the activity of refactoring, whose goal is to
improve the software structure while preserving its external behaviour (Fowler, 1999).
Another important research trend is model transformation, which is becoming increas-
ingly relevant with the emergence of model-driven architecture and model-driven soft-
ware engineering. As observed by (Sendall et al., 2003), model transformation is the
heart and soul of model-driven engineering.

One of the key challenges in any transformation-based approach is the compos-
ability issue: given a set of transformations one would like to apply, are there any
dependencies between these transformations that dictate a particular order of use, are
there any mutual dependencies that preclude their joint use, and if not, is it possible to
come up with an ‘optimal’ transformation sequence (or even several)?

Given the increased importance of software transformation at all levels of abstrac-
tion, the goal of this paper is to investigate to which extent the analysis of depend-
encies between software transformations can be supported by state-of-the-art tools.
We are aware of only two tools with the ability to perform transformation depend-
ency analysis in a language-independent manner: AGG (Taentzer, 2004) and Condor
(Kniesel et al., 2003).

The crucial idea enabling transformation dependency analysis in both tools is that
each transformation T can be specified in terms of a set of preconditions and a set of
postconditions. The preconditions are conditions that need to be satisfied before the
transformation can be applied, whereas the postconditions are those conditions that
are valid after application of the transformation.

Unfortunately, this is as far as the commonalities go. The terminology, concepts
and formal foundations used by both tools are completely disjoint making them hard
to compare. AGG is based on graph theory and provides means to detect critical pairs,
parallel conflicts and sequential dependencies. Condor is based on logic and provides
means to detect triggering and inhibition dependencies. A software engineer who is
not an expert in both graph transformation theory and logic would have a hard time
deciding which tool is most appropriate for his tasks.

For ultimate insight, a thorough formal comparison of the theory underlying the
two tools would be necessary. However, given the heterogeneity of the approaches,
this is a rather challenging task. In this article we show that highly useful results can
be obtained based on a purely experimental comparison. To software engineers these
results give practically useful guidelines for the selection of a tool. To researchers
they open up some new research questions and help to focus future, more formal
comparisons, on the most interesting differences.

The remainder of this article is structured as follows. In Section 2 we substantiate
the need for dependency analysis with a motivating example from the domain of pro-



Transformation dependency analysis 169

gram refactoring. Then we describe our experimental setup in terms of a simple, yet
sufficiently generic, case study and a list of objective comparison criteria (Section 3).
In Section 4 and 5 we introduce the basic concepts of each tool and describe its use
on the common example. Finally, we evaluate both tools based on the selected com-
parison criteria (Section 6). We show that both tools yield the same results but differ
in subtle ways in their expressive power. Most surprisingly, we found a performance
advantage of several orders of magnitude for the logic-based approach.

2. Motivating example: Program refactoring

As a motivating example of the need for transformation dependency analysis, con-
sider the example of program refactorings, which are transformations that change
the program structure while preserving its external behaviour (Fowler, 1999; Mens
et al., 2004).

The ability to analyse dependencies between refactorings will allow tool de-
velopers to improve refactoring support in a significant way. To illustrate this, consider
the following scenario. Assume that a software architect wants to restructure a soft-
ware application and knows exactly which refactorings she wants to apply. She might
even have an idea of an application order that might seem intuitive. However, with
any non-trivial refactorings and any refactoring sequence of non-trivial length it will
be impossible to confirm her intuition. There might be non-obvious influences of one
refactoring on another that impose a particular order of application, or that might even
prevent the joint application of these refactorings.

Ideally, a tool based on transformation dependency analysis will be able to provide
such concrete feedback, by computing all possible dependencies and conflicts between
refactorings. For example, it would be able to determine whether a user-defined selec-
tion of refactorings is applicable for a given program, and it would propose an optimal
order (i.e., one satisfying all dependencies) in which to apply these refactorings. Sim-
ilar analyses are even possible in a program-independent way, helping to determine
generally applicable refactoring sequences, when assembling larger refactorings from
smaller ones in a refactoring editor (Kniesel et al., 2004).

This scenario is not just a sketch of an idea. Both tools that we compared are
able to express and analyze program refactorings. (Kniesel et al., 2004) describe how
to represent refactorings as sequences of conditional transformations. A representat-
ive selection of refactorings has been expressed as graph transformations in AGG1.
This selection constitutes a number of typical program refactorings: PullUpMethod,
PullUpVariable, MoveMethod, MoveVariable, RenameClass, RenameMethod, Re-
nameVariable, AddParameter, RemoveParameter, CreateSuperclass. The detection of
sequential dependencies among these refactorings with the aid of AGG is reported in

1. When downloading AGG from its webpage , the re-
factoring example can be found in the Examples folder.



170 LMO 2006

Figure 1. ’Sequential dependencies’ for a representative set of refactorings.

(Mens et al., 2005) and (Mens et al., 2006). The dependency graph showing all such
dependencies computed by AGG version 1.3 is shown in Figure 1.2

3. Experimental Setup

3.1. Common Example

We initially started our comparison by implementing the aforementioned refactor-
ings as conditional transformations. Technically this was fast and easy. However, we
quickly realised that it was not a good approach for a comparison, since we spent by
far most of the time on discussing and settling some subtleties in the semantics of the
individual refactorings in order to make sure that both implementations were indeed
equivalent. This motivated us to base our comparison on a much simpler, canonical
example with a well-understood, indisputable semantics.

For our experiment, we therefore relied on the canonical representation of soft-
ware artefacts as labelled, typed graphs, introduced in the PhD thesis of Tom Mens
(Mens, 1999). Each node and edge in a graph has a name and a type (which are both
represented as simple strings). The name of each node must be unique in the entire
graph. Edges with the same source and target node must also have a unique name.
Types need not be unique, i.e., more than one node (or edge) can have the same type.

Based on this representation, we implemented in both tools the following min-
imal set of transformations: AddNode, DeleteNode, AddEdge, DeleteEdge, RetypeN-
ode, RetypeEdge, RenameNode and RenameEdge. These 8 transformations are very

2. An explanation of ‘sequential dependencies’ is given in Section 4.



Transformation dependency analysis 171

simple, but together they allow one to make arbitrarily complex changes to any given
graph structure. Any complex transformation can always be decomposed into a se-
quence of these basic transformations.

3.2. Comparison Criteria

In order to compare the tools AGG and Condor, we used the following objective
criteria:

– Expressiveness. How expressive are the tools? Are there certain transformations
that cannot be expressed due to the particular notation or language imposed by the
tool?

– Precision. How precise are the results obtained with the tool? Does the tool
generate any false positives or false negatives?

– Genericity. How generic is the tool? How easy is it to use the tool for represent-
ing and transforming different types of software artefacts?

– Performance. What is the performance of the tool?
– Mechanisms. What are the underlying mechanisms used to perform transforma-

tion analysis?

Section 4 introduces the basics of graph transformations and explores the AGG
tool using this setup. Section 5 then explains and evaluates the Condor tool in the
same way. Section 6 compares both tools according to the avobe criteria. Finally,
section 7 concludes.

4. AGG: A graph-transformation based approach

In this section we give a short, informal introduction to the relevant notions from
graph transformation theory, present AGG and describe its use on our evaluation scen-
ario.

4.1. Graph transformation

In graph transformation theory (Ehrig et al., 1999), a graph transformation T is an
abstract transformation rule that can be applied in different contexts. Given a concrete
graph G, the transformation T may be applied in different ways, because there may
be different matches of its left-hand side in G. The actual application of a graph
transformation is therefore uniquely defined by the combination of the transformation
rule T and its match m in the concrete context graph G.

A parallel conflict between two transformations T1 and T2 occurs if T1 and T2 can
both be applied to the same host graph (with matches m1 and m2, respectively), but
after applying T1 (with match m1) it is no longer possible to apply T2 (with match



172 LMO 2006

Figure 2. The AGG type graph for the experimental setup. Restrictions regarding the
uniqueness of names are expressed as additional graph constraints (not shown here).

m2). In other words, a parallel conflict simply means that T1 and T2 cannot be seri-
alised in any given order. Parallel conflicts can be detected by comparing the pre-
conditions of T1 and T2. If these preconditions overlap, then this implies that both
transformations will make a change that can be in conflict with the other one.

A sequential dependency from transformation T2 (with match m2) to transform-
ation T1 (with match m1) occurs if T2 can be applied after application of T1, but it
is not possible to apply T2 (using the same match m2) without having performed T1

first. Sequential dependencies can be detected by comparing the precondition of T2

with the postcondition of T1. This allows us to detect whether T2 relies on informa-
tion that is introduced by T1, or that T2 relies on the absence of certain items that have
been removed by T1.

The above definitions are informal ones. To be really precise, an introduction to
graph transformation theory would be needed, but this is beyond the scope (and page
limits) of this paper. For more formal details, we refer to (Heckel, 1995).

4.2. Analysis with AGG

In this section we explain how dependency analysis can be carried out with the
AGG tool. AGG version 1.3.0 has been used for our experiments since the preceding
versions did not support sequential dependency analyis yet.

As a first step, a type graph (i.e., a metamodel) needs to be specified. It is used to
determine whether a given software artefact (in our case study, a graph structure) is
well formed. The type graph for the given case study is shown in Figure 2.

As a second step we need to specify the 8 basic graph transformations in AGG. We
only show the transformations AddEdge and RetypeEdge in Figure 3. Both consist
of a left-hand side (representing the positive part of the precondition) and a right-
hand side (representing the postcondition). The transformation is implicitly specified
as the difference between the left-hand-side and the right-hand-side. In addition, a
graph transformation may have any number of negative application conditions. For
example, AddEdge also contains a negative precondition EdgeNotPresent, stating that



Transformation dependency analysis 173

Figure 3. Two graph transformations in AGG: AddEdge and RetypeEdge.

it is not possible to introduce a new edge between two nodes if an edge with the same
name already exists between those nodes. For more details about how to specify graph
transformations we refer to the AGG webpage3.

Detection of parallel conflicts is achieved in AGG by means of critical pair ana-
lysis. Each critical pair specifies a minimal graph representing a potential parallel
conflict situation. Figure 4 shows the critical pair table generated by AGG. The num-
bers in each field of the table indicate the number of conflict situations that have been
found between each pair of transformations. For example, there are two conflicts
between AddEdge and DeleteNode, because the addition of an edge prevents the de-
letion of its source node and its target node. Likewise, there are two conflicts between
DeleteNode and AddEdge, because the deletion of a node prevents the addition of a
new edge having this node either as source or as target.

From the critical pair table, a conflict graph can be generated automatically, as
shown in Figure 5.

AGG also allows the computation of sequential dependencies, the results of which
are shown in tabular format in Figure 6. A sequential dependency is computed by
inverting the first transformation, and finding its critical pairs with the second trans-
formation. Observe that the table of sequential dependencies is not symmetrical. For
example, AddEdge depends on AddNode (but not the other way around), since adding
a node enables the introduction of a new edge to or from this node afterwards. Simil-
arly, DeleteNode depends on DeleteEdge (but not the other way around) since remov-
ing an edge enables the removal of the node, if no other edges are connected to this
node. Again, a dependency graph is generated automatically, as shown in Figure 7.

3.



174 LMO 2006

Figure 4. Detection of potential parallel conflicts (i.e., critical pairs) in AGG. Note
that the only asymmetric situation is between AddEdge and RenameNode.

Figure 5. Dependency graph showing all potential parallel conflicts (i.e., critical
pairs) in AGG. Undirected edges are used to represent bidirectional conflicts.

Figure 6. Detection of potential sequential dependencies in AGG.



Transformation dependency analysis 175

Figure 7. Dependency graph showing all potential sequential dependencies in AGG.
Undirected edges are used to represent bidirectional dependencies.

Table 1 summarises all detected conflicts and dependencies. One can observe
many situations that lead to both a conflict and a sequential dependency. As a concrete
example, consider the two transformations RetypeEdge and DeleteEdge. On the one
hand, both transformations give rise to a parallel conflict if they are applied to the
same edge. If we try to delete the edge, and in parallel try to change its type, it is not
clear how these two incompatible changes can be combined. There is also a sequential
dependency, since the application of RetypeEdge gives rise to a new opportunity of
applying DeleteEdge (namely, the deletion of the edge with the new type).

5. Condor: A logic-based approach

In this section we give a short, informal introduction to relevant notions of condi-
tional transformations (CTs, for short). We explain the notions of inhibition depend-
ency and triggering dependency underlying Condor, and we describe the use of the
tool in our evaluation scenario.

5.1. Conditional transformation

Conditional transformations (Kniesel, 2006; Kniesel et al., 2004) work on a rep-
resentation of programs as logic terms. Every node in the generalized abstract syntax
tree of a program is represented by a Program Element Term (PET). There are no re-
strictions on the structure of program element terms, making this approach applicable



176 LMO 2006

Table 1. Summary of parallel conflicts (C) and sequential dependencies (D) detected
with AGG by means of critical pair analysis.

1st|2nd addN delN renameN retypeN addE delE renameE retypeE
addNode 1 D 1 D 1 D 2 D

1 C 1 C
deleteNode 1 D 1 D

1 C 1 C 1 C 2 C
renameN 1 D 1 D 2 D 1 D 2 D

1 C 1 C 2 C 1 C 2 C
retypeN 1 D 1 D 1 D

1 C 1 C 1 C
addEdge 1 D 1D 1D

2 C 1 C 1 C
deleteEdge 2 D 1 D 1 D

1 C 1 C 1 C
renameE 1 D 1 D 2 D 1 D

1 C 1 C 2 C 1 C
retypeE 1 D 1 D 1 D

1 C 1 C 1 C

to arbitrary artefacts. The upper part of Table 2 shows a simple Java program and its
representation as a set of PETs. The lower part shows the representation of a simple
graph. For a PET representation of complete Java we refer to the JTransformer web-
site4. In the term representation for Java chosen in Table 2, the first argument of every
term is the unique identity of that node, and the second argument is the reference to
its parent node. Top-down navigation is possible due to the relational nature of logic
terms. For instance, the term block(5,3,[6]) can be seen as a parent reference from
node 5 to node 3, or as a child reference from node 3 to node 5. Square brackets
denote lists.

A conditional transformation (CT) is a program transformation guarded by a pre-
condition, such that the transformation is performed on a given program only if its
precondition is true. The precondition can be any closed logic formula containing
conjunction, disjunction and negation. The transformation can be any sequence of
additions, deletions or replacements of program element terms, corresponding to the
primitive operations add(PET) (to add a new element), delete(PET) (to remove an
existing element), and replace(PETold,PETnew) (to replace an existing element by
another one).

4. JTransformer is a program transformation engine for Java based on conditional transforma-
tions. It is available as a plugin for Eclipse from .



Transformation dependency analysis 177

Original artefact Term representation

n1 : class n2 : field
e1: contains

Table 2. Representation of Java programs and graphs as logic terms.

Conditional transformations are specified as logic programs. Each conditional
transformation corresponds to a clause of the form . In or-
der to apply the CT with the head , the preconditon is verified, yielding
a set of substitutions for the logic variables contained in it. Then the transforma-
tion is performed for every computed substitution. Postconditions are not rep-
resented explicitly since they can be derived automatically from the precondition and
the transformation.

5.2. CT-based dependency analysis

The analysis of dependencies between conditional transformations is based on
comparing preconditions and postconditions. Given two conditional transformations
ct1 and ct2. If a literal l in the postcondition of ct1 is unifiable with a literal in the
precondition of ct2 then executing ct1 will contribute to making the precondition of
ct2 true. In this case ct1 is said to potentially trigger (enable) ct2. Similarly, if a literal
l in the postcondition of ct1 is unifiable with a negated version of it in the precondition
of ct2 then executing ct1 will contribute to making the precondition of ct2 false. In
this case ct1 is said to potentially inhibit (prevent) ct2.

Both of these dependencies imply a sequential ordering of CT executions. If ct1
triggers or inhibits ct2 then ct1 must be executed before ct2. In the case of triggering,
this guarantees that when ct2 is executed all the PETs relevant for it already exist. In
the case of inhibition, it guarantees that when ct2 is executed, all the PETs that should
not be consumed by ct2 have already been removed. If CTs are executed in the order
indicated by the dependency graph, no CT ever needs to be repeated again because of
later addition of more triggering PETs and no CT needs to be undone because of later
removal of PETs assumed to exist.

There is no special analysis for ‘parallel conflicts’ in this framework. It is not ne-
cessary since the dependency graph formed by inhibition and triggering dependencies



178 LMO 2006

already contains all the relevant information. If the graph is acyclic, its topological
sorting automatically determines at least one conflict-free order of the involved CTs.
If the graph contains pure triggering cycles, the analysis indicates that the execution
of the CTs in these cycles must be iterated until a fixpoint is reached. If the graph
contains pure inhibition cycles the analysis diagnoses a conflict, since (direct or in-
direct) mutual inhibition represents a contradiction. If the dependency graph contains
mixed cycles the programmer receives a warning since it is not possible to decide
automatically whether these cases are conflicts or acceptable situations.

5.3. Using Condor

Condor5 (Kniesel et al., 2003; Bardey, 2003), is the tool for CT-based dependency
analysis developed at the University of Bonn. For our experiment, version 0.3 of its
recent reimplementation has been used.

Using Condor to analyse CTs starts by determining a term representation of the
artefacts to be analyzed and transformed. For our experiment we used the PETs illus-
trated in the lower part of Table 2. A node with name n and type t is represented as

. An edge with name e, type t, source node n1 and target node n2
is represented as .

The conditional transformations addEdge and retypeEdge on this representation
are shown below (compare Figure 3):

Applying Condor to the 8 CTs corresponding to our test example, the 32 triggering
dependencies and 32 inhibition dependencies shown in Figure 8 and 9 were found.

5. Web page



Transformation dependency analysis 179

addNode delNode

renameNode retypeNode

renameEdge retypeEdge

addEdge delEdge

17

18, 19

1023
20

24
25

34

22

29

28

38

39

35

21

14

30

40

27

37

26

36

32
, 3

3

1531

9

12, 13

11

16

Figure 8. Dependency graph showing all potential triggerings detected by Condor.

addNode delNode

renameNode retypeNode

renameEdge retypeEdge

addEdge delEdge

42

45, 46

60, 61

47

5241
51

43
44 55

62

68

53

50

67

70

72 63

6459

54

71

49

66

48

65

57
, 5

8

6956

Figure 9. Dependency graph showing all potential inhibitions detected by Condor.



180 LMO 2006

6. Comparison

When summarising the results of all dependencies generated by Condor in tabular
format, we get exactly the same table as the one computed for AGG in Table 1. Both
tools identified 32 conflicts (resp. inhibition dependencies) and 32 sequential (resp.
triggering) dependencies in exactly the same places.

Nevertheless, it took us a couple of iterations before we obtained this one-to-one
correspondence between Condor and AGG. This was mainly due to the fact that both
tools use a different representation for expressing the transformations. Because of
that, it required a learning process to understand the, often subtle, differences in ter-
minology. In the successive iterations, we gradually removed all false positives and
false negatives that occurred as a side-effect of our lack of understanding of these
terminological differences.

The first difference was the notion of conflict and dependency used by both tools.
According to our experiment an inhibition dependency in Condor seems to correspond
to the notion of a critical pair (conflict) in AGG. Similary, a triggering dependency in
Condor appears to corresponds to the notion of a sequential dependency in AGG.

Another distinction concerns the categories of dependencies. In Condor, both trig-
gering and inhibition dependencies are classified according to the basic transformation
that triggered the dependency: add, delete and replace. In a similar vein, the critical
pairs detected in AGG can be classified into three conflict categories: produce/forbid
conflict, delete/use conflict, and change-attribute conflict. Analysis revealed that there
is a one-to-one correspondence between these categories and the ones used by Condor.
One notable exception to this rule is the triggering dependency of type add between
AddEdge and DeleteNode, which was identified by AGG as a produce/dangling edge
conflict. Without going into formal details, this has to do with the particular way in
which the algebraic approach to graph transformations treats dangling edges.

Below, we provide a comparison of both tools based on the objective criteria put
forward in section 3. A summary of this comparison is given in Table 3.

– Genericity. Both AGG and Condor are generic in the sense that they can be used
to represent any kind of software artefact.

– Precision. As can be seen from the results, both AGG and Condor allow the
detection of parallel conflicts. In fact, all inhibition dependencies detected by Condor
coincide with all critical pairs detected by AGG. Similarly, all triggering dependen-
cies detected by Condor coincide with all sequential dependencies detected by AGG.
Hence, we are confident that the dependency analysis supported by both tools gives
reliable results.

– Expressiveness. AGG requires to make an explicit difference between the left-
hand side of a graph transformation and possible negative application conditions. In
Condor, all these constraints are put together as a single collection of logic predicates.
Negated logical predicates (using the keyword ) are typically used to represent
negative conditions. This makes Condor more expressive than AGG, since it allows



Transformation dependency analysis 181

Table 3. Comparison of AGG and Condor. Only those comparison criteria that re-
flect a difference between both tools are shown here.

criterion AGG Condor
technique used graph transformation conditional transformation

critical pair analysis CT-based dependency analysis
mechanisms graph matching and unification and

graph equivalence backtracking
performance 16 minutes 0,2 seconds

expressiveness + ++
implementation language Java Prolog

the specification of any combination of conjunction, disjunction and negation. The
graphical syntax of AGG prohibits certain of these combinations (one cannot use neg-
ation inside a negative application condition, for example).

– Performance. The difference in execution time needed to calculate all conflicts
and dependencies in both tools was dramatic. In AGG, it took more than 15 minutes
to compute all results, whereas Condor required less than a second! This difference is
largely due to the inherent computational complexity of the underlying mechanisms
used by both tools.

– Mechanisms. The basic mechanism used in AGG to apply transformations and to
analyse dependencies between graph transformations is subgraph matching and graph
equivalence. Unfortunately, this is known to be NP-complete. Condor, on the other
hand, benefits from the linear complexity of unification.

7. Conclusion

Based on the experiments performed in this paper, we conclude that it is feasible
to detect dependencies and conflicts within a given set of program transformations.
Analysis of the corresponding dependency graph will allow us to provide better tool
support for a wide range of software engineering activities, including program refact-
oring and model transformation. Being based on a language-independent representa-
tion (using either graphs or logic predicates), the analysed approaches are applicable
to a wide range of software artefacts at any level of abstraction. Exploiting all the
options provided by this generality remains a topic for future work.

Probably the most important thing we can learn from the comparison of AGG and
Condor relates to their dramatic difference in performance. We experienced the same
difference in performance when analysing more complex transformations, such as the
program refactorings mentioned in section 2. It seems that the powerful mechanism
of graph matching used by AGG is very inefficient and, as such, not very suitable for



182 LMO 2006

the purpose of performing transformation dependency analysis. Indeed, the same ana-
lysis performed with Condor showed a performance improvement of several orders
of magnitude. It seems that the lightweight mechanism of unification offered by Pro-
log suffices. As a consequence, it may be worthwhile to investigate in the future to
which extent the use of logic-based conditional transformations provides an efficient
alternative to graph transformation tools.

8. References

Bardey U., « Abhängigkeitsanalyse für Programm-Transformationen », Diploma thesis, CS
Dept. III, University of Bonn, Germany, February, 2003.

Ehrig H., Engels G., Kreowski H.-J., Montanari U., Rozenberg G. (eds), Handbook of Graph
Grammars and Computing by Graph Transformation, World Scientific, 1999. Volumes 1–3.

Fowler M., Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.
Heckel R., « Algebraic Graph Transformations with Application Conditions », Master’s thesis,

Technische Universität Berlin, 1995.
Kniesel G., A Logic Foundation for Conditional Program Transformations, Technical report n˚

IAI-TR-2006-01, ISSN 0944-8535, CS Dept. III, University of Bonn, Germany, January,
2006.

Kniesel G., Bardey U., Static Dependency Analysis for Conditional Program Transformations,
Technical report n˚ IAI-TR-03-03, ISSN 0944-8535, CS Dept. III, University of Bonn, Ger-
many, August, 2003.

Kniesel G., Koch H., « Static composition of refactorings », Science of Computer Programming,
vol. 52, n˚ 1-3, p. 9-51, 2004.

Mens T., A Formal Foundation for Object-Oriented Software Evolution, PhD thesis, Vrije Uni-
versiteit Brussel, Belgium, September, 1999.

Mens T., Taentzer G., Runge O., « Detecting structural refactoring conflicts using critical pair
analysis », Electronic Notes in Theoretical Computer Science, vol. 127, n˚ 3, p. 113-128,
April, 2005.

Mens T., Taentzer G., Runge O., « Analyzing Refactoring Dependencies Using Graph Trans-
formation », Software and Systems Modeling, 2006. To appear.

Mens T., Tourwe T., « A Survey of Software Refactoring », IEEE Transactions on Software
Engineering, vol. 30, n˚ 2, p. 126-162, February, 2004.

Sendall S., Kozaczynski W., « Model Transformation: The heart and soul of model-driven
software development », IEEE Software, vol. 20, n˚ 5, p. 42-45, September-October, 2003.

Taentzer G., « AGG: A Graph Transformation Environment for Modeling and Validation of
Software », Proc. AGTIVE 2003, vol. 3062 of Lecture Notes in Computer Science, Springer-
Verlag, p. 446-453, 2004.



ANNEXE POUR LE SERVICE FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE PAPIER
DE LEUR ARTICLE ET LE COPYRIGHT SIGNE PAR COURRIER

LE FICHIER PDF CORRESPONDANT SERA ENVOYE PAR E-MAIL

1. ARTICLE POUR LES ACTES :

LMO 2006

2. AUTEURS :

T. Mens† — G. Kniesel‡ — O. Runge*

3. TITRE DE L’ARTICLE :

Transformation dependency analysis
A comparison of two approaches

4. TITRE ABRÉGÉ POUR LE HAUT DE PAGE MOINS DE 40 SIGNES :

Transformation dependency analysis

5. DATE DE CETTE VERSION :

January 20, 2006

6. COORDONNÉES DES AUTEURS :

– adresse postale :
†Service de Génie Logiciel, Université de Mons-Hainaut
Av. du Champ de Mars 8, 7000 Mons, Belgium
tom.mens@umh.ac.be
‡Computer Science Department III, University of Bonn
Römerstr 164, 53117 Bonn, Germany
gk@informatik.uni-bonn.de
* Technische Universität Berlin, 10587 Berlin, Germany
olga@cs.tu-berlin.de

– téléphone : +33(0)4 92 94 27 48
– télécopie : +33(0)4 92 94 28 96
– e-mail : Roger.Rousseau@unice.fr

7. LOGICIEL UTILISÉ POUR LA PRÉPARATION DE CET ARTICLE :

LATEX, avec le fichier de style ,
version 1.22 du 04/10/2005.

8. FORMULAIRE DE COPYRIGHT :

Retourner le formulaire de copyright signé par les auteurs, téléchargé sur :

SERVICE ÉDITORIAL – HERMES-LAVOISIER
14 rue de Provigny, F-94236 Cachan cedex

Tél. : 01-47-40-67-67
E-mail : revues@lavoisier.fr

Serveur web : http://www.revuesonline.com


