
Interaction Analysis in Aspect-Oriented Models

Katharina Mehner∗ Mattia Monga† Gabriele Taentzer†

Technical University of Berlin Università degli Studi di Milano Technical University of Berlin

Germany Italy Germany

mehner@cs.tu-berlin.de mattia.monga@unimi.it gabi@cs.tu-berlin.de

Abstract

Aspect-oriented concepts are currently introduced in all
phases of the software development life cycle. However,
the complexity of interactions among different aspects and
between aspects and base entities may reduce the value of
aspect-oriented separation of cross-cutting concerns. Some
interactions may be intended or may be emerging behavior
while others are the source of unexpected inconsistencies.
Thus, it is desirable to detect inconsistencies as early as
possible, preferably at the modeling level.
We propose an approach for analyzing interactions and po-
tential inconsistencies at the level of requirements model-
ing. We use a variant of UML to model requirements in a
use-case driven approach. Activities, which are used to re-
fine use cases, are the join points to compose cross-cutting
concerns. The activities and their composition are formal-
ized by using the theory of graph transformation systems,
which provides analysis support for the detection of poten-
tial conflicts and dependencies between rule-based trans-
formations. This theory is used to effectively reason about
potential interactions and inconsistencies caused by aspect-
oriented composition. The analysis is performed with the
graph transformation tool AGG. The automatically ana-
lyzed conflicts and dependencies also serve as an additional
view that helps in better understanding the potential behav-
ior of the composed system.

1 Motivation

Aspect-oriented programming promises to provide bet-
ter separation and integration of crosscutting concerns than
plain object-oriented programming. Aspect-oriented con-
cepts are currently introduced in all phases of the software
development life cycle with the expectation to reduce com-

∗This author has been supported by the German Federal Ministry for
Education and Research under the grant 01ISC04A (Project TOPPrax).

†These authors have been supported by the EU Research Training Net-
work SegraVis.

plexity and to enhance maintainabilty already already at
early stages.

On the requirements level, crosscutting concerns, i.e.,
concerns that effect many other requirements, cannot be
cleanly modularized using object-oriented and view-point-
based techniques. Several approaches have been proposed
to identify crosscutting concerns already at the require-
ments level and to provide means to modularize, represent
and compose them using aspect-oriented techniques, e.g.,
for use case driven modeling in [26, 17, 2, 24, 23].

A key challenge is to analyze the interaction and consis-
tency of crosscutting concerns with each other and with af-
fected requirements. Especially the quantifying nature [12]
of aspect-oriented composition makes conquering interac-
tions and inconsistencies difficult. When composing aspect-
oriented and object-oriented models, there are two sources
of interactionsand thus potential inconsistencies.
• Intended or unintended overlap in concepts between

these models can be the source of inconsistencies. De-
pending on the composition, these inconsistencies be-
come effective or are avoided.

• Aspect-oriented composition specifies where and when
an aspect is applied and how the control flow is aug-
mented or changed. It can be used to solve some of
the above mentioned inconsistencies, e.g., by replac-
ing object-oriented behavior consistently with aspect-
oriented behavior. However it might create inconsisten-
cies by accidentally duplicating or suppressing behav-
ior.

It is desirable to identify aspect interactions and potential
inconsistencies as early as possible in the life cycle. Not
all identified interactions are necessarily inconsistencies.
Some of them may be intended or emerging collaborations.
Until now, approaches to analyse aspectual composition of
requirements are still informal [26, 24, 23]. Formal ap-
proaches for detecting inconsistencies have been proposed
only for the programming level such as model checking
[19], static analysis [25], and slicing [32, 4].

The programming techniques cannot be used for require-



Figure 1: Use cases of travel agency example

ments because they rely on the operational specification
of the complete behavior as given by the code while re-
quirements abstract from these details. On the requirements
level, a commonly used, yet often informal, technique is to
describe behavior with pre- and post-conditions, e.g. using
intensionally defined states or attributes of a domain entity
model. This technique is, e.g. used for defining UML use
cases. In order to enable a more rigorous analysis of be-
havior, this approach has to be formalized and has to be
extended also to aspect-oriented units of behavior.

In this paper, we investigate the use of an existing model
analysis technique based ongraph transformations[10] for
analyzing the interactions and inconsistencies of an aspect-
oriented composition of object and aspect models. The
rule-based paradigm of graph transformation can be used
as a formal model for behavior specifications with pre- and
postconditions. The theory provides results for detecting
interactions and potential inconsistencies among behavioral
specifications.

We illustrate our approach with ause case drivenmodel-
ing approach using UML [29] use cases, activity, and class
diagrams. We specify aspect-oriented compositions for use
cases by using their refining activities as join points. Activ-
ities will be rigorously defined with pre- and postconditions
using a variant of UML and subsequently analyzed for con-
flicts and dependencies with the tool AGG [1], an environ-
ment for specifying, analyzing, simulating, and executing
graph transformation systems. As no graph transformation
system is aware of aspects, the results have to be interpreted
according to the aspect-oriented composition specification.

The paper is structured as follows. In Sect. 2 we describe
the formally enhanced use casen driven approach by exam-
ple and introduce the notion of conflicting and depending
behavioral interactions. In Sect. 3 we introduce graph trans-
formations and their analysis facilities. In Sect. 4 we apply
the analysis to the example and interpret results with re-
spect to aspect-oriented composition. In Sect. 5 we discuss
related work. In Sect. 6 we conclude and give an outlook.

2 Aspect-Oriented Requirements Modeling

Several authors have proposed to extend a use-case
driven requirements modeling approach with aspects [26,
17, 15, 20]. Aspects represent non-functional or functional

Figure 2: Domain model class diagram

crosscutting requirements. In [3], functional aspects are
identified at the level of use case relationships. Thejoin
points, i.e., the places of aspect-oriented composition, are
activities or groups thereof as in [26]. We present a subset
of these techniques with the intention to demonstrate, how
such approaches can be augmented by (i) a formalization
and (ii) a formal analysis.

2.1 A Use Case driven Approach

Central to the approach is the use case diagram, which
serves as overview. A use case is at least specified by a trig-
ger, actor, pre-, post-condition, main scenario(s), and ex-
ceptional scenario(s). Scenarios can be specified with UML
activity diagrams. Here, we only present scenarios as they
will be formalized. In addition, the domain model class di-
agram plays an important role as we refer to it in pre- and
post-conditions.

We illustrate the approach with a travel agency software
offering flights and car rentals for which bonus subscription
is available.

2.1.1 Use Cases

For purchasing travels, the system offers the use cases “buy
flight” and “rent car” (see Figure 1). Through the use cases
“earn bonus” and “redeem bonus” a bonus program is of-
fered. A staff is involved as actor in all use cases but this
does not imply that the actor always triggers the use case.

2.1.2 Domain Model Class Diagram

The class diagram specifies the structure of the domain. A
Customermay book and pay aTravel, either aFlight or a
Rental. Each can be booked at most once. AFlight is com-
posed of one or more legs, denoted by “legof”. A Ticket
“refers to” a Customerand aFlight. A Rental“engages”
one Car. A Car can be engaged in differentRentals. A
Customerwho “owns” aBonusAccountmay earn and re-
deem bonus forTravels.

2



Figure 3: Activity Diagrams

2.1.3 Activities

The steps of a use case are described with activity diagrams.
The use case “buy flight” is refined in Fig. 3(a). After con-
ditionally creating a customer, the flight and all its legs are
booked. Then the flight is payed and a ticket produced. Use
case “rent car” is specified analogously in Fig. 3(b). Bonus
use cases are independent of the kind of travel. To earn
bonus, a bonus account has to exist. Bonus is earned for all
items of a travel (cf. Fig. 3(c)). One has to use the bonus
for all travel items when redeeming (cf. Fig. 3(d)).

2.1.4 Pre- and Post-conditions

The domain model can be integrated with activities more
tightly by specifying the pre- and post-conditions of each
activity by prototypical instances. An object diagram, i.e.,
the structural part of a UML collaboration diagram, lends
itself naturally as a diagrammatic description of such a pre-
or post-condition. This has also been advocated by object-
oriented methods like Fusion [11] or Catalysis [9].

The pre- and postconditions specify arbitrary but fixed
instances. A post-condition can refer to thesame instances
as the pre-condition by refering to the instance identifier,
given as a number.Attributescan be matched with val-
ues. An attribute to be changed in a post-condition has to
be instantiated in the pre-condition.Deletion is specified
by omitting an instance or a link present in a pre-condition
in the corresponding post-condition. Pre-conditions can
includenegativeconditions, e.g., that a resulting instance
does not exist. Negative links and instances are drawn using
a dashed (out)line using a notation from graph transforma-

Figure 4: Activity Pre- and Post-Conditions

3



Use Case Modifier Pointcut (Activity)

earn bonus before pay*
redeem bonus replace pay*

Table 1:Aspect-oriented Composition

tions. Several negative elements have and AND-semantics.
(OR-semantics is possible but it will not be discussed here.)

Fig. 4 gives pre- and post-conditions of all activities. In
(1), the pre-condition checks that a customer with the pa-
rameter name does not exist. The post-condition ensures
that this customer is created. In (2), neither “books” exists,
nor is the flight a “leg of” another flight. A link “books” is
inserted. In (3), attributes are identified with value parame-
ters that are used to calculate the post-condition values. In
the pre-condition, a logical condition on the values “t<s” is
used. The other pre- and post-conditions are constructed in
a similar way.

2.2 Aspect-Oriented Composition

Until now, we left the specification of aspect-oriented re-
lationships between use cases open. The notion ofaspect-
oriented compositionis in analogy to AspectJ [30]:
• An advice is modeled with a use case, subsequently

specified trough activity diagrams and pre- and post-
conditions.

• Thepointcuts, i.e., the matching specifications, refer to
activities. Partial matching of names is possible. Each
activity can thus be ajoin point.

• The modifiersbefore , after andreplace indicate
that the advice use case is executed before, after, or in-
stead of each activity matched.

In practice, more complex pointcuts and more sophisticated
matching mechanisms may be useful. Pointcuts are stati-
cally defined without dynamically evaluated conditions.

In the example of the travel agency use cases (see Fig.
1), crosscutting behavior is exhibited by the use case “earn
bonus”. It augments the use cases “buy flight” and “rent
car”. Thus, the activity diagram specifying “earn bonus” is
composed with the other activity diagrams. It should take
place after complex booking behavior is completed, i.e.,
before starting the following activity “pay flight” or “pay
rental”. Thus, the pointcut matches activities starting with
“pay” (cf. Table 1) using the modifierbefore . “Redeem
bonus” should take place instead of “pay flight” or “pay
rental”(see Table 1).

2.3 Interactions in Aspect-Oriented Composition

During aspect-oriented modeling, one needs to under-
stand the effects of an aspect model on the model of rest of
the system, i.e., other aspect models and object models, but
also how the aspect model is affected by them. The spec-
ified aspect-oriented composition should be feasible and

should not violate other behavior constraints. This issue has
been further analyzed by Katz [18] who distinguishes the
following desirable properties of an aspect-oriented com-
position.
• Specified properties of the existing system are preserved

(apart from replaced behavior).
• The aspect adds desired new properties.
• Different aspect behaviors do not interfere.

These desirable properties are affected by the two
sources of interactions we have already identified in the mo-
tivation, the ones directly between behavior and the ones
which are established through the aspect-oriented compo-
sition. We can identify interactions based on the activities
specified with pre- and post-conditions. We distinguish con-
flicts and dependencies.

An activity A2 is in conflict with an activity A1, if
A2 cannot take place after activity A1 because the pre-
conditions of A2 are violated by the post-conditions of A1.
An activity A2 is dependingon an activity A1 if A1 pro-
duces something needed by the activity A2 or deletes some-
thing forbidden by A2. A conflict or dependency can arise
between an activity from the object model and between an
activity from the aspect model in both directions or between
different aspect models.

Which conflicts and dependencies can become effective
can be analyzed with regard to the aspect-oriented compo-
sition. Which conflicts and dependencies are tolerable or
needed, is determined by the application domain.

Through the composition, two control flows are merged,
and activities from different models become direct or in-
direct successors or predecessors of each other or replace
each other. All conflicts and dependencies have to be taken
into account in order to determine if the merge is success-
ful, i.e., if the additional behavior is enabled and if it is not
prevented by conflicts, and if it does not change the existing
behavior.

We illustrate the typical scenario with the use case “re-
deem bonus” (cf. Fig. 1). The aspect-oriented composition
(cf. Table 1) specifies that its activities (cf. Fig. 3) can
replace an activity “pay∗” (cf. Fig. 3). To check that the
composition can work, we have to compare the pre- and
post-conditions of the activities involved in order to estab-
lish potential conflict and dependencies between activities.
In the example, one would try to find out whether “redeem
bonus” cannot take place after any activity that is occurring
in the control flow before, e.g., “payflight”. This is not the
case, as “redeem bonus” is depending on “bookflight” and
“book rental” and also “payflight” is depending on them.

Identifying all conflicts and dependencies from pre- and
post-conditions manually is inefficient and error prone. In
the next section we will describe, how the detection of con-
flicts and dependencies can be automated using existing
technologies. Therefore, we have to introduce the basics

4



of graph transformation theory, which can be used to for-
malize pre- and post-conditions of behavioral models. The
detection of conflicts and dependencies can be automated
by using proper supporting tools.

3 Graph Transformation
The UML variant presented in Section 2 is a modeling

approach for requirements which can be precisely defined
by the theory of graph transformation. While class struc-
tures are formalized by type graphs, pre- and post condi-
tions of activities are mapped to graph rules. The formaliza-
tion functions as the necessary basis to analyze interactions
in aspect-oriented composition in a precise manner. The
calculus of graph transformation has a solid background
which dates back to the early seventies: the interested reader
is referred to seminal work in this area [10]. In this paper
we present only as much theoretical background as needed
to understand our approach.

3.1 Attributed Typed Graph

Graphs can be used as an abstract representation of di-
agrams. A graph is defined by the sets of its vertices and
edges as well as two functions source and target that map
edges on vertices. According to this definition more than
one edge can exist between two given vertices. Formaliz-
ing object-oriented modeling, graphs occur at two levels:
the type level (defined on the basis of class diagrams) and
the instance level (given by all valid object diagrams). This
idea is described by the concept oftyped graphswhere a
fixed type graphTG serves as an abstract representation
of the class diagram. Moreover both, vertices and edges,
may be decorated by a number ofattributes, i.e., names
with value and type. As in object-oriented modeling, types
can be structured by an inheritance relation. Instances of
the type graph are object graphs equipped with a structure-
preserving mapping to the type graph, i.e., a mapping that
preserves the source and target functions for edges. A class
diagram can thus be represented by a type graph plus a set
of constraints over this type graph expressing multiplicities
and maybe further constraints.

In our running example the type graph (see Figure 5 (a))
represents thedomain modelof the system, equivalent to the
UML class diagram in Figure 2. However, the inheritance
relationship was rendered byflatteningall the associations
of Travel to Flight and Rental: this is needed because all the
edges of a graph should have the same semantics (a relation-
ship between two nodes) to be used consistently during the
analyses. Figure 5 (b) shows an instance graph compliant
with the type graph.

3.2 Attributed Typed Graph Transformations

Basically, agraph transformationis a rule-based modi-
fication of a graphG into a graphH. Rules are expressed
by two graphs(L,R), whereL is the left hand side of the

rule andR is the right hand side, and a mapping between
objects inL and inR. The left-hand sideL represents the
pre-conditions of the rule, while the right-hand sideR de-
scribes the post-conditions.L ∩ R (the graph part which is
not changed) and the unionL∪R should form a graph again,
i.e., they have to be compatible with source, target and type
settings, in order to apply the rule. GraphL \ (L ∩ R) de-
fines the part which shall be deleted, and graphR \ (L∩R)
defines the part to be created.

As one example, Figure 4(3) shows pre- and post-
conditions of the activity “Book leg” which can be inter-
preted as a graph rule. (The numbers indicate the mapping
between left and right-hand sides.) The attribute conditions
are interpreted as instantiation of variables on the left-hand
side, and attribute assignment on the right-hand side.

A graph transformation stepis defined by first finding
a matchm of the left-hand sideL in the current instance
graphG such thatm is structure-preserving and type com-
patible. If a vertex embedded into the context shall be
deleted, edges which would not have a source or target ver-
tex after rule application might occur: these are calleddan-
gling edges. There are mainly two ways to handle this prob-
lem: either the rule is not applied at matchm, or it is applied
and all dangling edges are also deleted. In the following we
shall adopt the former strategy.

Performing a graph transformation step which applies
rule r at matchm, the resulting graphH is constructed
in two passes: (1) buildD := G \ m(L \ (L ∩ R)),
i.e. delete all graph items which shall be deleted; (2)
H := D ∪ (R \ (L ∩ R)), i.e. create all graph items which
shall be created. Agraph transformation, more precisely
a graph transformation sequence, consists of zero or more
graph transformation steps.

The applicability of a rule can be further restricted by ad-
ditional application conditions. The left-hand side of a rule
formulates some kind of positive condition. In certain cases
alsonegative application conditions(NACs) which are pre-
conditions prohibiting certain graph parts, are needed. If
several NACs are formulated for one rule, each of them has
to be fulfilled. See e.g. rule ”Pay flight” in Fig. 4 which has
two NACs, one which forbids the flight to be paid to be a
leg of another flight, and one which checks if the flight to
be paid is already paid.

As an example for a graph transformation step, we con-
sider again rule ”Book leg” in Fig. 4(3) and the host graph in
Fig. 5(b). There are different possibilities to match the rule
to the host graph, dependent on which leg flight is used. But
choosing the left leg flight, the NAC (indicated by dashed
lines in Fig. 4) is not fulfilled. Thus, the rule can only be
applied to the right leg flight. The result is the host graph
in Fig. 5 with an additional ”books”-edge to the right leg
flight.

A set of graph rules, together with a type graph, is called

5



(a) (b)

Figure 5: Type graph (a) and a coherent instance graph (b) of the travel agency example

a graph transformation system(GTS). A GTS may show
two kinds of non-determinism:

1. for each rule several matches may exist

2. several rules might be applicable

The choice of matches can be restricted by either letting
the user specify part of the match using e.g. input parame-
ters, or by explicitly defining a control flow over rule appli-
cation.

The tool environment AGG (Attributed Graph Grammar
System) [1] can be used to specify graph transformation
systems and analyse its rules. Moreover, the rules can be
tested by applying them to possible instance graphs.

3.3 Conflict and Dependency Analysis

One of the main static analysis facilities for GTSs is
the check for conflicts and dependencies between rules and
transformations. AGG supports the check for conflicts be-
tween rule applications. It has been applied to e.g. identify
conflicts in functional requirements in [14]. In this paper we
argue that the existing theoretical results for graph transfor-
mation can advantageously be used for analyzing potential
conflicts and dependencies in aspect-oriented modelling.

As discussed in the previous section, graph transforma-
tion systems can show certain kinds of non-determinism.
Considering the case where two graph transformations can
be applied to the same host graph, the result might be the
same, independent of the application order. Otherwise, if
one of two alternative transformations is not independent of
the second, the first one will disable the second. In this case,
the two rules are inconflict.Vice versa, two transformations
are said to beparallel independentif they modify different
parts of the host graph. Instead,sequential independence
guarantees that the order of application in a transformation

sequence does not matter, i.e. performing the first transfor-
mation does not disable the second one.

Analyzing the conflicts and dependencies of graph trans-
formations can be compared with testing a program at run
time. The analysis would have more value, if conflicts and
dependencies could be discovered during compile time, i.e.
if it would be a static analysis. A promising approach in this
direction is the analysis of potentially conflicting situations
by critical pairs. A critical pair is a pair of transformation

steps G
p1,m1 +3 H1 , G

p2,m2 +3 H2 which are in conflict,
and host graphG is constructed based on overlappingL1

andL2, the left-hand sides of rulesp1 andp2. The set of
critical pairs represents precisely all potential conflicts, that
is, there exists a critical pair like above if, and only if,p1

may disablep2 or, vice versa,p2 may disablep1. Conflicts
can be of the following types:

delete/use: The application ofp1 deletes a graph object
which is used by the match ofp2.

produce/forbid : The application ofp1 produces a graph
structure that a NAC ofp2 forbids.

change/use: The application ofp1 changes an attribute
value of a graph object which is used also by the match
of p2.

A delete/use-conflict is shown, for example, in Fig-
ure 6. Applying “Payflight” to the host graph shown at the
bottom of the figure, rule “Redeemflight” becomes non-
applicable, since the application of “Payflight” delete the
”books”-edge which is needed for the application of “Re-
deemflight”.

Another conflict occurs if a Customer has booked both
a Flight and a Rental, and if s/he wants to redeem loy-
alty points from her/his BonusAccount for both, the “Re-
deemflight” and “Redeemrental” rules change the same

6



Figure 6: Critical pair “Payflight”, “Redeemflight”

attribute ”bonus”. (See the pre- and post-conditions in Fig-
ure 4(8) and imagine corresponding rules for the instantia-
tion of ”Travel” to ”Flight” and to ”Rental”, respectively.)

Critical pair analysis can also be used to find all potential
dependencies among rules. In fact, a rulep1 may enablep2

if, and only if, there exists a critical pair betweenp−1
1 and

p2. Consequently, the following dependencies are possible:

produce/use : The application ofp1 produces a graph ob-
ject which is needed by the match ofp2.

delete/forbid : The application ofp1 deletes a graph ob-
jects that a NAC ofp2 forbids.

change/use: The application ofp1 changes an attribute of
a graph object which is used also by the match ofp2.

In the following we use critical pair analysis to detect
conflicts and dependencies among cross-cutting specifica-
tions.

4 Analysis of Travel Agency Example
In the previous section we have introduced graph trans-

formation as the theoretical foundation for detecting con-
flicts and dependencies between activities specified with
pre- and post-conditions.

We computed all potential conflicts and dependencies for
travel agency example. The results are presented with a con-
flict (see Fig. 7) and a dependency (see Fig. 8) matrix. The
first column and first row contain the list of all activities.
The number specifies how many different conflicts/depen-
dencies were found.
• Conflict matrix: a positive entry indicates that column

entry Adisablesrow entry B; B is in conflict with A.
• Dependency matrix: a positive entry means that column

entry Aenablesrow entry B; B is dependent on A.

Figure 7: Conflict Matrix in AGG

Figure 8: Dependency Matrix in AGG

From the matrices, agraph is generated (see Fig. 9), con-
taining a directed edge B to A if B is conflict(red) with or
dependent(blue) on A. The graph captureschains.

In the conflict matrix, each activity is in at least one con-
flict with itself, which is typical for changes effected once.
These conflict are not of interest for our further analysis.
Most of the depicted conflicts and dependencies are caused
by attributes. They point to problems, when a pre-condition
requires a special value as in“Bookleg”, and can be ignored
otherwise.

In the following, we discuss selected conflicts and de-
pendencies in the context of the aspect-oriented composi-
tion specification. We compare the composed control flow
(cf. Table 1) with the conflicts/dependencies of the com-
posed activities. Internal validation of activity diagrams is
not our focus here. Because of the flattening, we have to
look at four compositions instead of two. We describe re-
sults related to flights; rentals are similar.

Composition:Use case “Earnbonus”before “Pay∗”.
This use case contains activities “Earnflight” (flattened)
and “Createaccount”. For each enablement or disablement,
one has to decide whether it is desirable and whether it has
an effect when also taking into account the control flow.

7



Figure 9: Graph of Critical Pairs in AGG

Here, we can give only some example.
“Earn flight” is dependent on “Bookflight” but taking

place after it. One has to look at the kind of dependency
to identify whether “Earnflight” is completely enabled by
“Book flight”. “Book flight” inserts an edge “books” on
which ‘Earnflight” depends. “Earnflight” is also depen-
dent on “Bookleg”. The bonus is earned for the flight and
each leg. This inconsistency is a kind of jumping aspect
problem [5]. The legs composed by a flight should not en-
able aspects. A negative condition can prevent that redeem
is applied to a leg. All attribute dependencies can be ig-
nored.

“Earn flight” is disabled by “Payflight”. As this is an
activity occuring in the control flow after the composi-
tion, this is no problem. None of the activities following
“Book flight” is disabled by “Earnflight”.

Composition: Use case “Redeembonus” replaces
“Pay∗”. This use case contains the activity “Redeemflight”
(flattened). “Redeemflight” is depending on “Bookflight”
and “Book leg”. It is completely enabled by each of them
because it requires only an edge “books”. Thus, bonus is
payed for the flight and each leg which is undesirable as
above.

“Pay flight” disables “Redeemflight” and vice versa.
One has to analyze via the chains which activities depend-
ing on “Payflight”. “Pay flight” enables ticketing but “Re-
deemingflight” does not. This is not desirable because a
ticket should be printed in both cases. “Redeemflight”
does state its post-condition in its own domain, i.e., it in-
serts an edge “redeems”. To solve the problem, an edge
“pays” could be inserted, because it does not make sense to
change all activities depending on “Payflight”.

In the best practice demonstrated with the examples, we
can identify generalizable heuristics: (1) Forafter , the
aspect activities must not be disabled by the affected activ-
ity and they must not disable its direct successors. (2) For

before , the aspect activities must not disable the affected
activity and must not be disabled by its direct predecessors.
(3) Forreplace , the aspect activities must not be disabled
by direct predecessors of the replaced activity and must not
disable its direct successors.

It is difficult to generalize over the required and forbid-
den conflicts and dependencies for activities that are not im-
mediate predecessors and successors of the affected activ-
ity. The general question is, whether the overall activity
diagram resulting from the composition is conform with the
overall conflict and dependency graph. Because of poten-
tial cycles in both, activity diagrams and in the graph, and
because of conditional branching in activity diagrams, this
problem can only be solved in an approximative way. Thus,
in its presented state, the use of AGG provides a formal aid
in supporting the solving of a hard problem.

5 Related Work

Conflict analysis based on graph transformation has been
applied in several contexts within the software engineering
area. The detection of conflicts in functional requirement
specifications was investigated in [14]. In this work, we
considered requirement specifications developed with the
use case-driven approach. The motivation of this work was
the early detection of conflicts within the software engineer-
ing process. Another application in this area is the detection
of conflicts and dependencies in software evolution, more
precisley between several software refactorings [21]. Both
investigations are based on graph transformation and use the
critical pair analysis of AGG for detection. In addition, we
discuss for possible conflicts between refactorings how they
can be resolved.

A clustering of individual requirements within the spec-
ification of the behavioural characteristics of a system is of-
ten calledfeature[27]. The notion of feature, while natural
in the “problem domain”, it is not always present in the “so-
lution domain”. In fact, researchers infeature engineering
propose to promote features as “first class objects” within
the software process, in order to bridge the gap between
the user needs and design or implementation abstractions.
However, in general features are not independent one from
each other nor necessarily consistent. Finkelstein et. al [13]
proposed a framework for tracking relationships among dif-
ferentviewpointsof a system, according to the goals that
the different stake-holders involved in the development of
the system are pursuing. Our analytical approach, instead,
is aimed at discovering inconsistencies and interactions as
early as possible, in order to avoid them.

In [2], Araújo et al. describe non-aspectual requirements
as sequence diagrams and aspectual requirements with in-
teraction pattern specifications, then they are both woven
together in state machines that can be simulated. No sup-
port for static conflict detection is provided.

8



Nakajima and Tamai [22] use Alloy [16] to analyze inter-
actions among role models, by taking into account object-
oriented refinement and aspect-oriented weaving.

Several researchers work on finding interactions at the
programming level, normally in AspectJ code. Specific pro-
gram analysis techniques for AspectJ programs were pro-
posed [32, 4] in order to analyze if two aspects interfere.
Clifton and Leavens [6] propose to classify aspects inob-
servers,that do not change the system behavior, andas-
sistants,that participate actively in the global computation.
Similarly Katz [19] proposed to use data-flow analysis to
identify spectative, regulative,and invasiveaspects. These
techniques can be used to automatically extract models of
the code which can be used to verify that expected proper-
ties of the system hold [25, 31, 28, 7]. Douence et al. [8] in-
troduced a generic framework for aspect-oriented program-
ming supporting pointcuts with explicit states and they pro-
vide an abstract formal semantics of their aspect language:
this allows for detection of aspect interference.

6 Conclusion

A key problem of the aspect-oriented composition is the
use of quantification which makes it more difficult to rea-
son about it than in purely object-oriented models. In this
paper, we presented an approach for detecting conflicts and
dependencies in behavioral specifications of use cases re-
fined with activity diagrams. The approach uses formal aid
to analyze systematically an semi-formal specifications.

The analysis of conflicts and dependencies was carried
with the tool AGG, a tool for specifying and analysing rule-
based transformations of typed attributed graphs. The tool
was used for specifying the behavior of aspects and ob-
jects in terms of pre- and post-conditions and for analysing
conflicts and dependencies between them. The tool com-
puted the necessary input in form of conflicts and dependen-
cies which were then compared with the specified compo-
sition. Found conflicts and dependencies are potential con-
flicts (since they can be interactions) and not every possible
conflict since it depends on the accurateness of the pre- and
post-conditions. Nevertheless, the formal technique helps
in making the problems explicit. It directs the developer to
the problematic parts of a model. It helps in understanding
aspect-oriented compositions and it helps in reasoning ef-
fectively about the crosscutting. Graph transformation also
allow to reason uniformly about object and aspect models.

Besides an editor for specifying the rules, the tool also
provides all analysis functions as an API. Rules can be read
from an XML file. Therefore, AGG is ideal to be used with
existing UML CASE Tools.

The presented approach can be applied in two ways. It
can (i) be used, as demonstrated here, to validate an aspect-
oriented design by comparing operators with conflicts. It
can also (ii) be used to propose feasible aspect-oriented

compositions by deriving them from the conflicts and de-
pendencies found. The latter case will however not be the
major application area for this.

We feel that pre- and post-conditions are an essential
counterpart for an informal language like the UML, mak-
ing modeling more rigorous. The analysis of pre- and post-
conditions is not restricted to activity diagrams, which are
essentially not yet object-oriented. It can also be applied to
pre- and postconditions of methods and to a wide range of
aspect-oriented modeling techniques if they are enhanced
by pre- and post- conditions which are a universally appli-
cable technique.

The approach is not restricted to functional aspects, as
presented here. Also so called non-functional aspects can
be mapped to functional specifications in terms of pre- and
post-conditions on the state of a system. Thereby, also inter-
actions between functional and non-functional aspects are
automatically covered.

7 Outlook
Support of analysis of the conflict and dependency graph

is definitely needed to put the ideas to work also with larger
examples. The AGG tool can also be used for testing
through its simulation facility. This is needed in the absence
of a completely automated analysis of the composition.

While pecifying the pre- and postconditions with object
diagrams over the domain classes has been advocated by
many object-oriented methods [11, 9, 14], the UML primar-
ily proposes another solution. Conditions over instances of
a model can be specified using OCL [29]. They could be
analysed for conflicts and dependencies as proposed here.
Either they have to be transformed into graph-based con-
ditions readable by AGG or OCL tools are extended with
critical pair analysis which they do not possess yet. Cur-
rently, AGG is integrating object-orientation also into the
analysis facilities. So far, it has not yet integrated aspect-
oriented facilities. One feature which could be extremely
useful for reasoning about models is unification of types.
Often, a reusable aspect model does use its own types which
are not necessarily the same as those used in the domain
class diagram.

References
[1] AGG Homepage. http://tfs.cs.

tu-berlin.de/agg .

[2] Jo ao Aráujo, Jon Whittle, and Dae-Kyoo Kim. Mod-
eling and composing scenario-based requirements
with aspects. InProceedings of the 12th IEEE Int.
Requirements Eng. Conf.CS-IEEE, 2004.

[3] J. Araújo and P. Coutinho. Identifying aspectual
use cases using a viewpoint-oriented requirements
method. InEarly Aspects 2003: Aspect-Oriented

9



Requirements Engineering and Architecture Design,
Boston, MA, USA, March 2003.

[4] Davide Balzarotti, Antonio Castaldo D’Ursi, Luca
Cavallaro, and Mattia Monga. Slicing AspectJ woven
code. InProceedings of the Foundations of Aspect-
Oriented Languages workshop (FOAL2005), Chicago,
IL (USA), March 2005.

[5] J. Brichau, W. De Meuter, and K. De Volder. Jumping
aspects. position paper at the workshop ”Aspects and
Dimensions of Concerns”, ECOOP 2000, June 2000.

[6] Curtis Clifton and Gary T. Leavens. Obliviousness,
modular reasoning, and the behavioral subtyping anal-
ogy,. Technical Report TR03-01a, Iowa State Univer-
sity, January 2003. presented at SPLAT 2003.

[7] Giovanni Denaro and Mattia Monga. An experience
on verification of aspect properties. In T. Tamai,
M. Aoyama, and K. Bennett, editors,Proceedings of
the International Workshop on Principles of Software
Evolution IWPSE 2001, pages 184–188, Vienna, Aus-
tria, September 2001. ACM.

[8] Remi Douence, Pascal Fradet, and Mario Südholt.
Composition, reuse, and interaction analisys of state-
ful aspects. InProceedings of the 3rd international
conference of aspect-oriented software development,
Lancaster, UK, March 2004. ACM.

[9] D. D’Souza and A. Wills. Components and Frame-
works with UML: The Catalysis Approach. Addison
Wesley, 1998.

[10] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in TCS. Springer, 2005.

[11] D. Coleman et al.Object Oriented Development, The
Fusion Method. Prentice Hall, 1994.

[12] R. Filman and D. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. InProceed-
ings of OOPSLA 2000 workshop on Advanced Sepa-
ration of Concerns, 2000.

[13] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkel-
stein, and M. Goedicke. Viewpoints: A framework for
integrating multiple perspectives in systems develop-
ment. International Journal of Software Engineering
and Knowledge Engineering, 1(2):31–58, 1992.

[14] J.H. Hausmann, R. Heckel, and G. Taentzer. Detec-
tion of Conflicting Functional Requirements in a Use
Case-Driven Approach. InProc. of Int. Conference on
Software Engineering 2002, Orlando, USA, 2002.

[15] S. Herrmann, C. Hundt, and K. Mehner. Mapping Use
Case Level Aspects to Object Teams/Java. In A. Mor-
eira et. al, editor,OOPSLA Workshop on Early As-
pects, 2004.

[16] Daniel Jackson. Alloy: a lightweight object mod-
elling notation. Software Engineering and Method-
ology, 11(2):256–290, 2002.

[17] I. Jacobson and P.-W. Ng.Aspect-Oriented Software
Development with Use Cases. Addison Wesley, 2005.

[18] Shmuel Katz. A Survey of Verification and Static
Analysis for Aspects (AOSD-Europe Network of Ex-
cellence.http://www.aosd-europe.net .

[19] Shmuel Katz. Diagnosis of harmful aspects using
regression verification. In Gary T. Leavens, Ralf
Lämmel, and Curtis Clifton, editors,Foundations of
Aspect-Oriented Languages, March 2004.

[20] K. Mehner and G. Taentzer. Supporting Aspect-
Oriented Modeling with Graph Transformations. In
P. Clements et al., editor,AOSD 05 Workshop on Early
Aspects, 2005.

[21] T. Mens, G. Taentzer, and O. Runge. Detecting Struc-
tural Refactoring Conflicts unsing Critical Pair Anal-
ysis. In R. Heckel and T. Mens, editors,Proc. Work-
shop on Software Evolution through Transformations:
Model-based vs. Implementation-level Solutions (SE-
Tra’04), Satellite Event of ICGT’04), ENTCS, Rome,
Italy, October 2004. Elsevier.

[22] S. Nakajima and T. Tamai. Lightweight formal analy-
sis of aspect-oriented models. InUML2004 Workshop
on Aspect-Oriented Modeling, 2004.

[23] A. Rashid, A. Moreira, and J. Araujo. Modularisation
and composition of aspectual requirements. InProc.
AOSD’02, pages 11–20, Enschede, Netherlands, 2002.
ACM Press.

[24] A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. Early
aspects: A model for aspect-oriented requirements en-
gineering. InProc. IEEE Joint International Confer-
ence on Requirements Engineering, pages 199–202.
IEEE Computer Society Press, 2002.

[25] Martin Rinard, Alexandru Šalcianu, and Suhabe
Bugrara. A classification system and analy-
sis for aspect-oriented programs. InProceedings
of SIGSOFT’04/FSE-12, pages 147–158, Newport
Beach, CA, USA, 2004. ACM.

[26] J. Sillito, C. Dutchyn, A. Eisenberg, and K. DeVolder.
Use case level pointcuts. InProc. ECOOP 2004, Oslo,
Norway, June 2004.

10



[27] C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and
Alexander L. Wolf. A conceptual basis for feature
engineering. The Journal of Systems and Software,
49(1):3–15, December 1999.

[28] N. Ubayashi and T. Tamai. Aspect-oriented program-
ming with model checking. InAOSD 2002 (1st Inter-
national Conference on Aspect-Oriented Software De-
velopment) Conference Proceedings, pages 148–154,
Enschede, NL, April 2002.

[29] UML Specification Version 1.5 (formal/03-
03-01). Object Management Group.
http://www.omg.org .

[30] Xerox Corporation. AspectJ Programming Guide.
available fromhttp://eclipse.org/aspectj .

[31] Weifeng Xu and Dianxiang Xu. A model-based ap-
proach to testing interactions between aspects and
classes. InAOSD’05 Workshop on Testing Aspect-
Oriented Programs, Chicago, 2005.

[32] Jianjun Zhao. Slicing aspect-oriented software. In
Proceedings of the 10th IEEE International Work-
shop on Programming Comprehension, pages 251–
260, June 2002.

11


