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 Abstract. In this paper we introduce the categorical framework for rule-based trans-
formations of high-level structures, e.g. graphs, hypergraphs, typed and attributed graphs, Petri 
nets, etc. based on adhesive high-level replacement (HLR) categories. This generalizes the 
classical theory of algebraic graph transformation systems. In particular we analyze the gluing 
condition for transformations in a categorical way and illustrate it with an example of Petri nets.  
 
1 Introduction  
We extend the concept of graph transformation from (Ehrig & Prange 2005) to a categorical 
framework in the sense of (Ehrig et al. 2004). In this section we review categories as well as 
categorical notions like monomorphisms and pushouts.  
 A category is a mathematical structure that has objects and morphisms, with an associative 
composition operation on the morphisms and an identity morphism for each object. Basic 
examples for categories are the category Sets of sets and functions and the category Graphs of 
graphs and graph morphisms.  
 In the categorical framework, the morphism class of monomorphisms is of special interest. 
In Sets and Graphs it corresponds to the class of all injective functions resp. graph morphisms.  
 
Definition 1 (monomorphism) Given a category C, a morphism m : B → C is called a 
monomorphism, if for all morphisms f, g: A → B ∈ MorC holds: m ◦ f = m ◦ g ⇒ f = g.  
 
 For the application of transformation rules to an object we need a technique to glue objects 
together along a common subobject. The idea of a pushout generalizes this gluing construction in 
the sense of category theory.  
 
Definition 2 (pushout) Given morphisms f : A → B and g : A → C in a category C. A pushout 
(D, f’, g’) over f and g (see diagram (1) below) is defined by a pushout object D and morphisms 
f’ : C → D and g’ : B → D with f’ ◦ g = g’ ◦ f, such that the following universal property is 
fulfilled:  
For all objects X and morphisms h : B → X and k : C → X with k ◦ g = h ◦ f there is a unique 
morphism x : D → X such that x ◦ g’  = h and x ◦ f’ = k.  
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 Later we need the construction of a pullback, that is dual to a pushout and can be obtained 
by reversing all arrows (see diagram (2) above).  

 
2 Adhesive and Weak Adhesive HLR Categories and Systems  
In this section we introduce adhesive HLR categories based on the notion of van Kampen (VK) 
squares, which are the basis for adhesive HLR systems as rule-based transformation systems in 
the double pushout approach. Adhesive HLR categories are an extension of the concept of 
adhesive categories introduced in (Lack & Sobociński 2004).  
 The idea of a VK square is that of a pushout which is stable under pullbacks, and that 
pushout preservation vice versa implies pullback stability. 
 
Definition 3 (van Kampen square) A pushout (1) is a van Kampen square, if for any 
commutative cube (2) with (1) in the bottom and the back faces being pullbacks holds: the top 
face is a pushout ⇔ the front faces are pullbacks. 

  
 For an adhesive HLR category we consider a distinguished class M of monomorphisms, so 
that pushouts along M-morphisms have to be VK squares. 
 
Definition 4 (adhesive HLR category) A category C with a morphism class M is called an 
adhesive HLR category, if 
- M is a class of monomorphisms closed under isomorphisms, composition (f : A → B ∈ M, g: B 
→ C ∈ M ⇒ g ◦ f ∈ M) and decomposition (g ◦ f ∈ M, g ∈ M ⇒ f ∈ M), 
- C has pushouts and pullbacks along M-morphisms (i.e. at least one of the given morphisms is 
in M) and M-morphisms are closed under pushouts and pullbacks, 
- pushouts in C along M-morphisms are VK squares. 
For a slightly weaker version, called weak adhesive HLR category, see (Ehrig et al. 2005). 
 
 Typical examples of adhesive HLR categories are Sets and Graphs with the class M of all 
monomorphisms. Another interesting example are Petri nets (see Ex. 6).  
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 In general, an adhesive HLR system is based on an adhesive HLR category. It has 
productions, also called rules that describe in an abstract way how objects in this system can be 
transformed. An application of a production is called direct transformation and describes how an 
object is actually changed by the production.  
 
Definition 5 (adhesive HLR system, grammar and language) Given an adhesive HLR 
category (C, M), a production p =  consists of three objects L, K and R called left 
hand side, gluing object and right hand side respectively, and morphisms l : K → L, r : K → R 
with l, r ∈ M. For p and an object G with a morphism m : L → G, called match, a direct 
transformation G  H from G to an object H is given by the following diagram, where (1) and 
(2) are pushouts. A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct transformations is called a 
transformation and is denoted as G0  Gn. 

 
 An adhesive HLR system AHS = (C, M, P) consists of an adhesive HLR category (C, M) 
and a set of productions P. An adhesive HLR grammar AHG = (AHS, S) is an adhesive HLR 
system together with a distinguished start object S. The language L of AHG is defined by 
L = {G | ∃ transformation S  G}. 
 
 In the case (C, M) = (Graphs, Monos) adhesive HLR systems are graph grammars in the 
sense of (Ehrig 1979).  
 
Example 6 (Petri nets) A Petri net N = (P, T, pre, post), also called place/transition net, consists 
of a set of places P, a set of transitions T and pre and post functions pre, post: T → P⊕, where P⊕ 

is the free commutative monoid over P. A Petri net morphism f = (fP, fT): N1 → N2 with Ni = (Pi, 
Ti, prei, posti) for i = 1, 2 consists of functions fP : P1 → P2 and fT : T1 → T2 such that pre2 ◦ fT =  
fP
⊕ ◦ pre1 and post2 ◦ fT = fP

⊕ ◦ post1. 
 The diagram on the right shows in the top a pro-
duction p, where two transitions with the same place as 
their predomains are replaced by a single one. Round nodes 
symbolize places, square node transitions and the arrows 
visualize the pre and post functions. The morphisms are not 
explicitly shown, but are implied by the positions of the 
nodes.  
 The whole diagram shows the direct transformation 
for the given match m, where the Petri net G is transformed 
to H.  
 Petri nets and Petri net morphisms form the category 
PTNets, and (PTNets, M) with the class M of all monomorphisms (i.e. morphisms, where both 
components are injective) is a weak adhesive HLR category.  
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3 Initial Pushouts and Gluing Condition 
In this section we introduce initial pushouts and the gluing condition for a production p via a 
match m. The main result states that in an adhesive HLR category with initial pushouts, p is 
applicable via m if and only if the gluing condition is fulfilled.  
 An initial pushout formalizes the construction of the boundary and context in (Ehrig 1979). 
For a morphism f : A → A’ we want to construct a boundary b : B → A, a boundary object B and 
a context C leading to a pushout. Roughly spoken, A’ is the gluing of f and C along the boundary. 
 
Definition 7 (initial pushout) Given f : A → A’, a morphism b : B → A with b ∈ M is called the 
boundary over f if there is a pushout complement of f and b such that (1) is an initial pushout 
over f. Initiality of (1) over f means, that for every pushout (2) with b’ ∈ M there exist unique 
morphisms b* : B → D and c* : C → E with b* , c* ∈ M such that b’ ◦ b* = b, c’ ◦ c* = c and (3) 
is a pushout. Then B is called the boundary object and C the context with respect to f.  

 
 Intuitively, the gluing condition states that the boundary has to be preserved by the 
production. 
 
Definition 8 (gluing condition) Given an adhesive HLR system AHS over an adhesive HLR 
category with initial pushouts. Then a match m : L → G satisfies the gluing condition w.r.t. a 
production p = , if for the initial pushout (1) over m there is a morphism b* : B → 
K ∈ M such that l ◦ b* = b. 

 
 
 
 
Theorem 9 (existence and uniqueness of contexts) Given an adhesive HLR system AHS over 
an adhesive HLR category with initial pushouts. A match m: L → G satisfies the gluing 
condition w.r.t a production p =  if and only if the context object D exists, i.e. 
there is a pushout complement (2) over m ◦ l. If it exists, the context object D is unique up to 
isomorphism.  
 

 
 
 
 As a result of this theorem, if m w.r.t. p satisfies the gluing condition, then the context 
object D exists and we can apply p to G via m leading to a direct transformation G ← D → H 
(the second pushout exists due to the existence of the pushout along the M-morphism r in an 
adhesive HLR category). 
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PROOF If the gluing condition is fulfilled, then we construct the pushout (3) with the pushout 
object D and morphisms k and c* over b* ∈ M and B → C. This new pushout (3) together with 
morphisms c and m ◦ l implies a unique morphism f with f ◦ c* = c and m ◦ l = f ◦ k, and by 
pushout decomposition of (3) also (2) is a pushout leading to the context object D.  
 If the context object D with the pushout (2) exists, the initiality of pushout (1) implies the 
existence of b* with l ◦ b* = b.  
 The uniqueness of D follows from the uniqueness of pushout complements in adhesive 
HLR categories (see (Ehrig et al. 2004)). 
 
Example 10 (gluing condition and context) On the left hand side of the following diagram we 
show the transformation from Ex. 6. The initial pushout (1) over m is shown and also the 
morphism b* with l ◦ b* = b. That means the gluing condition is satisfied, therefore the context 
object D and the whole transformation exist. On the right hand side we see another match m’ and 
the initial pushout (4) over m’. But we have no morphism b’* and also no context object D’ such 
that (5) becomes a pushout, i.e. p is not applicable to G via m. 
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