
Petri Net Modules in the Transformation-Based
Component Framework

Julia Padberg, Hartmut Ehrig

Technische Universität Berlin
Fakultät IV - Informatik und Elektrotechnik

Franklinstr. 28/29, D-10587 Berlin

Abstract

Component-based software engineering needs to be backed by thorough formal concepts
and modeling techniques. This paper combines two concepts introduced independently by
the two authors in previous papers. On one hand, the concept of Petri net modules in-
troduced at IDPT 2002 in Padberg (2002), and on the other hand a generic component
framework for system modeling introduced at FASE 2002 in Ehrig et al. (2002). First we
develop a categorical formalization of the transformation based approach to components
that is based on pushouts. This is the frame in which we show that Petri net modules can be
considered as an instantiation of the generic component framework. This allows applying
the transformation based semantics and compositionality result of the generic framework to
Petri net modules. In addition to general Petri net modules we introduce Petri net modules
preserving safety properties which can be considered as another instantiation of pushout
based formalization of the generic framework.

Key words: Components, Petri nets, transformation based approach to components, Petri
net modules, category theory

1 Introduction

In order to build up large software systems from smaller parts, a flexible compo-
nent concept for software systems and infrastructures is highly important (see e.g.
Szyperski (1997); Mann et al. (2000); Gruhn and Thiel (2000)). Software compo-
nents are a useful and widely accepted abstraction mechanism. Components are

Email addresses: padberg@cs.tu-berlin.de,ehrig@cs.tu-berlin.de
(Julia Padberg, Hartmut Ehrig).

Preprint submitted to Elsevier Science 27 May 2004

deployed during the entire software life cycle, from analysis to maintenance. Al-
though there are many approaches available, only few are general enough to be
used for different specification techniques. To achieve a generic concept the focus
has to be on the fundamental issues of components and component-based systems.
These are the interfaces, the compositionality of components and its embedding
into the environment.
The transformation-based component framework for generic components has been
first presented at FASE 2002 in Ehrig et al. (2002). The main concepts are a self-
contained semantics and composition of components, based on a generic transfor-
mation concept. Here we present a categorical formalization where we use pushouts
to characterize the main construction. We achieve the desired properties as pro-
posed in Ehrig et al. (2002) using properties of the pushout construction.
In the transformation-based component framework a component consists of an im-
port, an export and the body. The import states the prerequisites the modules as-
sumes. The body represents the internal functionality. The export gives an abstrac-
tion of the body that can be used by the environment. These modules conform with
the basic concepts of components and component-based systems of Continuous
Software Engineering (CSE) Weber (1999).
In Padberg (2002, 2001) Petri net modules have been introduced independently of
the general framework discussed above. Similar to components they consist of three
nets: the import net IMP , the export net EXP , and the body net BOD. The im-
port net presents those parts of the net that need to be provided from the ”outside”.
The export net is that what the net module presents to the ”outside”. The body is
the realization of the export using the import. In Padberg (2003) this approach is
extended to include safety properties. In this paper we show as a main result that
Petri net modules as well as Petri net modules preserving safety properties can be
considered as an instantiation of the generic component framework.
For this purpose we present a categorical formalization of the concepts of the
transformation-based approach using specific kinds of pushout properties. We show
that Petri net modules of both kinds satisfy these properties. Hence they are an in-
stantiation of the transformation-based approach. In our main results of this paper
we transfer the transformation based composition, semantics and compositionality
result of the generic framework to Petri net modules of both kinds.

The paper is organized as follows: The introduction is continued discussing the
relation to algebraic development techniques and related work. In the first part of
Section 2 the transformation-based approach to components is reviewed. In the sec-
ond part we develop a categorical formalization leading to a transformation-based
approach based on pushouts. Section 3 treats Petri net modules. We show that they
are an instantiation of the transformation-based approach. This allows transferring
the general results to Petri net modules. In Section 4 we repeat this procedure for
Petri net modules with safety. Then in Section 5 we discuss the relation to Petri net
components based on high-level replacement systems. Moreover we discuss the
main insights of a case study in Padberg and Buder (2001). We conclude this paper
with a summary and an outlook to future work.

2

1.1 Relation to Algebraic Development Techniques

Both, the generic component concept and the Petri net modules have been mo-
tivated at least by the algebraic module specification concept of Ehrig and Mahr
(1990). The main idea of this algebraic module specification concept is to have in-
terface specifications IMP and EXP for import and export, and body specification
BOD, where these specifications are connected by specification morphisms from
IMP to BOD and from EXP to BOD. In our approaches the algebraic specifi-
cations are replaced by generic specifications in the generic approach and by Petri
nets in the case of Petri net modules. Moreover, we distinguish between two dif-
ferent kinds of morphisms: Transformations respectively substitution morphisms
between EXP and BOD, and embeddings respectively injective plain morphisms
between IMP and BOD. The main difference, however, is the model-theoretic
semantics of algebraic module specification in contrast to a transformation-based
semantics in our approaches. The model-theoretic semantics is given by a func-
tor from IMP -algebras to EXP -algebras, while the transformation-based seman-
tics is given by a function from transformations of IMP to transformations of
EXP . The concept of transformations is well-known in the area of algebraic de-
velopment techniques, especially rule-based transformations in the sense of string-,
tree-, and graph rewriting or double pushout transformations in the sense of high-
level replacement systems. The algebraic treatment of Petri nets has been initiated
by Meseguer and Montanari (1990), where Petri nets are considered as algebraic
objects and Petri net morphisms are introduced leading to an algebraic theory for
the category of Petri nets. Our plain morphisms of Petri nets are a special case
of Meseguer and Montanari concerning the mapping of places. Our substitution
morphisms, however, allow a more general mapping of transitions and they are
not restricted to preserve the firing behavior. Moreover, we consider more specific
substitution morphisms, which are safety property preserving, leading to the new
concept of Petri net modules preserving safety properties.

Finally, the composition of Petri net modules is defined using the well-known con-
cept of pushouts, which is also used for the composition of algebraic module spec-
ifications.

1.2 Related Work

As pointed out above Petri net modules and the transformation-based component
are both related to algebraic specification modules as defined by Ehrig and Mahr
(1990). The transfer of these concepts to process description techniques is a re-
cent development. It has been started in Simeoni (1999) where modules for graph
transformation systems and local action systems have been investigated. A gen-
eral framework for component concepts based on high-level replacement systems

3

(see Ehrig et al. (1991)) is presented in Ehrig and Orejas (2001) including differ-
ent process modeling techniques like graph transformation systems, Petri nets and
related techniques. The component concepts in Ehrig and Orejas (2001) Ehrig and
Orejas (2001) and Ehrig et al. (2002) are closely related. The semantical concepts,
however, are different. In the first case the semantics is constructor based, e.g. free
constructions in the case of algebraic specifications, and in the second case trans-
formation based, as shown in Section 2 below.

In the area of Petri nets various structuring concepts have been proposed during the
last 40 years, some of these are even called modules or modular approach. There
are hierarchical concepts (e.g. Jensen (1992); Buchholz (1994); He (1996); Fehling
(1993)) as well as a variety concepts for connector mechanisms as communication,
coordination or cooperation (e.g. Christinsen and Hansen (1994); Sibertin-Blanc
(1994); Desel et al. (2000); Deiters and Gruhn (1994)). In other approaches places
and transitions of modules are merged by well-defined operations (e.g. Kindler
(1995); Battiston et al. (1991, 1988); Broy and Streicher (1992)).

2 Transformation-Based Component Framework

First we give a short review of the transformation-based component framework as
given in Ehrig et al. (2002). In Subsection 2.4 we discuss the formalization of this
approach based on pushouts. There, the main concept of extension is described
using pushouts. Subsequently we show that the results proposed in Ehrig et al.
(2002) are achieved with this formalization.

2.1 A Generic Component Concept

In this subsection we sketch the basic concepts of our generic component concept
as given in Ehrig et al. (2002). Components are self-contained modeling units with
a clear separation between the interface of the component and the body. Moreover,
the interface can be divided into two parts: the import interface, describing what the
component assumes about the environment, and the export interface, describing the
services provided by the component itself.

We assume to have a generic modeling technique for describing systems which
includes model specifications and suitable connections between them. Given
such a generic modeling technique we are able to define our generic com-
ponent concept. A component specification, in short component, COMP =
(IMP, EXP, BOD, imp, exp) consists of model specifications and connections:

4

• IMP , called import interface,
• EXP , called export interface,
• BOD, called body,
• imp : IMP → BOD, called import connection,
• exp : EXP =⇒ BOD, called export connection.

We require that each export connection exp : EXP =⇒ BOD uniquely defines
a transformation of model specifications (see Subsection 2.2). exp : EXP =⇒
BOD is called export transformation. Intuitively, it can be considered a refinement
describing how the elements presented in the export interface are implemented by
the body. Moreover, if the model specifications have an informal or formal seman-
tics, we assume that the semantics of the body is a refinement of the semantics of
the export via the export transformation exp : EXP ⇒ BOD.

With respect to the import connection we require the body of a component to be an
extension of the import interface. For the sake of simplicity, we assume that each
import connection, imp : IMP → BOD, defines an embedding imp : IMP →
BOD of the corresponding specifications.

2.2 A Generic Transformation Concept

In view of our generic component concept we assume that a transformation frame-
work T consists of a class of transformations, which includes identical transfor-
mations, is closed under composition and satisfies the following extension prop-
erty: For each transformation trafo : SPEC1 =⇒ SPEC2 and each embedding
i1 : SPEC1 → SPEC ′

1 there is a selected transformation trafo′ : SPEC ′
1 =⇒

SPEC ′
2 with embedding i2 : SPEC2 → SPEC ′

2, called the extension of trafo
with respect to i1, leading to the extension diagram in Figure 1. Intuitively, each re-
finement from SPEC1 to SPEC2 via trafo can be extended to a refinement from
SPEC ′

1 to SPEC ′
2 via trafo′.

SPEC1

trafo

��

i1 �� SPEC ′
1

trafo′
��

SPEC2
i2 �� SPEC ′

2

Fig. 1. Extension diagram for the extension property

It must be pointed out that, in a given framework, given trafo and i1 as above, there
may be several trafo′ and i2, that could satisfy this extension property. However,
our assumption means that, in the given framework T only one such trafo ′ and
one embedding i2 are chosen, in some well-defined way, as the extension of trafo
with respect to i1.

5

2.3 Transformation Semantics of Components

According to the general requirements, components are self-contained units, with
respect to syntax and semantics. Hence, it is necessary to have a semantics for each
single component.

In contrast to a model theoretic or functional semantics as considered for algebraic
module specifications in Ehrig and Mahr (1990) we propose a transformation se-
mantics.

The main idea proposed in Ehrig et al. (2002) is a semantics that takes into ac-
count the environment of a component, in a similar way as the continuation se-
mantics of a programming language assigns the meaning of a program statement
in terms of the environment of the statement. Here, the idea is to think that, what
characterizes the import interface of a component is not its class of models, but
the possible refinements or transformations of this interface that we can find in
the environment of the component. In this sense, it is natural to consider that
the semantical effect of a component is the combination of each possible im-
port transformation, trafo : IMP =⇒ SPEC with the export transformation
exp : EXP =⇒ BOD of the component. Since IMP is included in BOD, we
have to extend the import transformation from IMP to BOD in order to be able to
compose both transformations. Due to the extension property for transformations,
we obtain trafo′ : BOD =⇒ SPEC ′, as shown in Figure 2.

EXP
exp

��
IMP

trafo

��

imp �� BOD

trafo′
��

SPEC
imp′ �� SPEC ′

Fig. 2. Transformation semantics

Let us call the class of all transformations trafo from IMP to some specifica-
tion SPEC the transformation semantics of IMP , denoted by Trafo(IMP), and
similar for EXP . According to Figure 2 the transformation semantics of the com-
ponent COMP can be considered as a function

TrafoSem(COMP) : Trafo(IMP) → Trafo(EXP)

defined for all trafo ∈ Trafo(IMP), by

TrafoSem(COMP)(trafo) = trafo′ ◦ exp ∈ Trafo(EXP)

where trafo′ is defined by the extension diagram in Figure 2.

6

2.4 Transformation-Based Component Framework based on Pushouts

In the following subsections we present one possible formalization of the generic
component concept. There, the extension property corresponds to the existence of
specific pushouts in a categorical framework. This framework includes definition,
composition, and compositional semantics of components that have been consid-
ered in Ehrig et al. (2002) using only the extension property. For the purpose of
this paper however, it is sufficient to consider only those extension diagrams that
are defined by pushouts. In fact this is the case for both kinds of Petri net modules
considered as instantiations in the subsequent sections.

Definition 1 (Transformation Framework T)
A transformation framework T = (Cat, I, E) consists of an arbitrary category and
two classes of morphisms I and E in Cat, called import and export morphisms,
that are closed under composition.
Moreover the following extension conditions have to hold:

(1) E-I-Pushout Condition:
Given the morphisms A

e−→ B with e ∈ E and A
i−→ C with i ∈ I, then

there exists the pushout D in Cat with morphisms B
i′−→ D and C

e′−→ D as
depicted below.

A

i
��

e ��

(1)

B

i′
��

C e′
�� D

(2) E and I are stable under pushouts:
Given a E-I-pushout as (1) above, then we have i′ ∈ I and e′ ∈ E as well.

�

Accordingly we have to require for a component that the import and export con-
nection are of the right class of morphisms.

Definition 2 (Component)
A component COMP = (IMP, EXP, BOD, imp, exp) is given by objects
IMP, EXP , and BOD in Cat and by morphisms exp : EXP → BOD and
imp : IMP → BOD, so that exp ∈ E and imp ∈ I. �

7

2.5 Composition of Components

Several different operations on components can be considered in our generic frame-
work. For the sake of simplicity we subsequently consider merely one basic opera-
tion that allows composing components COMP1 and COMP2. It provides a con-
nector, connect : IMP1 → EXP2 from the import interface IMP1 of COMP1 to
the export interface EXP2 of COMP2. Similar to an export connection we require
the connector to define a transformation connect : IMP1 → EXP2 uniquely.
Now we are able to define the composition COMP3 = COMP1 ◦connect COMP2

as follows.

Definition 3 (Composition)
Given components COMPi = (IMPi, EXPi, BODi, impi, expi) for i ∈ {1, 2}
and a morphism connect : IMP1 =⇒ EXP2 in E the composition COMP3 of
COMP1 and COMP2 via connect is defined by

COMP3 = (IMP3, EXP3, BOD3, imp3, exp3)

with imp3 = imp′1 ◦ imp2 and exp3 = xconnect′ ◦ exp1 as depicted below, where
(1) is pushout diagram :

EXP3 = EXP1

exp1

��
IMP1

imp1 ��

connect
��

(1)

BOD1

xconnect′

��

EXP2

exp2

��
IMP3 = IMP2

imp2 �� BOD2
imp′1 �� BOD3

The composition is denoted by COMP3 = COMP1 ◦connect COMP2. �

Since we have IMP3 = IMP2 and EXP3 = EXP1, this means especially that
the result of the composition concerning the interfaces is independent of the body
parts.

Here, we merely give the composition of one import to one export via the trans-
formation connect. A simple way to obtain different imports related to different
exports employs the disjoint union of components. Another possibility is using
connector architectures as suggested in Ehrig et al. (2004).

Lemma 1 (Composition)
COMP3 is a well-defined component in the sense of Definition 2. �

8

Proof: The pushout construction (1) above exists due to the E-I pushout con-
dition in Definition 1. As both exp2 and connect are in E , so is the composition
exp2 ◦ connect. Stability of Pushouts under E and I implies xconnect′ ∈ E
and imp′1 ∈ I. Since E and I are closed under composition we obtain
exp3 = xconnect′ ◦ exp1 ∈ E and imp3 = imp′1 ◦ imp2 ∈ I.

√

Note that each connector connect : IMP1 → EXP2 can also be considered as a
separate component COMP12 with exp12 = connect and imp12 = idEXP2 . This
allows to consider COMP3 in Definition 3 as the composition of three components
COMP1, COMP12 and COMP2, where all connectors are identities. Of course
this requires that the corresponding identities are in I and E .

2.6 Compositional Transformation Semantics

Compositional semantics means that the semantics of the composition of two com-
ponents can be obtained by composing the semantics of the simple components.
This is a most important property for a component concept.

Stated informally, we have for a connector, connect : IMP1 → EXP2, between
IMP1 of COMP1 and EXP2 of COMP2, that the composition COMP3 of these
components via connect is well-defined. As motivated in Section 2.4 let us rephrase
the transformation semantics of components in our categorical framework using
pushouts.

Definition 4 (Transformation Semantics of Components)
Given a component COMP = (IMP, EXP, BOD, imp, exp) its transforma-
tion semantics is given by the function TrafoSem(COMP) : Trafo(IMP) →
Trafo(EXP) defined for all trafo ∈ Trafo(IMP) by

TrafoSem(COMP)(trafo) = trafo′ ◦ exp ∈ Trafo(EXP)

where trafo′ is defined by the pushout diagram (1) below:

EXP
exp

��
IMP

trafo

��

imp ��

(1)

BOD

trafo′
��

SPEC
imp′ �� SPEC ′

(1) exists due to Definition 1 with trafo′ ∈ E and hence trafo′ ◦ exp ∈ E as well.
�

9

We now obtain the following compositionality result.

The transformation semantics of the composition can be obtained by functional
composition of the transformation semantics of COMP1 and COMP2 with a most
simple intermediate function

Trafo(connect) : Trafo(EXP2) → Trafo(IMP1)

where Trafo(connect)(trafo) = trafo ◦ connect.

More precisely we have the following.

Theorem 1 (Compositional Transformation Semantics)
Given a composition of components COMP3 = COMP1 ◦connect COMP2 as
shown in Definition 3 then we have the following compositionality property:

TrafoSem(COMP3) =
TrafoSem(COMP1) ◦ Trafo(connect) ◦ TrafoSem(COMP2) �

Proof: Given a transformation trafo1 : IMP3 =⇒ SPEC1 we consider Figure
3, where diagram (3) is a pushout by definition of COMP3 in Definition 3. (1) and
(2) are constructed as pushouts according to Definition 1.

EXP3 = EXP1

exp1

��
IMP1

imp1 ��

connect
��

(3)

BOD1

xconnect′

��

EXP2

exp2

��
IMP3 = IMP2

imp2 ��

trafo1

��
(1)

BOD2
imp′1 ��

trafo2

��
(2)

BOD3

trafo3

��
SPEC1

�� SPEC2
�� SPEC3

Fig. 3. Compositional Transformation Semantics

Due to the composition property of pushouts we have that also the horizontal com-
position (1)+(2) and the vertical composition (2)+(3) are pushouts.
We have to show

TrafoSem(COMP3)(trafo1) =

TrafoSem(COMP1) ◦ Trafo(connect) ◦ TrafoSem(COMP2)(trafo1) .

(4)

10

Using imp3 = imp′1 ◦ imp2, exp3 = xconnect′ ◦exp1 and diagram (1)+(2) we have

TrafoSem(COMP3)(trafo1) = trafo3 ◦ xconnect′ ◦ exp1 . (5)

Concerning the right hand side of (4) we have TrafoSem(COMP2)(trafo1) =
trafo2 ◦ exp2 and hence

TrafoSem(COMP1) ◦ Trafo(connect) ◦ TrafoSem(COMP2)(trafo1) =

TrafoSem(COMP1) ◦ Trafo(connect)(trafo2 ◦ exp2) =

TrafoSem(COMP1)(trafo2 ◦ exp2 ◦ connect) =

trafo3 ◦ xconnect′ ◦ exp1 ,

(6)
where the last step uses diagram (2)+(3).
Now (4) follows immediately from (5) and (6).

√

3 Petri Net Modules

In this section we show that Petri net modules can be considered as an instantiation
of the transformation-based component approach.

First, we introduce Petri net modules as given in Padberg (2001, 2002). In Subsec-
tion 3.2 we then show, that Petri net modules give rise to a transformation frame-
work TPN of Petri net modules as an instantiation of the categorical framework.
The main technical result of this section is that the conditions given for this cate-
gorical formulation of the transformation framework are satisfied (in Theorem 2).
The main results composition and compositional semantics are obtained by instan-
tiation of the results stated in the previous section. Next Subsection 3.3 we illustrate
the semantics of Petri net modules that has not been given in Padberg (2001, 2002).

3.1 Basic Ideas of Petri Net Modules

First we give a short intuition of the underlying basics. Here we use the algebraic
notion of Petri nets as introduced in Meseguer and Montanari (1990). Hence a
place/transition net is given by a set of transitions, a set of places and pre- and post

domain functions N = T
pre ��
post

�� P⊕, where P⊕ is the free commutative monoid

over P . P⊕ also can be considered as the set of finite multisets over P . The pre-
(and post-) domain function maps each transition into the free commutative monoid
over the set of places, representing the places and the arc weight of the arcs in

11

the pre-domain (respectively in the post-domain). An element w ∈ P ⊕ can be
presented as a linear sum w =

∑
p∈P λp · p or as a function w : P → N. We extend

the usual operations and relations on natural numbers to operations and relations
on linear sums namely ⊕, �, ≤, and so on. Moreover, we need to state how often
is a basic element within an element of the free commutative monoid given. We
define this for an element p ∈ P and a word w ∈ P⊕ with w|p = λp · p ∈ P⊕. For
P ′ ⊆ P we define w|P ′ =

∑
p∈P ′ λp ·p and w|fP (P) we abbreviate to w|fP

. The preset
of a transition •t = {p|pre(t)|p �= 0} and the postset t• = {p|post(t)|p �= 0} are
defined as usual. The firing of a transition M [t > M ‘ is computed by M ′ = (M �
pre(t))⊕ post(t) provided the transition is enabled, that is M ≥ pre(t). The set of
all markings reachable from M is given by [M >= {M ′ |M [t1 > ...[tn > M ′}.

Definition 5 (Place/Transition Nets)
A place/transition net is given by N = (P, T, pre, post, M̂) with P the set of

places, T the set of transitions, pre, post : T → P ⊕ the pre- and post-domain of
transitions. M̂ ∈ P⊕ describes the initial marking. �

Morphisms are the basic entity in category theory; they relate the objects of the
category and hence present its internal structure . So they are the basis for the struc-
tural properties a category may have and can be used successfully to define various
structuring techniques. Based on the algebraic notion of Petri nets in Meseguer
and Montanari (1990) we use simple homomorphisms that are generated over the
set of places. These morphisms map places to places and transitions to transitions.
Morphisms are essential for the notion of modules and the definition of module
operations. Two Petri net morphisms m : IMP → BOD and r : EXP � BOD
connect the interfaces to the body. The import morphism m is a plain morphism
and describes how and where the resources in the import interface are used in the
body. This morphism maps each place and transition in the import interface to its
counterpart in the body. The initial marking of the source net needs to be compati-
ble with the initial marking of the target net. Plain morphisms are presented by an
arrow →.

Definition 6 (Plain Morphisms)
A plain morphism f : N1 → N2 between two place/transition nets Ni =
(Pi, Ti, prei, posti, M̂i) for i = 1, 2 is given by f = (fP , fT) with fP : P1 → P2

and fT : T1 → T2 so that:
pre2 ◦ fT = f⊕

P ◦ pre1 and
post2 ◦ fT = f⊕

P ◦ post1
Moreover, for the initial marking we require for all p ∈ P1:
M̂1(p) ≤ M̂2(fP (p))

This yields the category PT consisting of place/transition nets and plain mor-
phisms. �

12

It is well-known that plain morphisms f : N1 → N2 preserve the firing behavior of
nets, i.e. for each firing step M1[t1 > M ′

1 in N1 we have a corresponding firing step
M2[t2 > M ′

2 where M2, M
′
2, t2 are the translations of M1, M

′
1, t1 via f respectively.

This means that the import morphism m : IMP → BOD preserves the firing
behavior of the import IMP , but the Petri net BOD has in general much more
places and transitions such that the firing behavior of BOD extends that of IMP .

The idea of the relationship between export EXP and body BOD presented by
an export morphism r : EXP � BOD is different. The intuitive idea of r is a
refinement from the export EXP to the body BOD. This means that the function-
ality and the firing behavior of EXP is an abstraction of functionality and firing
behavior of BOD. On purpose we do not require any explicit correspondence be-
tween the firing behaviors of EXP and BOD in order to allow the designer of a
Petri net module enough freedom to express a refinement relationship which is ad-
equate for his application area. The export morphism r is a substitution morphism
and describes how the functionality provided by the export interface is realized in
the body. This is done by mapping each part of the export interface that represents
a certain functionality to the part of the body by which the functionality is realized.
Substitution morphisms map places to places as well. But they can map a single
transition to a whole subnet. So first we need to make precise what a subnet is.

Definition 7 (Subnets)
Given a place/transition net N = (P, T, pre, post, M̂) then a subnet of N is given
by N ′ = (P ′, T ′, pre′, post′) – written N ′ ⊆ N – if and only if P ′ ⊆ P and
T ′ ⊆ T as well as for pre- and postdomain functions pre′(t) = pre(t)|P ′ and
post′(t) = post(t)|P ′ for all t ∈ T ′.
The set of all subnets of N is given by

P(N) := {N ′|N ′ ⊆ N}
�

Note that we omit the initial marking of the subnet, since we use subnets always in
relation to the given net N .

The basic idea is that substitution morphisms substitute a transition by a net. These
morphisms capture a very broad idea of refinement and hence are adequate for the
relation between the export net and the body net. The initial marking has to satisfy
the same condition as for plain morphisms. Subsequently substitution morphisms
are presented by an undulate arrow �.

We are convinced that our notion of substitution morphism, defined below, is flex-
ible enough to express different kinds of refinement relationships between export
and body as needed in different application areas. In this sense we assume that a
substitution morphism r : EXP � BOD defines a refinement of the firing behav-
ior of EXP by that of BOD.

13

Definition 8 (Substitution Morphism)
A substitution morphism f : N1 � N2 between two place/transition nets N1 and
N2 is given by f = (fP , fT) with fP : P1 → P2 and fT : T1 → P(N2) where for
each t ∈ T1 there is fT (t) := N t

2 ⊆ N2 with N t
2 = (P t

2, T
t
2, pre

t
2, post

t
2) so that

fP (•t) ⊆ P t
2 and

fP (t•) ⊆ P t
2

Moreover, for the initial marking we require M̂1(p) ≤ M̂2(fP (p)) for all p ∈ P1.

The composition of substitution morphisms f : N1 � N2 and g : N2 � N3 is
given by g ◦ f := (gP ◦ fP , gT ◦ fT),

where gT ◦ fT : T1 → P(N3) is defined by gT ◦ fT (t) :=
⋃

x∈T t
2
Nx

3

for fT = N t
2 = (P t

2, T
t
2, pre

t
2, post

t
2) and gT (x) = Nx

3 for x ∈ T t
2

Since all Nx
3 ⊆ N3 this construction is well defined.

This yields the category PTS consisting of place/transition nets and substitution
morphisms. �

This definition merely requires that the pre- and postset of the mapped transition
have to be part of the targeted subnet through the mapping fP . It allows for example
morphisms that are partial on the transitions (T t

2 = ∅), plain morphisms(|T t
2| = 1),

or morphisms, where each transition is mapped to the entire target net (fT (t) =
N2).

An example of a substitution morphism can be found in Figure 5, where the mor-
phism EXP � BOD is a substitution morphism. It maps places a and b in EXP
to the places a and b in BOD. The transition z in EXP is mapped to the subnet of
BOD consisting of places a, b, c, and d and the transitions v, w, and x. The transi-
tion y in EXP is mapped to the subnet of BOD consisting of places a and b and
the transition u.

Next we relate plain and substitution morphisms. Therefore we define the net of a
transition as the net surrounding t given by t and its adjacent places.

Definition 9 (Net of a Transition)
Given a transition t ∈ T for some net N = (P, T, pre, post, M̂), then net(t) the
net surrounding t is given by :

net(t) := (P t, T t, pret, postt)

with
P t = •t ∪ t•,
T t = {t}, and
pret : T t → P t⊕ with pret(t) = pre(t), and
postt : T t → P t⊕ with postt(t) = post(t). �

14

The subsequent lemma states that plain morphisms can be considered as a special
case of substitution morphisms, that substitute a transition t by a subnet contain-
ing exactly one transition. The subnet is given by the net of the target transition
net(fT (t)).

Lemma 2 (Plain Morphisms and Substitution Morphisms)
Each plain morphism f : N1 → N2 given by f = (fP , fT) can be expressed as
a substitution morphism f ′ : N1 � N2 given by f ′ = (fP , f ′

T) where f
′
T (t) =

net(fT (t)), and we have the inclusion functor I : PT → PTS, with I(f) := f ′.

Moreover, if a substitution morphism f : N1 � N2 given by f = (fP , fT) has for
all t ∈ T1 fT (t) = net(t′) for some t′ ∈ T2 so that f⊕

P (pre1(t)) = pre2(t
′) and

f⊕
P (post1(t)) = post2(t

′) then it is plain with fT (t) := t′. �

Proof is trivial.

Note that we omit the inclusion functor when plain morphisms in PTS are used.

Next we define Petri net modules as in Padberg (2001, 2002). We use this name as
this notion of module can easily be transferred to any variant of Petri nets. In order
to conform with the transformation-based component concept we restrict the plain
morphism m : IMP → BOD to be injective 1 .

Definition 10 (Petri Net Module)
A Petri net module MOD = (IMP, EXP, BOD, m, r) is given by three
place/transition nets IMP, EXP , and BOD that are related by morphisms; a
plain injective morphism m : IMP → BOD, and a substitution morphism
r : EXP � BOD as depicted in Figure 4.

EXP

r

�� ��
��
��

IMP
m �� BOD

Fig. 4. Petri Net Module
�

In the black box view of a Petri net module MOD = (IMP, EXP, BOD, m, r)
only the import net IMP and the export net EXP are visible, while the net BOD
and the morphisms m and r are hidden. This black box view is sufficient to con-
nect different Petri net modules via composition as defined below. The designer
of a Petri net module MOD, however, must have a white box view of MOD, i.e.

1 Here we require m to be injective, in Padberg (2001, 2002) we use arbitrary plain mor-
phisms in order to obtain union of modules as well.

15

all parts are visible, in order to define explicitly the body net BOD and the mor-
phisms m and r. For the semantics of MOD considered below we need a grey
box view of MOD, i.e. only IMP and EXP are visible explicitly, but we need
BOD, m an r in order to define the transformation semantics in the sense of Def-
inition 4. The distinction between black, white and grey bow view of modules or
components is well-known for software components (see Mann et al. (2000) and
Szyperski (1997)).

Example 1 (Simple Module MOD)
Figure 5 illustrates a very simple net module. The import describes a single tran-
sition and the plain morphism IMP → BOD is an inclusion. The export of the
module presents cyclic runs. The morphism EXP � BOD abstracts from the
more complex behavior of the body. The places a and b in EXP are mapped to a
and b in BOD. Transition z is mapped to the subnet including the places a, b, c, d
and the transitions v, w, x in BOD. Transition y is mapped to transition u. Hence,
the export is an abstraction of the body. The slightly more complex structure of the
cycle is hidden in the body.

EXP

a by

z

�� ��
��
��

a c

d

BOD

b

u

v

w

x

dc
IMP

w
��

Fig. 5. Example of a Simple Module

�

The composition of modules is one of the module operations defined in Padberg
(2001, 2002). From the practical point of view it is the most important one. The
composition describes the import of a module into another module. Composition
will be treated formally in the following subsection. Here, we merely give an ex-
ample to illustrate this operation.

16

Example 2 (Module Composition)
We illustrate the composition of modules in Figure 6 using the module
MOD = (IMP, EXP, BOD) from Example 1. and another module MOD ′ =
(IMP ′, EXP ′, BOD′, m′, r′). The export of this module is mapped to the body by
the substitution morphism mapping the transition p to the subnet consisting of the
places n, o, and m and the intermediate transitions. The import is empty and so is
the import morphism.

The connecting morphism IMP � EXP ′ is an isomorphism.

EXP

a by

z

�� ��
��
��

a c

d

BOD

b

u

v

w

x

�� ��
��
��

a

b

o

n

m

BOD’’

u

x

v

q

r

dc
IMP

w
��

�� ��
��
��

mn
EXP’

p

�� ��
��
��

IMP’ �� n m
q

o
r

BOD’
��

Fig. 6. Composition of Modules

The resulting module MOD′′ = MOD � MOD′ = (IMP ′, EXP, BOD′′) is
constructed subsequently. The new body BOD′′ of the resulting module is the net
BOD, where the transition between the places c and d is replaced by the net be-
tween the places n and m in the net BOD′. So, BOD′′ can be considered as the
gluing of BOD and BOD′ along the net IMP .

17

Multiple interfaces could be obtained by having unconnected subnets in the import
as well as in the export. This requires merely the disjoint union of nets, i.e. the
coproduct In the category PTS. Another possibility is the explicit treatment of
multiple interfaces as introduced for connector architectures in Ehrig et al. (2004).

�

3.2 Transformation Framework TPN of Petri Net Modules

To define the transformation framework TPN we need a class of transformations,
which includes identical transformations, is closed under composition and satisfies
the extension property. Substitution morphisms represent such a transformation.
Obviously there are identities and composition. The extension property holds as
there are pushouts of plain, injective morphisms and substitution morphisms.

We use the categorical version as given in Subsection 2.4.

Definition 11 (Classes I and E)
We have the class I consisting of plain, injective morphisms and the class E con-
sisting of substitution morphisms, i.e. I = I(MonoPT) and E = MorPTS. �

Lemma 3 (Pushouts of Plain, Injective and Substitution Morphisms)
In the category PTS we have pushouts for plain, injective morphisms f : N0 → N1

and substitution morphisms g : N0 � N2. �

Proof: Given an injective, plain morphism f : N0 → N1 and a substitution mor-
phism g : N0 � N2 then we have the pushout (N3, f

′, g′)

N0
f ��

g

����
��
��

(1)

N1

g′
����
��
��

g′′

��

�� �� �	
� � �� ��
��
��
��
��
��
�� �� ! ! "# "#��$%

N2
f ′

��

f ′′ ��

&' �� () *+ �� �� �
� �	 �� �� ,- ./ 01 23 23 45 67 89 89 :; <= <= >? >? @A BC

N3

h

���
�

�
�

N4

N3 := (P3, t3, pre3, post3, M̂3) is given by

• P3 = P1 +P0 P2 is a pushout in Set,
• T3 := (T1 \ fT (T0)) � T2,

hence we have: t3 ∈ T3 implies t3 ∈ T1 xor t3 ∈ T2, (*)

• pre3 =

⎧⎨
⎩

g′
P (pre1(t3)) ; t3 ∈ T1

f ′
P (pre2(t3)) ; t3 ∈ T2

post3 is defined analogously.

18

• The initial marking M̂3 is defined by
M̂3 =

∑
p∈P3

M̂3|p. And M̂3|p is given by:

M̂3|p =

⎧⎪⎪⎨
⎪⎪⎩

f ′
P
⊕(M̂2|p2

) ; p = fP
′(p2) and p �∈ g′

P (P1)

g′
P
⊕(M̂1|p1) ; p = g′(p1) and p �∈ g(P2)

max(f ′
P
⊕(M̂2|p2

), g′
P
⊕(M̂1|p1

)) ; p = g′(p1) = fP
′(p2)

with max(λ1p, λ2p) = max(λ1, λ2) · p.

The morphisms are given by f ′ = (fP
′, f ′

T) and g′ = (g′
P , g

′
T).

fP
′ and g′

P are defined by the pushout P3.
f ′

T and g
′
T are given below :
f ′

T : T2 → P(N3) with
f ′

T (t) = (f ′
P , incT2)(net(t))

So f ′ is plain (see Lemma 2)
and can be considered to be f ′ = (f ′

P , incT2). (**)
g

′
T : T1 → P(N3) with

g
′
T (t) =

⎧⎨
⎩

f ′(gT (t0)) ; t = fT (t0)

(g′
P , incT1)(net(t)) ; t /∈ fT (T0)

f ′ and g′ are well-defined due to the definition of pre3 and post3.

It remains to prove the universal property:
Given f

′′
T : N2 � N4 and g

′′
T : N1 � N4 such that g

′′
T ◦ f = f

′′
T ◦ g.

Then we define the unique h : N3 � N4 where hP : P3 → P4 is uniquely induced
by the pushout P3 in Set.
And we define h : T3 → P(N4) with

h(t) =

⎧⎨
⎩

f
′′
T (t) ; t ∈ T2

g
′′
T (t) ; t ∈ T1

h is well defined due to (∗) and because:
for t ∈ T1 we have: hP (•t) = hP ◦ g′

p(
•t) = g′′

p(
•t) ∈ P t

4

for t ∈ T2 we have: hP (•t) = hP ◦ f ′
p(

•t) = f ′′
p (•t) ∈ P t

4

√

The next lemma states that plain, injective morphisms are preserved under
pushouts. Trivially, so are substitution morphisms.

Lemma 4 (Pushout-Stable Morphism Classes I and E)
Given a pushout (N3, f

′, g′) of an injective, plain morphism f : N0 → N1 and a
substitution morphism g : N0 � N2 then we have f ′ ∈ I and g′ ∈ E:

N0
f ��

g

����
��
��

(1)

N1

g′
����
��
��

N2
f ′

�� N3
�

19

Proof: Follows directly for morphisms in class I from (**) in proof of Lemma 3
and for morphisms in E from E = MorPTS .

√

Theorem 2 (Transformation Framework TPN)
Given

• PTS the category of place/transition nets with substitution morphisms,
• I = I(MonoPT) the class of plain, injective morphisms, and
• E = MorPTS the class of substitution morphisms.

then we have a transformation framework as in Definition 1, called transformation
framework TPN = (PT, I, E) of Petri net modules. �

Proof:

(1) E-I-Pushout condition holds due to Lemma 3.
(2) E and I are stable under pushouts due to Lemma 4.

√

By instantiation of the general theory in Subsections 2.4 – 2.6 we obtain the subse-
quent results.

Results 1 (Composition and Compositional Semantics of Petri Net Modules)
For the transformation framework TPN of Petri net modules we have the following
results:

• Composition of Petri net modules as given by instantiation of Definition 3 and
Lemma 1. The composition has been illustrated in Example 2.

• Compositional semantics of Petri net modules as given by instantiation of Defi-
nition 4 and Theorem 1. Examples are discussed in the subsequent section.

�

3.3 Interpretation and Examples for the Semantics of Petri Net Modules in the
Transformation-Based Framework

The transformation framework TP N of Petri net modules in the previous section
provides Petri net modules with a transformation-based semantics, while semantics
has not been yet defined in Padberg (2001, 2002). So in the subsequent subsection

20

we employ the semantics of the transformation-based framework.

According to Figure 2 the transformation semantics of the component COMP
is a function TrafoSem(COMP) : Trafo(IMP) → Trafo(EXP) defined for
all trafo ∈ Trafo(IMP), by TrafoSem(COMP)(trafo) = trafo′ ◦ exp ∈
Trafo(EXP).

This means that the transformation-based semantics of a Petri net module MOD =
(IMP, EXP, BOD, m, r) is given by a fuction TrafoSem(MOD) which maps
each import substitution morphism trafo : IMP � N to a corresponding export
substitution morphism trafo′ ◦ r : IMP � N ′. According to Section 3.1 the idea
of a substitution morphism f : N1 � N2 is a refinement of the firing behavior
of N1 by that of N2. This means that TrafoSem(MOD) maps each refinement
of the firing behavior of the import net IMP given by trafo : IMP � N to a
corresponding refinement of the firing behavior of the export net EXP given by
trafo′ ◦ r : EXP � N ′. In fact, if MOD is composed with MOD′ via a sub-
stitution morphism connect : IMP � EXP ′ we obtain a substitution morphism
r′◦connect : IMP � BOD′. This means composition of MOD leads in a natural
way to different substitution morphisms trafo : IMP � N . The transformation-
based semantics of MOD reflects how each refinement trafo : IMP � N of the
firing behavior of IMP leads to a corresponding refinement of the firing behavior
of EXP given by trafo′ ◦ r : EXP � N ′. The following examples illustrate
these semantical concepts.

Example 3 (Transformation Semantics of the Simple Module MOD)
The transformation semantics of the simple module MOD is given by:

TrafoSem(MOD) : Trafo(IMP) → Trafo(EXP)

where Trafo(IMP) is the set of substitution morphisms from IMP to some re-
fined net N and accordingly Trafo(EXP) the set of substitution morphisms from
EXP to some refined net N ′.
This semantics maps substitution morphisms from the import net to corresponding
substitution morphisms from the export net as defined by TrafoSem(MOD).
Below you find two examples:

• On the left-hand side of the Figure 7 we have the substitution morphism from
the import IMP of the simple module MOD as given in Figure 5 to the net N1.
It maps the transition w to the sub-
net consisting of the places c, d, e and
the transitions t, u. This morphism is
mapped to the substitution morphism on
the right-hand side of the Figure 7 and
has been achieved by the construction of
pushout (1) to the right.

EXP

����
��
��

IMP

����
��
��

��

(1)

BOD

����
��
��

N1 �� N1′

• On the left-hand side of the Figure 8 we have the substitution morphism from

21

�

�

�

�

dc
w

IMP

�� ��
��
��
��
��
��
��

c
u

d
t

e
N1

is mapped to:

�

�

�

�

EXP

a by

z

�� ��
��
��

a c

d

e

N1’

b

u

v

x

t

u

Fig. 7. Mapping of transformation semantics

the import IMP of the simple module MOD as given in Figure 5 to the net N2.
It maps the transition w to the sub-
net consisting of the places c, d and
the transitions r, s. This morphism is
mapped to the substitution morphism on
the right-hand side of the Figure 8 and
has been achieved by the construction of
pushout (2) to the right.

EXP

����
��
��

IMP

����
��
��

��

(2)

BOD

����
��
��

N2 �� N2′

�

�

�

�

dc
w

IMP

�� ��
��
��
��
��
��
��

dc

r

s

N2

is mapped to:

�

�

�

�

EXP

a by

z

����
��
��

a c

db

u

v

x

r s

N2’

Fig. 8. Mapping of transformation semantics

Examples for the compositional semantics look similar, but have been omitted due

22

to space limitations. �

4 Petri Net Modules Preserving Safety Properties

In this section we investigate Petri net modules with safety properties as intro-
duced in Padberg (2003). Here we give a concise review and relate them to the
transformation-based approach to components. These conform as well with the
transformation-based approach to components and in Theorem 3 we show that the
conditions given for this categorical formulation of the transformation framework
are satisfied. The main results concerning composition and a compositional seman-
tics are again obtained by instantiation of the results stated in the Section 2.

4.1 Safety Properties and Modules

First we formalize safety properties in order to formulate our theorems concerning
their preservation. We recall formulas over markings and their translations via mor-
phisms. An axiomatic expression is λp, denoting that λ ∈ N tokens are on place
p. We then can build logic formulae over such axioms, e.g. 4a =⇒ 2b formalizes
the statement that 4 tokens on place a imply 2 tokens on place b. Safety properties
describe invariants of the net behavior. Hence we use the henceforth operator � to
express that a formula shall hold for all reachable markings. The formula �a∨ b in
the export in Figure 9 states that one token is always either on place a or on place
b.

Definition 12 (Formulas, Safety Properties, Translations)
Given a place/transition net N = (P, T, pre, post, M̂) then λp is a static formula
for λ ∈ N and p ∈ P , static formulas are built up using the logical operators ∧
and ¬, deriving the other operators ∨, =⇒ etc. in the standard way.
Let ϕ be a static formula over N . Then �ϕ is called a safety property.

The validity of formulas is given w. r. t. the marking of a net. Let M ∈ P ⊕ be
an arbitrary marking of N then the formula λp holds in N under M written as
M |=N λp if and only if λp ≤ M in terms of linear sums. For M |=N ¬ϕ1 if and
only if ¬(M |=N ϕ1) and M |=N ϕ1∧ϕ2 if and only if (M |=N ϕ1)∧ (M |=N ϕ2).

The safety property �ϕ holds in N under M if and only if ϕ holds in all states
reachable from M: M |=N �ϕ if and only if ∀M ′ ∈ [M〉 : M ′ |=N ϕ. We also
write N |= �ϕ instead of M̂ |=N �ϕ if M̂ is the initial marking.

23

The translation of formulas Tf over N1 along a morphism f = (fP , fT) : N1 → N2

to formulas over N2 is given for atoms by Tf (λp) = λfP (p). The translation of
formulas is given recursively by Tf(¬ϕ) = ¬Tf (ϕ), and Tf(ϕ1 ∧ ϕ2) = Tf (ϕ1)∧
Tf (ϕ2), and Tf (�ϕ) = �Tf (ϕ)

�

We now have to ensure specific conditions that guarantee morphisms preserving
safety properties. Intuitively, the next definition requires substitution morphism to
be place preserving: Any transition of the target net that has a place of the source
net in its pre- or post-domain (i.e. there is an ingoing respectively an outgoing arc
between the transition and the place) needs to have a source transition in the source
net, so that the pre-domain and post-domain of the transition is preserved. In other
words this definition ensures that neither arcs may be deleted nor “new” arcs to
”old” places are allowed. Hence we have chosen the term place preserving.

Definition 13 (Place Preserving Substitution Morphism)
A substitution morphism f : N1 � N2 is called place preserving if for all t2 ∈ T2

with pre2(t2)|fP
⊕ post2(t2)|fP

�= ε we have:
There is some t1 ∈ T1, so that

t2 ∈ T t1
2 , where T t1

2 are the transitions of fT (t1) = N t1
2 ⊆ N2 and

f⊕
P (pre1(t1)) = pre2(t2)|fP

, and
f⊕

P (post1(t1)) = post2(t2)|fP
.

�

Clearly, to preserve safety properties the marking on the mapped places needs to
stay the same. Places that are not in the image of the morphism may be marked
arbitrarily.

Definition 14 (Marking Strict Substitution Morphism)
A substitution morphism f : N1 → N2 is called marking strict if

fP is injective, and
M̂1(p) = M̂2(fP (p))

�

An example of a substitution morphism that is marking strict and place-preserving
can be found in Figure 9. The morphism EXP1 � BOD1 is injective on the
places, it preserves the marking, and no “new” transitions are adjacent to “old”
places. The morphism EXP � BOD in Figure 5 is not place-preserving, but then
it does not preserve safety properties either.

The notion of place-preserving morphisms is quite restrictive. But in order to pre-
serve any safety property, we need to ensure that each transition of the target net has
no effect or the same effect as one of the original transitions on the places mapped
trough fP .

24

A substitution morphism that is place preserving and marking strict preserves safety
properties up to the renaming Tf induced by the morphism.

Lemma 5 (Safety Property Preserving Morphism)
Given a safety property �ϕ and a substitution morphism f : N1 � N2 that is place
preserving and marking strict then the following holds:

N1 |= �ϕ implies N2 |= �Tf (ϕ)
Hence, such a morphism is called safety property preserving morphism.
Moreover, safety property preserving morphism are closed under composition. �

The proof is analogous to the proof of Fact 4.16 in Gajewsky et al. (1999). Al-
though the underlying morphism is different we can use the same argument, since
the conditions we use in Definition 13 correspond to Fact 4.13 in Gajewsky et al.
(1999).

Proof Sketch:
All transitions that are adjacent to a place being mapped from N1 to N2 have
a pre-image in N1 with the same arc weight to that place (Definition 13 and
Fact 4.13 in Gajewsky et al. (1999)). Hence we can prove inductively that these
morphisms reflect reachability (Fact 4.14 in Gajewsky et al. (1999)). By induction
over the structure of a static formula (without any temporal quantor) we show that
place preserving and marking strict preserve and reflect reachability (Fact 4.15
in Gajewsky et al. (1999)). Proving indirectly that whenever N2 violates a safety
property so does N1 (Fact 4.15 in Gajewsky et al. (1999)) concludes the proof.

√

This allows the definition of Petri net modules that preserve safety properties from
the export net to the body net 2 . As we desire a treatment of properties that is
independent of the body net, we can use safety property preserving morphisms to
relate the export net to the body net. If we require r : EXP → BOD to be safety
property preserving, then any safety property holding in EXP will be preserved.

Definition 15 (Petri Net Modules with Safety)
A module MOD = (IMP, EXP, BOD, m, r) where r : EXP → BOD is safety
property preserving is a called a Petri net module with safety. �

Using the result of Lemma 5 we can now conclude that those safety properties
�ϕ holding in the export net EXP must also hold in BOD. The safety properties
�Tr(ϕ) in BOD are translated along the morphism r : EXP → BOD.

2 In Padberg (2003) we have distinguished between implicit and explicit safety prop-
erties. Since only Petri net modules with implicit safety properties conform with the
transformation-based component approach, we drop that distinction here.

25

Corollary 1 (Translated Safety Properties)
Given a Petri net module MOD = (IMP, EXP, BOD) with safety then for any
safety property holding in the export net EXP |= �ϕ, the translated safety prop-
erty holds in the body BOD |= �Tr(ϕ). �

We now illustrate what happens to safety properties when we compose modules.
The main intention of this work is to simplify compositional reasoning by pre-
serving safety properties throughout the construction of modules. First we give an
example of a composition of modules with safety properties. Composition can also
be obtained by instantiation of the transformation-based approach in the subsequent
subsection.

Example 4 (Composition of Modules)
An example of a composition is illustrated in Figure 9. There is a module MOD1 =
(IMP1, EXP1, BOD1, m1, r1) with safety. The safety property �a ∨ b is stated
explicitly in the export of module MOD1. It states the fact that the token is on
place a or on place b. This can be seen immediately. In fact, the property could be
formulated even stronger using an “exclusive or”.

The morphism EXP1 � BOD1 is safety property preserving: It is injective on
the places and marking-strict because on the places a and b are no new tokens. And
it is place-preserving as there are only transitions adjacent to the places a and b in
BOD1 that are adjacent to the places a and b in EXP1 as well.

The module MOD2 = (IMP2, EXP2, BOD2) is a module with safety as well.
The resulting module MOD3 = MOD1�MOD2 = (IMP2, EXP1, BOD3) is
constructed subsequently.

The new body BOD3 of the resulting modules is the net BOD1, where the tran-
sition between the places c and d is replaced by the net between the places c and
d in the net BOD2. So, BOD3 can be considered as the gluing of BOD1 and
BOD2 along the net IMP1. The resulting module MOD3 = MOD2�MOD1 =
(IMP2, EXP1, BOD3) is a module with safety because the morphism EXP1 �

BOD3 is safety property preserving.

26

EXP1

a b

a bv

�� ��
��
��

BOD1

a b

dc

a bv

dc
IMP1 ��

����
��
��

EXP2
c d

����
��
��

c d

BOD2

e f
��

�� ��
��
��
��
��
��
��

c de f

BOD3

a b

a bv

e
IMP2

��

Fig. 9. Example for Composition
�

4.2 Transformation Framework TPNSafe
of Petri Net Modules with Safety

To define the transformation framework TPNSafe
we again have the class I consist-

ing of plain, injective morphisms. In this case the class E consists of safety property
preserving morphisms.

27

Lemma 6 (Pushouts are Stable under Safety Property Preserving Morphisms)

Given a pushout as in Lemma 3. Then we have:
g is safety property preserving implies that g ′ is safety property preserving.

�

Proof: We have to show that g′ is safety property preserving if g is safety property
preserving:

(1) g′ is place preserving:
Let ε �= pre3(t) ≥ p3 for some p3 ∈ g′

P (P1).
Then there are two cases as t ∈ T1 xor t ∈ T2.
(a) t ∈ T1:

Since T3 := (T1 \ fT (T0)) � T2 we conclude t /∈ fT (T0).
Due to the definition of g

′
T : T1 → T2 we have g

′
T (t) = (g′

P , idT1)(net(t)).
Due to the definition of net(t) we conclude:
pre3(t) = g′⊕

P (pre1(t)) and post3(t) = g′⊕
P (post1(t)).

And hence:
pre3(t)|g′

P
= g′⊕

P (pre1(t)) and post3(t)|g′
P

= g′⊕
P (post1(t)).

(b) t3 ∈ T2:
This implies some p2 ∈ P2 and some p1 ∈ P1 with f ′

P (p2) = p3 =
g′

P (p1).
Due to the pushout properties of P3 there is some p0 ∈ P0 with fP (p0) =
p1 and gP (p0) = p2.
As gP is place-preserving we know there is some t0 ∈ T0 with t ∈ T t0

2 so
that

pre2(t)|gP
= g⊕

P (pre0(t0)), and
post2(t)|gP

= g⊕
P (post0(t0)).

By definition of g
′
T with g

′
T (fT (t0)) = f ′

T ◦ gT (t0) there is fT (t0) ∈ T1

with t ∈ T
fT (t0)
3 .

We now conclude:
pre3(t)|g′P = fP

′⊕(pre2(t))|g′P
= fP

′⊕(pre2(t)|gP
)

= fP
′⊕(g⊕

P (pre0(t0))
= g′

P
⊕(f⊕

P (pre0(t0))
= g′

P
⊕(pre1(fT (t0))

and the same for :
post3(t)|g′P = fP

′⊕(post2(t))|g′P
= fP

′⊕(post2(t)|gP
)

= fP
′⊕(g⊕

P (post0(t0))
= g′

P
⊕(f⊕

P (post0(t0))
= g′

P
⊕(post1(fT (t0))

28

(2) g′ is marking strict:
g′

P is injective, as gP is injective and pushouts in Set preserve injective mor-
phisms.
Moreover, we need to show M̂3|g′P = g′

P
⊕(M̂1):

We only need to investigate p3 ∈ g′
P (P1).

We then have two cases:
(a) M̂3|g′P = g′

P
⊕(M̂1) for p3 ∈ P3 \ f ′

P (P2),
(b) and for p3 = g′

P (p1) = f ′
P (p2) we have:

M̂3|g′P = max(f ′
P
⊕(M̂2|p2

), g′
P
⊕(M̂1|p1

)) = g′
P
⊕(M̂1)

due to the following estimation:

g′
P
⊕(M̂1|fP (p0)) ≥ g′

P
⊕ ◦ f⊕

P (M̂0|p0)

= f ′
P
⊕ ◦ g⊕

P (M̂0|p0)

= f ′
P
⊕(M̂2|2)

√

The following theorem relates the results from Padberg (2003) to those in Ehrig
et al. (2002) and yields the new ones as stated in the Results 2 below.

Theorem 3 (Transformation Framework TPNSafe
)

Given

• PTS the category of place/transition nets with substitution morphisms,
• I the class of plain, injective morphisms, and
• E the class of safety property preserving morphisms

then we have a transformation framework, called the transformation framework
TPNSafe

= (PTS, I, E) of Petri net modules with safety. �

Proof:

(1) E-I-Pushout condition holds due to Lemma 3.
(2) E and I are stable under pushouts due to Lemma 6 and Lemma 4.

√

By instantiation of the general theory in Subsections 2.4 – 2.6 we have the following
results.

29

Results 2 (Composition and Semantics of Petri Net Modules with Safety)
For the transformation framework TPNSafe

of Petri net modules with safety we have
the following results:

• Composition of Petri net modules with safety as given by instantiation of Defini-
tion 3 and Lemma 1. The composition has been illustrated in Example 4.

• Compositional semantics of Petri net modules with safety as given by instantia-
tion of Definition 4 and Theorem 1.

�

5 Discussions

To round up this paper we continue with a discussion of the relation to components
based on Petri nets and net transformations in Ehrig et al. (2002). Subsequently,
we present our case study on Petri net modules in Padberg and Buder (2001) and
discuss the main insights.

5.1 Relation to High-Level Replacement Systems Approach

An alternative approach to the Petri net modules in this paper has been presented in
Ehrig et al. (2002) where Petri net transformations have been considered as instan-
tiations of high-level replacement systems, short HLR-systems. HLR-systems have
been introduced in Ehrig et al. (1991) as an abstraction of graph transformation sys-
tems. This abstraction is obtained by defining HLR-systems for any category Cat
using double-pushout transformations in Cat instead of the category of graphs. In
this approach a rule consists of three objects and two morphisms L ← K → R. A
direct transformation of an object N according to a rule is given by a context object
C and a morphism K → C, such that M becomes a pushout object for diagram
(1) in Figure 10. This means that N can be obtained by gluing C and L over K.
The result of the direct transformation is then given by M is a pushout object for
diagram (2).

L

��
(1)

K

��

�� ��

(2)

R

��
N C�� �� M

Fig. 10. Double-Pushout Transformation

This HLR-approach has been applied to Petri nets in our paper Padberg et al.
(1995) leading to the notion of net transformation systems. Instantiated to Petri

30

nets, Figure 10 defines a direct net transformation from net N → M via a net
rule p : (L ← K → R). A net transformation is defined to be sequence of di-
rect net transformations via rules p1, ..., p2. This makes sure that net transforma-
tions are closed under composition. Embeddings i : N → N ′ in the sense of the
generic transformation concept presented in Section 2.2 are defined as inclusion
morphisms.

The main question in view of the generic transformation concept is now the va-
lidity of the extension property. In fact, the extension diagram corresponds to the
Embedding Theorem well-known in the theory of graph transformation and HLR-
systems. Actually, the Embedding Theorem allows the extension of a transforma-
tion along an embedding, but it requires that the boundary points of the embedding
are preserved by the transformation. The boundary points of a graph embedding
f : G → G′ are all those nodes v in G such that f(v) is source or target of an
edge e ∈ G′ − f(G). This means that the extension property for HLR-systems
and hence for net transformation systems is not satisfied in the strict form stated
in Section 2.2 but only in a weaker form, where the embedding is consistent with
the transformation as discussed above. This case is studied in detail in Ehrig et al.
(2002) mentioned above. Especially this weaker version of an extension diagram is
in general not a pushout as required in our categorical version of the transformation
framework in this paper. Hence the component framework based on HLR-systems
instantiated to Petri nets is not a special case of the Petri net modules in this paper.

Vice versa the substitution morphisms of Petri net modules in this paper can be
considered as transformations, where the rules might correspond to substitutions of
single transitions. In some examples this is the case (see the substitution morphism
in Figure 5), but in general substitution morphisms cannot be considered rule-based
transformations.

The advantage of Petri net modules based on substitution morphisms in contrast
to Petri net components based on net transformations is the fact that the extension
property holds without additional consistency condition. This implies that compo-
sition of Petri net modules is always well-defined, while in the case of Petri net
components a consistency condition has to be checked. Moreover, Petri net mod-
ules are defined for marked Petri nets, while the HLR-approach has been instanti-
ated to unmarked Petri nets only. Vice versa the HLR-approach has been considered
for low-level and high-level Petri nets already, but it is still open to generalize the
approach in this paper to high-level Petri nets.

Finally let us note that the preservation of safety properties has been considered
in both approaches based on place preserving morphisms. Moreover, in the HLR-
approach also the preservation of liveness properties has been studied.

31

5.2 Case Study

Let us present the main insights of a case study presented in Padberg and Buder
(2001). The case study models a simple version of a fully automated call center of
a phone company featuring basic services for enquiring about telephone numbers
of other telephone subscribers as well as for recording and delivering messages to a
given phone number at a time specified by the customer. The customer may choose
from a selection of modes for payment (like paying by credit card, by telephone bill
etc.) and he can query his balance if he has an account with the operator company of
the call center. The services of the call center are only available in a specific area (a
city, a country etc.). The main focus of this case study has been the question whether
the new structuring technique of Petri net modules can be applied reasonably to
a larger example. Since the emphasis of this case study is the structuring of the
system with Petri net modules and not in the realistic and accurate modeling of
the call center, place/transition nets are used instead of some more expressive high-
level Petri net type. Moreover the case study is limited to the user/system-interface
of the call center and neglects the underlying technical details of the call center.

In the case study as given in Padberg and Buder (2001) the modules comprising
the telecom service center are presented. The order of presentation is roughly top-
down, beginning with the overall system and ending with the modules that pro-
vide basic functions such as announcing system messages to the user. Here we can
merely give a short summary focusing the topmost level and its construction.

The development of the case study has clearly shown that the concept of Petri net
modules Padberg (2001, 2002) is applicable for structuring large and complex net
models. The main advantages of this approach are:

• The 1-to-1 correspondence to component concepts in the sense of Weber (1999);
Mann et al. (2000) :
As the underlying paradigms are essentially the same Petri net modules can di-
rectly be used to model the process view (operational behavior) of a component.

• The expressiveness of the interfaces:
The interfaces introduced in our approach are Petri nets, and not only nodes of
a net. Hence the export allows presenting an abstraction of the modules behav-
ior. And the import allows requiring a specific behavior of the modules to be
imported.

• The openness of the interfaces:
The import specifies what must be satisfied by the export interface of an imported
module. But it does not specify specific modules to be imported. Hence every
module is formally completely unrelated to other modules. So it can be easily
exchanged by another module as long as the export specifications are compati-
ble. The actual relations between the modules are established using the module
operations.

32

6 Conclusion

In this paper we have established the connection between the transformation-based
approach to components Ehrig et al. (2002) and Petri net modules Padberg (2002,
2003). First we have developed a formalization where we use the pushout construc-
tion to describe the extension property. We require two classes of morphisms for
export and import that are closed under composition. The category where we instan-
tiate the transformation-based approach has to have pushouts of these morphisms.
We have used for the instantiation of the transformation-based approach to compo-
nents the category of place/transition nets with substitution morphisms. There we
use the class of plain injections and the class of all substitution morphisms.

For Petri net modules with safety we have instantiated the transformation-based
approach in the same category but with different morphism classes: again the class
of plain, injective morphisms, but then the class of safety property preserving sub-
stitution morphisms. In both cases the instantiation yields composition of modules
and a compositional semantics. This semantics is the transformation semantics re-
lating each refinement of the import to a corresponding refinement of the export via
the body.

Future work comprises the following possibilities:

• Algebraic high-level net components:
Algebraic high-level nets can be considered to be place/transition net with an
additional data type description in terms of algebraic specifications. The algebra
is used to describe the tokens of a net and the terms over the signature are used
for the arc inscriptions. Plain morphisms in this paper correspond to morphisms
between algebraic high-level net except that those treat additionally the algebraic
specification. The concept of substitution morphisms can be easily transferred to
algebraic high-level nets because the main features of this morphisms concern
the net structure and not the arc inscriptions. It seems to be straightforward to
prove the conditions for the categorical formulation of the transformation-based
approach. Accordingly we can define algebraic high-level net components,
composition as well as a compositional transformation semantics.

• Further system properties to be preserved:
Especially liveness properties are of interest. For Petri net transformations we
have already been coping with morphisms that preserve liveness. In Padberg
and Urbášek (2002) a survey of those results is given comprising different kinds
of morphisms that preserve liveness and their properties concerning pushouts.
These notions of liveness preserving morphisms are likely to be suitable for the
export morphism. The resulting components should then preserve liveness in the
sense of modules with safety as introduced in this paper.

33

References

Battiston, E., Cindio, F. D., Mauri, G., 1988. OBJSA Nets: A Class of High-Level
Nets Having Objects as Domains. In: Rozenberg (Ed.), Advances in Petri Nets.
Lecture Notes in Computer Science 340, Springer, pp.20-43.

Battiston, E., Cindio, F. D., Mauri, G., Rapanotti, L., 1991. Morphisms and Mini-
mal Models for OBJSA Nets. In: 12th International Conference on Application
and Theory of Petri Nets, Lecture Notes in Computer Science 524, Springer,pp.
455–476

Broy, M., Streicher, T., 1992. Modular functional modelling of Petri nets with indi-
vidual tokens. Advances in Petri Nets, Lecture Notes in Computer Science 609,
Springer.

Buchholz, P., 1994. Hierarchical high level Petri nets for complex system analy-
sis. In: Application and Theory of Petri Nets. Vol. Lecture Notes in Computer
Science 815. Springer, pp. 119–138.

Christinsen, S., Hansen, N., 1994. Coloured Petri nets extended with channels for
synchronous communication. In: Application and Theory of Petri Nets. Vol. Lec-
ture Notes in Computer Science 815. Springer, pp. 159–178.

Deiters, W., Gruhn, V., June 1994. The FUNSOFT Net Approach to Software Pro-
cess Management. International Journal on Software Engineering and Knowl-
edge Engineering 4 (2), 229–256.

Desel, J., Juhás, G., Lorenz, R., 2000. Process semantics of Petri nets over partial
algebra. In: Nielsen, M., Simpson, D. (Eds.), Proceedings of the XXI Interna-
tional Conference on Applications and Theory of Petri Nets. Vol. Lecture Notes
in Computer Science 1825. Springer, pp. 146–165.

Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F., 1991. From graph gram-
mars to high level replacement systems. In: Lecture Notes in Computer Science
532. Springer Verlag, pp. 269–291.

Ehrig, H., Mahr, B., 1990. Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints. Vol. 21 of EATCS Monographs on Theoretical
Computer Science. Springer Verlag, Berlin.

Ehrig, H., Orejas, F., 2001. A Generic Component Concept for Integrated Data
Type and Process Specification Techniques. Tech. Rep. 2001/12, Technische
Universität Berlin, FB Informatik.

Ehrig, H., Orejas, F., Braatz, B., Klein, M., Piirainen, M., 2002. A generic compo-
nent concept for system modeling. In: Proc. FASE ’02. Lecture Notes in Com-
puter Science 2306. Springer.

Ehrig, H., Padberg, J., Orejas, F., Braatz, B., Klein, M., Perez, S., Pino, E., 2004.
A Generic Framework for Connector Architectures based on Components and
Transformations. In Proc. FESCA 2004, Satelite Event of ETAPS 2004.

Fehling, R., 1993. A concept of hierarchical Petri nets with building blocks. In:
Advances in Petri Nets’93. Lecture Notes in Computer Science 674, Springer,
pp. 148–168.

Gajewsky, M., Hoffmann, K., Padberg, J., 1999. Place Preserving and Transi-
tion Gluing Morphisms in Rule-Based Refinement of Place/Transition Systems.

34

Tech. Rep. 99-14, Technical University Berlin.
Gruhn, V., Thiel, A., 2000. Komponentenmodelle: DCOM, JavaBeans, Enterprise-

JavaBeans, CORBA. Addison-Wesley.
He, X., 1996. A Formal Definition of Hierarchical Predicate Transition Nets. In:

Application and Theory of Petri Nets. Lecture Notes in Computer Science 1091.
Springer, pp. 212–229.

Jensen, K., 1992. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use, EATCS Monographs in Theoretical Computer Science Edition. Vol. 1:
Basic Concepts. Springer Verlag.

Kindler, E., 1995. Modularer Entwurf verteilter Systeme mit Petrinetzen. Ph.D.
thesis, Technische Universität München, Institut für Informatik.

Mann, S., Borusan, B., Ehrig, H., Große-Rhode, M., Mackenthun, R., Sünbül, A.,
Weber, H., 2000. Towards a component concept for continuous software engi-
neering. Tech. Rep. 55/00, FhG-ISST.

Meseguer, J., Montanari, U., 1990. Petri Nets are Monoids. Information and Com-
putation 88 (2), 105–155.

Padberg, J., 2001. Place/Transition Net Modules: Transfer from Algebraic Specifi-
cation Modules. Tech. Rep. TR 01-3, Technical University Berlin.

Padberg, J., 2002. Petri net modules. Journal on Integrated Design and Process
Technology 6 (4), 105–120.

Padberg, J., 2003. Safety properties in Petri net modules. In: Proc. of 7th World
Conference on Integrated Design and Process Technology (IDPT 2003). Society
for Process Technology, CD-ROM.

Padberg, J., Buder, M., 2001. Structuring with Petri Net Modules: A Case Study.
Tech. Rep. TR 01-4, Technical University Berlin.

Padberg, J., Ehrig, H., Ribeiro, L., 1995. Algebraic high-level net transformation
systems. Mathematical Structures in Computer Science 5, pp. 217–256.

Padberg, J., Urbášek, M., 2002. Rule-Based Refinement of Petri Nets: A Survey. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (Eds.), Advances in Petri Nets:
Petri Net Technologies for Modeling Communication Based Systems. Lecture
Notes in Computer Science 2472. Springer.

Sibertin-Blanc, C., 1994. Cooperative Nets. In: Application and Theory of Petri
Nets’94. Springer Lecture Notes in Computer Science 815, pp. 471–490.

Simeoni, M., 1999. A Categorical Approach to Modularization of Graph Trans-
formation Systems using Refinements. Ph.D. thesis, Università Roma ”La
Sapienza”.

Szyperski, C., 1997. Component Software – Beyond Object-Oriented Program-
ming. Addison-Wesley.

Weber, H., 1999. Continuous Engineering of Communication and Software Infras-
tructures. Lecture Notes in Computer Science 1577. Springer Verlag, pp. 22–29.

35

