
A Graph-based Approach to Transform XML
Documents

Gabriele Taentzer1 and Giovanni Toffetti Carughi2

1 Technische Universität Berlin, Germany
gabi@cs.tu-berlin.de

2 Politecnico di Milano, Italy
toffetti@elet.polimi.it

Abstract. As XML diffusion keeps increasing, it is today common prac-
tice for most developers to deal with XML parsing and transformation.
XML is used as format to e.g. render data, query documents, deal with
Web services, generate code from a model or perform model transforma-
tion. Nowadays XSLT is the most common language for XML transfor-
mation. But, although meant to be simple, coding in XSLT can become
quite a challenge, if the coding approach does not only depend on the
structure of the source document, but the order of template application
is also dictated by target document structure. This is the case especially
when dealing with transformations between visual models. We propose
to use a graph-based approach to simplify the transformation definition
process where graphs representing documents are transformed in a rule-
based manner, as in XSLT. The differences to XSLT are mainly that
rules can be developed visually, are more abstract (since the order of
execution does not depend on the target document), IDREFs are dealt
with much more naturally, and due to typed transformations, the output
document is guaranteed to be valid with respect to the target schema.
Moreover, graph-based transformation definitions can be automatically
reversed in most cases. This is especially useful in model transformation
(e.g. in OMG’s MDA approach).

1 Introduction

When XML (Extensible Markup Language) [14] was being developed, the propos-
ing working group at W3C had clear design goals in mind: they wanted to come
up with a language which was at the same time formal, concise, easy to process
for applications and to read and write for human beings. Today XML is used in
virtually any IT domain as the most natural form to represent structured or (es-
pecially) semi-structured data. This includes usage of XML to store information,
serialize models, communicate over the Internet, etc. As a consequence of this
diffusion, it is common practice for most of today’s programmers to deal with
XML parsing and transformation, be it to render data, query documents, deal
with web services, generate code from a model or perform model transformation.



XSLT (the Extensible Stylesheet Language Transformations [16]) is the lan-
guage proposed by the W3C to deal with XML document transformation. Al-
though developed to enable most IT developers to easily specify transformations,
there are cases in which writing XSLT can be quite hard. The reasons are that,
especially when dealing with model to model transformation, the coding ap-
proach does not only depend on the structure of the source document, but the
order of template application is also dictated by target document structure. In
addition to this, extensive use of IDREFs (i.e. references to other elements) can
force developers to complicated composition of recursion, variables or keys to
hop around the XML tree representation looking for some element.

We propose to use a graph-based approach to simplify the transformation
definition process. Whether or not XML documents conform to a given docu-
ment type definition (DTD) or XML Schema, typing information can be inferred
and represented by so-called type graphs. Any XML document can therefore be
represented as a typed graph and transformed in a rule-based manner, as in
XSLT. The differences toward XSLT are mainly that rules can be depicted vi-
sually, are more abstract (so the order of execution does not depend on target
document), IDREFs are dealt with much more naturally, and because of typing,
the transformation output is guaranteed valid with respect to the target schema.

Often transformations between XML formats are needed back and forth, e.g.
a UML model is translated to some semantic domain (for example Petri nets)
to do some validation and the result which might be a change proposal, has to
be translated back. We show that graph rules can be automatically reversed in
certain cases, to formulate a reverse XML transformation.

The new approach for XML transformations has been tested at a variety of
different transformations. Throughout this paper we discuss the transformation
of class diagrams in XMI [18] format to entity-relationship diagrams in WebML
[13] format, and back.

The paper is organized as follows: Section 2 introduces to the main con-
cepts of XML and XSLT and illustrates them at the running example, an XML
transformation from XMI to WebML. Section 3 gives an introduction into the
basic graph transformation concepts which is used in section 4 to define our
graph-based approach to XML transformation. This approach is applied to the
running example in section 5. Thereafter, we discuss the possibilities to reverse
XML transformations automatically in section 6. Related approaches and a short
conclusion can be found in section 7.

2 XML and XSLT

XML Documents The Extensible Markup Language (XML) [14] is a simple, very
flexible text format derived from SGML (ISO 8879 [11]). Originally designed
to meet the challenges of large-scale electronic publishing, XML is playing an
increasingly important role in the exchange of a wide variety of data on the Web
and elsewhere. XML documents are composed of markup and content, a snippet
of an XML document is shown below. This example is an extract of a WebML



(Web Modeling Language [13]) document representing an Entity-Relationship
diagram.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE WebML SYSTEM "WebML.dtd">

<WebML xmlns:auxiliary="http://www.webml.org/auxiliary"

xmlns:graphmetadata="http://www.webml.org/graphmetadata"

xmlns:presentation="http://www.webml.org/presentation"

siteName="Acme" version="3.0.18">

<Structure graphmetadata:go="Structure_go" id="Structure">

<ENTITY auxiliary:testCaseCount="20"

graphmetadata:go="User_go" id="User" name="User">

<ATTRIBUTE id="userName" name="UserName" type="String"/>

<ATTRIBUTE id="password" name="Password" type="Password"/>

<ATTRIBUTE id="email" name="EMail" type="String"/>

<RELATIONSHIP id="User2Group" inverse="Group2User" maxCard="N"

minCard="1" name="User_Group" roleName="User2Group" to="Group"/>

<RELATIONSHIP id="User2DefaultGroup" inverse="DefaultGroup2User"

maxCard="1" minCard="1" name="User_DefaultGroup"

roleName="User2DefaultGroup" to="Group"/>

</ENTITY>

...

</Structure>

</WebML>

The basic kinds of markup which can occur in the XML document content
are the following:

– Elements are indicated by opening and closing tags (with angle brackets) and
may contain other nested elements. If they don’t they may also be written
as a single in-line tag (e.g. <elem/>).

– Attributes are pairs composed of a name and a quoted-value inside start-tags
after the element name.

Additionally, entities, comments, and CDATA sections are allowed as build-
ing blocks of XML (besides processing instructions).

XSL Transformations Two W3C Recommendations, XSLT and XPath (the
XML Path Language [15]), are provided to allow for transformation of a source
XML document into another document written in any language. We use XSLT,
which itself uses XPath, to specify how an implementation of an XSLT processor
is to create our desired output from our given marked-up input. XML documents
are represented as trees: XSLT provides constructs to navigate through nodes,
iterate, and eventually produce new nodes in the output document, XPATH
provides a way to select or express conditions regarding a node given a starting
context of application. XSLT is a declarative language, the XSLT processor is
not told how to perform the transformation, rather XSLT describes the expected
result with respect to the source document structure. This allows a stylesheet to



be applicable to a wide class of documents that have similar source tree struc-
tures.

There are two approaches to stylesheet design: ’push’ and ’pull’. In the first
one, the XSLT processor is instructed with templates (rules) to be performed
when, during parser navigation, a certain element is encountered. It is called
push because each node visited by the parser is ”pushed” through the stylesheet
to be caught by template rules. The output will be dictated by the source docu-
ment. The push style is considered by many experts the most scalable approach,
although some critics claim that code maintenance is hard. Push is the only way
to go when the order in which XML elements will be encountered by the parser
is not known a priori, like in text-oriented XML documents.

In the pull approach instead, source document nodes are selected (”pulled”)
from the source document by means of XPATH expressions as they are needed.
The pull approach is usually composed by a single template containing a list of
steps to perform, this more declarative approach is preferred by developers that
never really got too much acquainted with functional programming style at the
bottom of XSLT [9]. Pull is better suited for data-oriented documents as the
developer can somehow anticipate the order of the information.

Most XSLT stylesheets use a combination of both approaches, the most com-
mon practice has push templates containing some pull instructions. In the code
snippet below we use a template to transform a UML Association from XMI into
a WebML Relationship. It uses a template to match a UML:Class (push) and
produce an ENTITY element with the appropriate attributes. As in WebML a
RELATIONSHIP element has to be nested inside an ENTITY, in this trans-
formation we’re forced to use the pull approach in order to retrieve the related
association information before the production of the closing ENTITY tag. Thus,
the structure of the target document limits our choice of coding approach.

Associations in XMI are represented by a quite verbose tree, two nodes
called AssociationEnd identify the end points of the association by means of
the attribute ”participant”. The attribute contains a reference to the identifier
of another XML element. References to IDs are very common in XML: they are
called IDREFs, and provide a way to express relations between elements that
differs from nesting as it supports multiple cardinalities. The retrieval of all the
association instances that end up in the UML:Class we are currently matching
has to leverage the IDREF in attribute ”participant” of element AssociationEnd.
Therefore the apply-templates statement of line 4 uses an XPATH expression to
select all association ends having an attribute called ”participant” whose value is
equal to the attribute ”xmi.id” of the XML element we are currently matching.
Note how the XPATH expression also considers the navigation path from the
current element to the element we want to match. We could also have used a
more general navigation path (worsening parser performance) or a ”key” con-
struct if we wanted to match all UML:AssociationEnd elements no matter their
position in the source document. The example we provided is fairly simple, but
gives a basic idea of the way IDREFs are handled in XSLT. Transformations
that require navigating chains of IDREFs are much more complex and require



either declaration of multiple keys, usage of variables, or invocation of multiple
templates. Consider for instance the existence of the attribute ”package” on the
UML:Class element being an IDREF to a UML:Package ID. If for any reason we
wanted to translate into relationships only associations between classes in the
same package we would necessarily have to use a key, a variable or a paramet-
ric template. In the following sections we will show the benefits of using graph
transformation to handle IDREFs.

<xsl:template match="UML:Class">

<ENTITY name="{@name}"id="{@xmi.id}">

<xsl:apply-templates/>

<xsl:apply-templates

select="../*/*/UML:AssociationEnd

[@participant = current()/@xmi.id]"/>

</ENTITY>

</xsl:template>

<xsl:template match="UML:AssociationEnd">

<RELATIONSHIP id="{@xmi.id}" name="{@name}" roleName="{@name}">

<xsl:attribute name="inverse">

<xsl:value-of select="../UML:AssociationEnd

[@xmi.id != current()/@xmi.id]/@xmi.id"/>

</xsl:attribute>

<xsl:attribute name="maxCard">

<xsl:value-of select="UML:AssociationEnd.multiplicity/

UML:Multiplicity/UML:Multiplicity.range/

UML:MultiplicityRange/@upper"/>

</xsl:attribute>

<xsl:attribute name="minCard">

...

</xsl:attribute>

<xsl:attribute name="to">

<xsl:value-of select="../UML:AssociationEnd

[@xmi.id != current()/@xmi.id]/@participant"/>

</xsl:attribute>

</RELATIONSHIP>

</xsl:template>

3 Graph Transformation

Graphs are a general means to represent any kind of data structures. Especially,
they are well-suited to show the structure of XML documents. Visualizing an
XML document by a graph, it usually resembles a DOM tree and can be en-
hanced by edges which represent references to other identities, in addition. For
an example, see Fig. 1 where part of a WebML document is visualized.

If XML documents conform to a given DTD or XML Schema, this typing
information can be represented by typed graphs. The DTD or XML Schema
is translated to a type graph which looks similar to class diagrams (without



Fig. 1. Graph which represents the example WebML document in Section 2

additional constraints). As in object-oriented modelling, types can be structured
by an inheritance relation [6]. Instances of a type graph are structure graphs
equipped with a structure-compatible mapping to the type graph.

Formally, structure graphs are described by typed attributed graphs [7]. An
attribute is declared just like a variable in a conventional programming language:
we specify a name and a certain type for the attribute, and then we may assign
any value of the specified type to it. All graph objects of the same type also
share their attribute declarations, i.e. the list of attribute types and names;
only the values of the attributes may be chosen individually. From a conceptual
point of view, attribute declarations have to be considered as an integral part
of the definition of a type. In theory [7], the attribute values are defined by
separate data nodes which are elements of some algebra. In the AGG [1] tool,
the attribution is based on Java (see below).

A graph transformation rule r : L → R consists of a pair of T -typed graphs
L,R such that the union L∪R is defined. In this case, L∪R forms a graph again,
i.e. the union is compatible with source, target and type settings. The left-hand
side L represents the pre-conditions of the rule, while the right-hand side R
describes the post-conditions. L ∩ R defines a graph part which has to exist to
apply the rule, but which is not changed. L\ (L∩R) defines the part which shall
be deleted, and R\(L∩R) defines the part to be created. To make sure that newly
created items are not already in the graph, we have to generate new vertex and
edge identifiers whenever a rule is applied. Formally, for each application a new
rule instance is created. Furthermore, a rule may specify attribute computations.



For this purpose, the rule graphs can be attributed by elements of term algebras
which are instantiated by concrete values in the graphs when the rule is applied.

Two sample rules are given in Figures 3 and 5, created with AGG. Both
figures show the LHS (left-hand side) L and RHS (right-hand side) R separately.
All elements of (L ∩ R) are numbered correspondingly in L and R. Both rules
do not delete anything, thus all elements in the LHS are numbered. The non-
numbered elements in the RHS are the elements to be created. Both rules use
a lot of variables as attribute values which indicates that arbitrary values are
allowed. If several attributes have the same variable as value, the corresponding
matched values in the host graph have to be equal. This is the case, e.g. in
the rule in Figure 5 where attribute xmi.id of node 14:UML:Class has the same
variable as value as node attribute participant in node 4:UML:AssociationEnd.

A graph transformation step is defined by first finding a match m of the
left-hand side L in the current host graph G such that m is structure-preserving
and type compatible. If a vertex embedded into the context, shall be deleted,
dangling edges can occur. These are edges which would not have a source or
target vertex after rule application. There are mainly two ways to handle this
problem: either the rule is not applied at match m, or it is applied and all
dangling edges are also deleted.

The applicability of a rule can be further restricted, if additional application
conditions have to be satisfied. A special kind of application conditions are neg-
ative application conditions which are pre-conditions prohibiting certain graph
parts.

Performing a graph transformation step with rule r at match m, all the
vertices and edges which are matched by L \ (L ∩ R) are removed from G.
The removed part is not a graph in general, but the remaining structure D :=
G \ m(L \ (L ∩ R)) still has to be a legal graph, i.e., no edges should be left
dangling. This means if dangling edges occur during a rule application, they
have to be deleted in addition. In the second step of a graph transformation,
graph D is glued with R \ (L ∩ R) to obtain the derived graph H. Since L and
R can overlap in a common graph, its match occurs in the original graph G
and is not deleted in the first step, i.e. it also occurs in the intermediate graph
D. For gluing newly created vertices and edges into D, graph L ∩ R is used. It
defines the gluing items at which R is inserted into D. A graph transformation,
more precisely a graph transformation sequence, consists of zero or more graph
transformation steps.

Given a host graph and a set of graph rules, two kinds of non-determinism
can occur: first several rules might be applicable and one of them is chosen
arbitrarily. Second, given a certain rule several matches might be possible and
one of them has to be chosen. There are techniques to restrict both kinds of
choices. Some kind of control flow on rules can be defined by applying them in
a certain order or using explicit control constructs, priorities, etc. Moreover, the
choice of matches can be restricted by specifying partial matches using input
parameters. A common form of controlled rule application is the following one:
One rule is selected from outside (e.g. the user) and triggers the application of



a number of other rules which become applicable after the first rule has been
applied.

The graph transformation approach presented is supported by AGG [1] which
is an integrated development tool for typed attributed graph transformation,
implemented in Java. It offers the visual development of graph transformation
systems including visual editing and simulation as well as a number of validation
tools. The internal graph transformation engine can also be used by a Java API
and thus, can be integrated into other tool environments. Several XML based
input and output formats are available to the integration of AGG with other
tools.

4 The Graph-based Approach

The approach we propose aims at simplifying the process by letting the developer
design the transformation visually and abstracting from document structure and
element production order.

Relation between XML Documents and AGG Graphs To be able to use graph
transformation for the transformation of XML documents, there must be trans-
lations between XML documents and graphs. A simple solution is to provide uni-
versal XSL transformations from XML documents (without DTD or XMLSchema)
to AGG graphs in the proprietary XML format for AGG, GGX, and back from
GGX to XML. Once provided the user can completely concentrate on graph
transformation and does not have to deal with XSL transformations at all. This
idea can be extended to XML documents which conform to a DTD or XML
Schema. In this case, the universal XSL transformation also transforms the DTD
or XML Schema into a corresponding type graph. In this case the type graph
may be enhanced by stronger constraints such as multiplicities.

These XSL transformations are applicable to any XML documents. A result-
ing AGG graph shows the structure of the corresponding XML document and
resembles a DOM tree enhanced by additional edges which represent references
to other identities.

The translation between XML documents and AGG graphs can also be ob-
tained on the basis of a Java API for AGG which can be used to construct and
read graphs.

XML Transformation by Graph Transformation Describing an XML transfor-
mation by graph transformation, the source and target documents are visualized
by graphs as discussed above. Performing XML transformation by graph trans-
formation means to take the structure graph of an XML source document, and to
transform it according to certain transformation rules. The result is the structure
graph of the XML target document.

An XML transformation can be precisely defined by a graph transformation
system GTS = (T,R) consisting of a type graph T and a set of transformation
rules R. The structure graphs of the source documents can be specified by a



subset of instance graphs over a type graph TS . Correspondingly, the structure
graphs of the target documents are specified by a subset of instance graphs over a
type graph TT . Both type graphs TS and TT have to be subgraphs of the common
type graph T . See Figure 2. Starting the XML transformation with instance
graph GS typed over TS , it is also typed over T . During the transformation
process, the intermediate graphs are typed over T . Please note that this type
graph may contain not only TS and TT , but also additional types and relations
which are needed for the transformation process only. The result graph GT is
automatically typed over T . If it is also typed over TT , it fulfills the requirement
to be valid.

TS

incS // T TT

incToo

GS

typeS

OO

ri +3

typeGS

==zzzzzzzzzzzzzzzzzz
...

rj +3 Gi

typeGi

OO

rk +3 ... rl +3 GT

typeT

OO

typeGT

aaDDDDDDDDDDDDDDDDDD

Fig. 2. Typing in the transformation process

5 Example: From XMI to WebML

In this section, we take up the running example again and show how graph
transformation can be used to transform UML class diagrams in XMI format
into entity-relationship diagrams in WebML.

The type graph for the transformation consists of three parts. Figure 4 shows
the main section of type graph. The left part represents the type graph for
WebML structures. The right part shows the type graph for XMI structures. In
the middle, is one node type transf for relating XML nodes in both structures.

The transformation system contains five rules connecting nodes of the XMI
document to newly created nodes in the WebML document (one rule for each
element in the target document). Rules are quite simple and generally map a
set of nodes (XMI is particularly verbose) into a target document node. Figure
3 shows the rule converting a class node into an entity node. The left hand side
matches a UML:Class node child of a UML:Namespace.ownedElement, the latter
has already been translated into a Structure element to which it is connected by
a transf node and two edges. The RHS of the rule adds a new entity, connects
it to the parent node with a child edge, and to the originating UML:Class node
via a transf node and edges. Since this transformation should be performed only
once for each class, the rule is equipped with a negative application condition
which is structurally equal to the RHS. That means before inserting a new entity
for some class, we check that this class is not already related to some entity. This



visual approach simplifies the design of the transformation giving the user a clear
representation of what each rule will produce.

Fig. 3. Graph rule which translates classes to entities

The rule in Figure 5 is used to create two relationship nodes starting from
a UML:Association subtree. In LHS, we search for a pattern consisting of an
association with association ends which refer to the participating classes by
attribute participant in UML:AssociationEnd nodes. The references are enforced
by variables part1 and part2, to be matched with class IDs. Please note that
this rule inserts two relationships, i.e. translates the association completely in
one step, something not achievable in XSLT. Moreover, the use of variables to
resolve IDREFs makes the rule clear at first sight. Again, this rule has a negative
application condition structurally equal to the RHS, which prevents the rule from
being applied twice to the same association.

In addition to the example presented here, we successfully experimented our
approach also in transforming XML graph representation into Scalable Vector
Graphics (SVG), rendering XML documents in HTML and reverse, performing
WebML model to Struts configuration files transformation. We report on these
experiments as examples for graph transformation applications on the AGG
home page [1].

Discussion The advantages of using graph rules instead of an XSLT transfor-
mation are multiple: first of all the result graph is typed, therefore enforcing
the validity of the output with respect to the target document schema. This
can be obtained in XSLT only by using schema-aware processors. Second, the
representation of the type graph allows for an easier visual definition of the rules
by matching subtrees, rule application conditions and behaviour are evident at
first sight. Third, the use of variables (or edges) to deal with IDREFs is much
more straightforward than any other construct in XSLT as we don’t have to look
for elements considering current context but we can naturally compose chains of
IDREFs without having to declare multiple keys or complex (context-dependent)
navigation XPATHs. The disadvantages of using graph transformations reside in
the fact that in general the matching of the LHS of a rule in an instance graph
is NP-complete, and basic graph transformation systems don’t have a ”natural”
way of expressing a sequence of execution. But more elaborated forms of graph



Fig. 4. Type graph of XMI to WebML transformation

transformation systems provide different kinds of control on rule applications,
as e.g. execution layers, priorities, control flows, etc. Some powerful constructs
could also be inspired by XSLT (e.g. implicit and explicit rule priorities) or the
new XSLT2 proposal [17], such as the ”xsl:next-match” instruction.



Fig. 5. Graph rule which translates associations to relations

6 Reversal of XML Transformations

Automatic Reversal of Graph-Based XML Transformations Due to the fact that
they are at a higher level of abstraction, graph-based XML transformations are



composed of rules that do not depend on the parsing order of the source docu-
ment or order of nesting of the output. For this reason, under certain conditions,
they can be automatically reversed to produce the inverse transformation, that
is from the target document structure to the source one: this is not achievable
with XSLT where each transformation is inherently uni-directional.

Obviously, to be fully reversible, a transformation would need to be infor-
mation lossless: alas, this is not the case in most real applications where target
documents simply do not require some data. Anyhow, the proposed approach is
able to provide a reverse transformation as close as possible. Moreover, once a
transformation is performed, the result graph preserves information about ele-
ments related by the transformation.

The graph rules performing the reverse transformation are based on the same
type graph as the original rules, no changes are needed. The first observation
when reversing rules is that all XML transformation rules we used are non-
deleting: they only add elements. All transformation rules have a context which
contains a relation between source and target elements already established. This
context is preserved in forward and backward transformation rules. In addition,
the LHS of the forward rule contains some source part, while the backward rule
contains some target part. As RHS of the backward rule we take the RHS of the
forward rule. It remains almost unaltered as it represents the completed relation
between the source document and the target one.

The computation of attribute values is inverted accordingly, with slight dif-
ferences: Each attribute of a new element in a RHS must be provided with an
initial value. If an attribute values cannot be restored, a default value has to
be used. If target attributes are computed by functions on source attributes, in
the reverse RHS, source attributes are calculated by inverse functions on target
attributes.

Example: From WebML to XMI This example shows one of the rules automati-
cally obtained by inverting our example rules given in Section 5. Figure 6 shows
the rule transforming an entity into a class, being the inverse rule of the one in
Figure 3. The RHS of the rule is obtained from the original RHS by defining at-
tributes of source document elements in terms (or functions) of target document
attributes. As not all Class attributes are preserved in the WebML representa-
tion, just those attribute values that can be retrieved are used, therefore some
Class attributes are left empty. Attribute values which were left empty in the En-
tity element of the original rule are discarded. The LHS is derived from the new
RHS by deleting the new ”transf” node and all the source document elements
that were connected to it (and to no other ”transf” node).

7 Related Work and Conclusion

Even though XSLT is a popular and well supported XML transformation lan-
guage, other approaches might be better suited to perform some kind of trans-
formations (or might better suit personal tastes). In the current paper we pro-
posed a graph based approach that simplifies the specification of XML document



Fig. 6. Graph rule which translates entities to classes

transformations with respect to XSLT by being visual and independent of node
writing order, by providing a ”natural” way to deal with IDREFs and by al-
lowing for a unique specification for bi-directional transformation. This makes
the proposed solution especially suitable for the OMG’s MDA methodology. We
developed a prototype implementation of the approach based on AGG.

Different proposals exist for using visual approaches to query, perform syntax-
checking, infer DTDs and schemas, and transform XML documents. XML-GL
[5] uses graphs both for representing XML documents and queries on them, but
it does not perform document transformation between different vocabularies.
XQBE (XQuery by example [4]) provides a visual language to specify queries
on XML documents and translates it into XQuery or XSLT. VXT [10] is a
visual methodology to specify uni-directional XML document transformation,
while XMLTrans [19] is a Java based transformation language. Xing [8] is a
visual language to query XML documents. In [2] a graph grammar for inferring
the DTD of an XML document is proposed. In [20] and [21] the authors use
a context-sensitive graph grammar for both defining the schema of an XML
document and the rules to translate it into another vocabulary. Bezivin et.al.
[3] propose a model transformation approach to obtain tool interoperability in
the context of certain applications. This approach shows some similarities to
ours in the sense that it is based on EMF models and uses a more abstract
transformation approach which is QVT-like [12].

Apart from using a different formalism w.r.t. other approaches our pro-
posal performs DTD inference when needed, XML document transformation
between different vocabularies with advantages w.r.t. XSLT regarding typing,
visual matching and IDREFs, plus it allows reverse transformations. Future
work will deal with performance issues and focus specifically on formalizing the
requirements for a transformation to be fully reversible.

References

1. AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

2. L. Baresi, E. Quintarelli. Graph transformation to infer schemata from XML
documents. In Proceedings of the 2005 ACM symposium on Applied computing,
pages 642 - 646, ACM Press, 2005

3. J. Bezivin, H. Bruneliere, F. Jouault, I. Kurtev. Model Engineering Support for
Tool Interoperability. In Proceedings of 4th Workshop in Software Model Engi-



neering at 8th Int. Conf. on Model Driven Engineering Languages and Systems,
2005.

4. D. Braga, A. Campi, S. Ceri. XQBE (XQuery by Example): a visual interface
to the standard XML query language. ACM Transaction On Database Systems
TODS, June 2005

5. S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, L. Tanca. XML-GL:
A Graphical Language for Querying and Reshaping XML Documents. In Proc. of
the Int. World Wide Web Conference, Canada, 1999

6. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling
Aspects with Graph Transformation for Efficient Visual Language Definition and
Model Manipulation. In M. Wermelinger and T. Margaria, editors, Proceedings of
FASE 2004, pages 214–228, 2004.

7. H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for Typed Attributed
Graph Transformation. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, Proceedings of ICGT 2004, volume 3256 of LNCS, pages 161–177.
Springer, 2004.

8. M. Erwig. Xing: A Visual XML Query Language. In Journal of Visual Languages
and Computing, 14(1):5– 45, 2003

9. D. Novatchev. The Functional Programming Language XSLT - A proof through
examples. http://www.topxml.com/xsl/articles/fp/ Nov. 2001

10. E. Pietriga, J. Vion-Dury, V. Quint. VXT: a visual approach to XML transfor-
mations. In Proceedings of the 2001 ACM Symposium on Document engineering,
pages 1–10, ACM Press, 2001

11. SGML, http://www.w3.org/MarkUp/SGML/
12. Query/View/Transformation. QVT-Merge Group, version 2.0 (2005-03-02), 2005.

http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf
13. WebML, http://www.webml.org/
14. XML, http://www.w3.org/XML/
15. XPath, http://www.w3.org/TR/xpath
16. XSLT, http://www.w3.org/TR/xslt
17. XSLT 2.0, http://www.w3.org/TR/xslt20/
18. XMI, http://www.omg.org/technology/documents/formal/xmi.htm
19. D. Walker, D. Petitpierre, S. Armstrong. XMLTrans: a Java-based XML trans-

formation language for structured data. In Proceedings of the 18th conference on
Computational linguistics - Volume 2 pages 1136 - 1140, 2000

20. K. Zhang, D. Zhang. XML Transformations Through Graph Grammars IEEE
International Conference on Multimedia and Expo, 2001.

21. K. Zhang, D. Zhang, Y. Deng. A Visual Approach to XML Document Design and
Transformation. IEEE Symposium on Human Centric Computing Languages and
Environments, 2001.


