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Abstract. We propose a framework for the specification of behaviour-
preserving reconfigurations of systems modelled as Petri nets. The frame-
work is based on open nets, a mild generalisation of ordinary Place/
Transition nets suited to model open systems which might interact with
the surrounding environment and endowed with a colimit-based com-
position operation. We show that natural notions of (strong and weak)
bisimilarity over open nets are congruences with respect to the com-
position operation. We also provide an up-to technique for facilitating
bisimilarity proofs. The theory is used to identify suitable classes of re-
configuration rules (in the double-pushout approach to rewriting) whose
application preserves the observational semantics of the net.

1 Introduction

Petri nets are a well-known model of concurrent and distributed systems, widely
used both in theoretical and applicative areas [19]. In classical approaches,
nets are intended to represent closed, completely specified systems evolving au-
tonomously through the firing of transitions. Therefore, ordinary Petri nets do
not support directly certain features that are needed to model open systems,
namely systems which can interact with the surrounding environment or, in a
different view, systems which are only partially specified.

Firstly, a large (possibly still open) system is typically built out of smaller
open components. Syntactically, an open system is equipped with suitable inter-
faces, over which the interaction with the external environment can take place.
Semantically, openness can be represented by defining the behaviour of a com-
ponent as if it were embedded in general environments, determining any possible
interaction over the interfaces.
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Secondly, often the building components of an open system are not statically
determined, but they can change during the evolution of the system, according
to predefined reconfiguration rules triggered by internal or external solicitations.

In this paper we present a framework where open systems can be modelled
as Petri nets. Observational semantics based on (weak) bisimulation are shown
to be congruences with respect to the composition operation defined over Petri
nets. Building on this, suitable reconfigurations of such systems can be specified
as net rewritings, which preserve the behaviour of the system.

The framework is based on so-called open nets, a mild generalisation of ordi-
nary Petri nets introduced in [2,3] to answer the first of the requirements above,
i.e., the possibility of interacting with the environment and of composing a larger
net out of smaller open components. An open net is an ordinary net with a dis-
tinguished set of places, designated as open, through which the net can interact
with the surrounding environment. As a consequence of such interaction, tokens
can be freely generated and removed in open places. In the mentioned papers
open nets are endowed with a composition operation, characterised as a pushout
in the corresponding category, suitable to model both interaction through open
places and synchronisation of transitions.

In the first part of the paper, after having extended the existing theory for
open nets to deal with marked nets, we introduce bisimulation-based observa-
tional equivalences for open nets. Following the intuition about reactive systems
discussed in [12], such equivalences are based on the observation of the interac-
tions between the given net and the surrounding environment. The framework
treats uniformly strong bisimilarity, where every transition firing is observed, and
weak bisimilarity, where a subset of unobservable transition labels is fixed and
the firings of transitions carrying such labels are considered invisible. Bisimilar-
ity is shown to be a congruence with respect to the composition operation over
open nets. Interestingly enough, this holds also when the set of non-observable
labels is not empty, i.e., for weak bisimilarity: some natural questions regarding
the relation with weak bisimilarity in CCS are also addressed. In addition, we
also define an up-to technique for facilitating bisimulation proofs.

Exploiting the results in the first part of the paper we introduce a framework
for open net reconfigurations. The fact that open net components are combined
by means of categorical colimits, suggests a setting for specifying net reconfig-
urations, based on double-pushout (DPO) rewriting [9]. Using the congruence
result for bisimilarity we identify classes of transformation rules which ensure
that reconfigurations of the system do not affect its observational behaviour.

A concluding section discusses some related work. A full version of the paper,
with proofs and additional results, is available as [4].

2 Marked Open Nets

An open net, as introduced in [2,3], is an ordinary P/T Petri net with a dis-
tinguished set of open places, which represent the interface through which the
environment can interact with the net. An open place can be an input place,
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meaning that the environment can put tokens into it, or an output place, from
which the environment can remove tokens, or both. In this section we introduce
the basic notions for open nets as presented in [3], generalising them to nets with
initial marking: this will be needed in the treatment of bisimilarity in Section 4.

Given a set X we write 2X for the powerset of X and X⊕ for the free com-
mutative monoid over X . Moreover, given a function h : X → Y we denote by
the same symbol h : 2X → 2Y its extension to sets, and by h⊕ : X⊕ → Y ⊕ its
monoidal extension. Given a multiset u ∈ X⊕, with u =

⊕
x∈X ux · x, for x ∈ X

we will write u(x) to denote the coefficient ux. The symbol 0 denotes the empty
multiset.

Definition 1 (multiset projection). Given a function f : X → Y and a
multiset u ∈ Y ⊕ we denote by (u ↓ f) the projection of u along f , which is the
multiset over X defined as (u↓f) =

⊕
x∈X uf(x) · x.

For instance, given f : {s0, s1, s2} → {s′1, s
′
2, s

′
3} such that f(s0) = f(s1) = s′1

and f(s2) = s′2, we have (2s′1 ⊕ s′2 ⊕ s′3 ↓ f) = 2s0 ⊕ 2s1 ⊕ s2. We will mainly
work with injective functions, for which the projection operation satisfies some
expected properties, such as f⊕((u↓f)) ≤ u and (f⊕((u↓f))↓f) = (u↓f).

We consider nets where transitions are labelled over a fixed set of labels Λ.

Definition 2 (P/T Petri net). A P/T Petri net is a tuple N = (S, T, σ, τ, λ)
where S is the set of places, T is the set of transitions, σ, τ : T → S⊕ are
functions mapping each transition to its pre- and post-set and λ : T → Λ is a
labelling function for transitions.

In the sequel we will denote by •(·) and (·)• the monoidal extensions of the
functions σ and τ to functions from T⊕ to S⊕. Moreover, given s ∈ S, the pre-
and post-set of s are defined by •s = {t ∈ T : s ∈ t•} and s• = {t ∈ T : s ∈ •t}.

Definition 3 (Petri net category). Let N0 and N1 be Petri nets. A Petri
net morphism f : N0 → N1 is a pair of total functions f = 〈fT , fS〉 with
fT : T0 → T1 and fS : S0 → S1, such that for all t0 ∈ T0, •fT (t0) = f⊕

S ( •t0),
fT (t0)• = f⊕

S (t0•) and λ1(fT (t0)) = λ0(t0). The category of P/T Petri nets and
Petri net morphisms is denoted by Net.

We next introduce the notion of open net. As anticipated above, differently
from [2,3], we work here with marked nets.

Definition 4 (open net). An open net is a pair Z = (NZ , OZ), where NZ =
(SZ , TZ, σZ , τZ , λZ) is a P/T Petri net and OZ = (O+

Z , O−
Z ) ∈ 2SZ × 2SZ are

the sets of input and output open places of the net. A marked open net is a pair
(Z, û) where Z is an open net and û ∈ S⊕

Z is the initial marking.

Hereafter, unless stated otherwise, all open nets will be implicitly assumed to
be marked. An open net will be denoted simply by Z and the corresponding
initial marking by û. Subscripts carry over to the net components. The graphical
representation for open nets is similar to that for standard nets. In addition, the
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fact that a place is input or output open is represented by an ingoing or outgoing
dangling arc, respectively. For instance, in net Z1 of Fig. 1, place s is both input
and output open, while s′ is only output open.

The notion of enabledness for transitions is the usual one, but, besides the
changes produced by the firing of the transitions of the net, we consider also the
interaction with the environment which is modelled by events, denoted by +s

and −s, which produce or consume a token in an open place s.

Definition 5 (set of extended events). Let Z be an open net. The set of
extended events of Z, denoted by T̄Z and ranged over by ε is defined as

T̄Z = TZ ∪ {+s : s ∈ O+
Z } ∪ {−s : s ∈ O−

Z }.

Defining •+s = 0 and +s
• = s, and symmetrically, •−s = s and −s

• = 0, the
notion of pre- and post-set extends to multisets of extended events.

Given a marking u ∈ O+
Z

⊕
, we denote by +u the multiset

⊕
s∈S u(s) · +s.

Similarly, −u =
⊕

s∈S u(s) · −s for u ∈ O−
Z

⊕
.

Definition 6 (firings and steps). Let Z be an open net. A step in Z consists
of the execution of a multiset of (extended) events A ∈ T̄⊕

Z , i.e., u⊕ •A [A〉 u⊕
A•. A step is called a firing when it consists of a single event, i.e., A = ε ∈ T̄Z .

A firing can be (i) the execution of a transition u ⊕ •t [t〉 u ⊕ t•, with u ∈ S⊕
Z ,

t ∈ TZ ; (ii) the creation of a token by the environment u [+s〉 u⊕s, with s ∈ O+
Z ,

u ∈ S⊕
Z ; (iii) the deletion of a token by the environment u⊕s [−s〉 u, with u ∈ S⊕

Z ,
s ∈ O−

Z . A step is the firing of a multiset of transitions and interactions with the
environment, of the kind A ⊕ −w ⊕ +v for A ∈ T⊕

Z , w ∈ O−
Z

⊕
and v ∈ O+

Z

⊕
.

Definition 7 (open net category). An open net morphism f : Z1 → Z2 is
a Petri net morphism f : NZ1 → NZ2 such that, if we define in(f) = {s ∈ S1 :
•fS(s) − fT ( •s) 
= ∅} and out(f) = {s ∈ S1 : fS(s)• − fT (s•) 
= ∅}, then

1. (i) f−1
S (O+

2 ) ∪ in(f) ⊆ O+
1 and (ii) f−1

S (O−
2 ) ∪ out(f) ⊆ O−

1 .
2. û1 = (û2 ↓fS) ( reflection of initial marking).

The morphism f is called an open net embedding if both fT and fS are injective.
We will denote by ONet the category of open nets and open net morphisms.

Intuitively, an embedding f : Z1 → Z2 “inserts” net Z1 into a larger net Z2,
which might constrain the behaviour of Z1. Conditions 1.(i) and 1.(ii) first require
that open places are reflected and hence that places which are “internal” in Z1
cannot be promoted to open places in Z2. Furthermore, they ensure that the
context in which Z1 is inserted can interact with Z1 only through the open
places. In fact, if s is a place of Z1 and its image fS(s) is in the post-set of
a transition of Z2 which is not in the image of Z1, from the perspective of
Z1 the environment can generate tokens in s; in this case s ∈ in(f), and thus
Condition 1.(i) requires s to be an input place. Condition 1.(ii) is analogous
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for output places. Finally, condition 2 requires that the marking of Z1 is the
projection of the marking of Z2: any place s1 ∈ S1 must carry the same number
of tokens as its image f(s1) ∈ S2, i.e., û1(s1) = û2(f(s1)) for any s1 ∈ S1. All
morphisms f1, f2, α1 and α2 in Fig. 1 are examples of open net embeddings
(the mappings on places and transitions are those suggested by the shape and
labelling of the nets).

It is worth observing that most of the constructions in the paper will be defined
for open net embeddings, hence readers can limit their attention to embeddings
if this helps the intuition. Still, on the formal side, working in a larger host
category with more general morphisms is essential to obtain a characterisation
of the composition operation in terms of pushouts. Specifically, non-injective
open net morphisms are needed as mediating morphisms (recall, for example,
that the category of sets with injective functions does not have all pushouts).

In the sequel, given an open net morphism f = 〈fS , fT 〉 : Z1 → Z2, to lighten
the notation we will omit the subscripts “S” and “T ” in its place and transition
components, writing f(s) for fS(s) and f(t) for fT (t). Moreover we will write
f⊕ : T̄⊕

Z1
→ T̄⊕

Z2
to denote the monoidal function defined on the generators by

f⊕(t) = f(t) for t ∈ TZ1 and, for x ∈ {+, −}, f⊕(xs) = xf(s), if f(s) ∈ Ox
2 and

f⊕(xs) undefined, otherwise. Note that f⊕ can be partial since open places can
be mapped to closed places.

Unlike most of the morphisms considered over Petri nets in the literature,
open net morphisms are not simulations. Instead, since open net embeddings are
designed to capture the idea of inserting a net into a larger one, they are expected
to reflect the behaviour, in the sense that given an embedding f : Z0 → Z1, the
behaviour of Z1 can be projected along f to the behaviour of Z0.

To formalise reflection of the behaviour along open nets embeddings, we define
the projection operation also over steps.

Definition 8 (projecting extended events). Given an open net embedding
f : Z → Z ′ and an extended event ε′ ∈ T̄Z′ we define the projection of ε′ along
f as follows:

– if ε′ = t′ ∈ TZ′ is a transition then

(t′⇓f) =
{

t if t ∈ TZ and f(t) = t′

−( •t′↓f) ⊕ +(t′•↓f) if t′ 
∈ f(TZ)
– if ε′ = xs′ , with x ∈ {+, −}, then (xs′ ⇓f) = x(s′↓f).

The projection operation over multisets of extended events ( ⇓ f) : T̄⊕
Z′ → T̄⊕

Z ,
is defined as the monoidal extension of the projection of firings.

In words, if we think of the embedding as an inclusion, given a transition t′, the
projection (t′⇓f) is the transition itself if t′ is in Z. Otherwise, if t′ is not in Z
but it consumes or produces tokens in places of Z, the projection of t′ contains
the corresponding extended events, expressing the interactions over open places.

Lemma 1 (reflection of behaviour). Let f : Z → Z ′ be an open net embed-
ding. For every step u′ [A′〉 v′ in Z ′ there is a step (u′ ↓ f) [(A′⇓f)〉 (v′ ↓ f) in
Z, called the projection of the step u′ [A′〉 v′ over Z.
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3 Composing Open Nets

We introduce next a basic mechanism for composing open nets which is char-
acterised as a pushout construction in the category of open nets. The case of
unmarked nets was already discussed in [3]. Here we extend the theory to deal
with marked open nets. Intuitively, two open nets Z1 and Z2 are composed by
specifying a common subnet Z0, and then by joining the two nets along Z0.

Let us start with a technical definition which will be useful below.

Proposition 1 (composition of multisets). Consider a pushout diagram in
the category of sets as below, where all morphisms are injective.
Given u1 ∈ S⊕

1 and u2 ∈ S⊕
2 such that (u1 ↓f1) =

(u2 ↓f2) = u0, there is a (unique) multiset u3 ∈ S⊕
3

such that (u3 ↓ αi) = ui, for i ∈ {1, 2}. Such a
multiset u3 will be denoted by u3 = u1 �u0 u2.

S0f1 f2

S1
α1

S2
α2S3

As in [2,3], two embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2 are called composable
if the places which are used as interface by f1, i.e., the places in(f1) and out(f1),
are mapped by f2 to input and output open places of Z2, respectively, and also
the symmetric condition holds.

Definition 9 (composability). Let f1 : Z0 → Z1, f2 : Z0 → Z2 be embeddings
in ONet. We say that f1 and f2 are composable if 1. f2(in(f1)) ⊆ O+

Z2
and

f2(out(f1)) ⊆ O−
Z2

; and 2. f1(in(f2)) ⊆ O+
Z1

and f1(out(f2)) ⊆ O−
Z1

.

Composability is necessary and sufficient to ensure that the pushout of f1 and
f2 can be computed in Net and then lifted to ONet.

Proposition 2 (pushouts in ONet). Let f1 : Z0 → Z1, f2 : Z0 → Z2 be
embeddings in ONet (see Fig. 2(a)). Compute the pushout of the corresponding
diagram in category Net (componentwise on places and transitions) obtaining
net NZ3 and morphisms α1 and α2, and then take as open places, for x ∈ {+, −},

Ox
Z3

= {s3 ∈ S3 : α−1
1 (s3) ⊆ Ox

Z1
∧ α−1

2 (s3) ⊆ Ox
Z2

}
and as marking û3 = û1�û0 û2, defined according to Proposition 1. Then (α1, Z3,
α2) is the pushout in ONet of f1 and f2 if and only if f1 and f2 are composable.
In this case we write Z3 = Z1 +f1,f2 Z2.

As an example, the open net embeddings f1 and f2 in Fig. 1 are composable
and Z3 is the resulting pushout object.

We next analyse the behaviour of an open net Z3 arising as the composition
of two nets Z1 and Z2 along an interface Z0. More specifically, we show that
steps of the component nets Z1 and Z2 can be “composed” to give a step of Z3
when they agree on the interface and satisfy suitable compatibility conditions.

Lemma 2 (composing steps). Let f1 : Z0 → Z1 and f2 : Z0 → Z2 be
composable embeddings in ONet and let Z3 = Z1 +f1,f2 Z2 (see Fig. 2(a)).
Let u1 [A1〉 v1 and u2 [A2〉 v2 be steps in Z1 and Z2, respectively, such that
(u1 ↓f1) = (u2 ↓f2) = u0 and A2 = f⊕

2 ((A1 ⇓f1)).
Then, (v1 ↓f1) = v0 = (v2 ↓f2) and, if we define A3 = α⊕

1 (A1),
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Fig. 1. An example of a pushout in ONet

u1 �u0 u2 [A3〉 v1 �v0 v2.

The above result can be used to get a compositionality result for steps, showing
that the steps of Z3 can be obtained by “composing” steps of the components Z1
and Z2 satisfying suitable compatibility requirements. However, this is outside
the main focus of the paper and can be found in the full version [4].

4 Bisimilarity of Open Nets

We next study (strong and weak) bisimilarity for open nets, proving that it is a
congruence with respect to the colimit-based composition of open nets.

First, we define the labelled transition system associated to an open net. Net
transitions carry a label which is observed when they fire. Additionally, in the
labelled transition system we also observe what happens at the open places. As
discussed in the conclusions, this resembles the labelled transition system arising
from the view of Petri nets as reactive systems in [14,20]. More precisely, given
an open net Z, the corresponding labelled transition system has the markings
of the net as states. Transitions are generated by the firings of Z and labelled
over the set ΛZ = Λ ∪ {+s : s ∈ O+

Z } ∪ {−s : s ∈ O−
Z }.

For notational convenience we extend the labelling function λZ to the set of
extended events T̄Z , by defining λZ(x) = x for x ∈ T̄Z − TZ (i.e., for x = +s or
x = −s with s ∈ SZ).

Definition 10 (lts for an open net). The labelled transition system associ-
ated to an open net Z, denoted by lts(Z), is the pair 〈S⊕

Z , →Z〉, where states are
markings uZ ∈ S⊕

Z and the transition relation →Z ⊆ S⊕
Z × ΛZ × S⊕

Z includes all

transitions uZ
λZ(x)−→ Z u′

Z such that there is a firing uZ [x〉 u′
Z in Z.

When observing the behaviour of a system, usually only a subset of events is
considered observable. Here this is formalised by selecting a subset of labels
representing internal firings, playing a role similar to τ -actions in process calculi,
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and then considering a corresponding notion of weak bisimilarity. Let Λτ ⊆ Λ be
a subset of unobservable labels, fixed for the rest of the paper. Given a Λ-labelled
open net Z, for markings v, v′ ∈ S⊕

Z we write v
τ
�Z v′ if v

�−→Z v′ with � ∈ Λτ ,

and v
�
�Z v′ if v

�−→Z v′ with � ∈ ΛZ − Λτ . Then we define

– v
τ=⇒Z v′ when v

τ
�

∗
Z v′.

– v
�=⇒Z v′ when v

τ
�

∗
Z

�
�Z

τ
�

∗
Z v′ � 
= τ .

Weak bisimilarity is now defined in a standard way (but note that when the set
of unobservable labels is empty, this actually corresponds to strong bisimilarity).
Only, we need to specify for each open place of one net which is the corresponding
open place in the other net. Given two open nets Z1 and Z2 a correspondence
η : O1 ↔ O2 between Z1 and Z2 is a bijection η : O+

1 ∪ O−
1 → O+

2 ∪ O−
2 such

that for s1 ∈ O1, x ∈ {+, −} we have s1 ∈ Ox
1 iff η(s1) ∈ Ox

2 .

Definition 11 ((weak) bisimilarity). Let Z1, Z2 be open nets and η : O1 ↔
O2 be a correspondence between Z1 and Z2. A (weak) η-bisimulation over Z1
and Z2 is a relation over markings R ⊆ S⊕

1 × S⊕
2 such that if (u1, u2) ∈ R then

– if u1
�

�Z1 u′
1, there exists u′

2 such that u2
η(�)
=⇒Z2 u′

2 and (u′
1, u

′
2) ∈ R;

– the symmetric condition holds;

where η(+s) = +η(s), η(−s) = −η(s), and η(�) = � for any � ∈ Λ ∪ {τ}.
Two open nets Z1 and Z2 are (weakly) η-bisimilar, denoted Z1 ≈η Z2, if

η : O1 ↔ O2 is a correspondence and there exists a (weak) η-bisimulation R

over Z1 and Z2 such that (û1, û2) ∈ R. We will say that Z1 and Z2 are (weakly)
bisimilar, written Z1 ≈ Z2, if Z1 ≈η Z2 for some correspondence η.

According to the following lemma, which is a corollary of Lemma 2, given com-
posable embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2, the firing of a transition in
Z2, projected along f2 to Z0 can then be simulated in Z1.

Lemma 3. Let Z0, Z1, Z2 be open nets and let fi : Z0 → Zi (i ∈ {1, 2}) be
composable embeddings, as in Fig. 2(a). Furthermore, let Z3 = Z1 +f1,f2 Z2.

Assume that u2
�−→Z2 u′

2 where � ∈ Λ, let t ∈ T2 such that λ2(t) = � and
u2 [t〉 u′

2, let u0 [A0〉 u′
0 be its projection over Z0 (hence A0 = (t ⇓ f2)), and

let u0
�1−→Z0 . . .

�n−→Z0 u′
0 be any sequence of transitions in lts(Z0) arising as a

linearisation of such step in Z0. Then for any u1 ∈ S⊕
1 such that (u1 ↓f1) = u0

we have that u1
�1−→Z1 . . .

�n−→Z1 u′
1 and u1 �u0 u2

�−→Z3 u′
1 �u′

0
u′

2.

Note that above, if transition t is in the image of Z0, then the sequences of
transitions in lts(Z0) and lts(Z1) are actually single firings. Otherwise, they are
sequences of interactions over open places, possibly of length greater than one.

By exploiting this lemma we can prove that bisimilarity is a congruence with
respect to the composition operation on open nets.
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Z0 f2f1

Z1

α1

Z2

α2Z3

(a)

Z0 g2f1

Z1

β1

W2

β2W3

(b)

Fig. 2. Pushouts in ONet

Theorem 1 (bisimilarity is a congruence). Let Z0, Z1, Z2, W2 be open
nets. Let Z2 ≈η W2, for some η. Consider the nets Z3 = Z1 +f1,f2 Z2 and
W3 = Z1 +f1,g2 W2, as in Fig. 2 where f1, f2 and g2 are embeddings, f1 and f2
are composable, and f1 and g2 are composable as well.

If g2|O0 = η ◦ (f2|O0) (i.e., f2 and g2 are consistent with η on open places)
then Z3 ≈η′ W3, where η′ is defined as follows: for all s ∈ OZ3 , η′(s) = β1(s′) if
s = α1(s′), and η′(s) = β2(η(s′)) if s = α2(s′).

We next provide a kind of up-to technique for open net bisimilarity. Given an
open net Z, let us define the out-degree of a place s ∈ S as the maximum number
of tokens that the firing of an extended event can remove from s, formally:

deg(s) = max
(
{( •t)(s) : t ∈ TZ} ∪ {1 : s ∈ O−

Z }
)

The idea, formalised in the notion of up-to bisimulation, is to allow tokens
to be removed from open input places, when they exceed the out-degree of the
place. More precisely, given a net Z and a marking u ∈ S⊕, let us say that a
marking v ∈ O+

Z

⊕
is subtractable from u if ∀s ∈ O+

Z . deg(s) ≤ u(s) − v(s). Note
that this implies that all transitions enabled in u are also enabled in u � v.

Definition 12 (up-to bisimulation). Let Z1 and Z2 be open nets, and let
η : O1 ↔ O2 be a correspondence between Z1 and Z2. A relation R ⊆ S⊕

1 × S⊕
2

between markings is called an up-to η-bisimulation if whenever (u1, u2) ∈ R then

– if u1
�
�Z1 u′

1, then there exist markings u′
2 such that u2

η(�)
=⇒Z2 u′

2, and
v1 ∈ O+

1
⊕

subtractable from u1, with (u′
1 � v1, u

′
2 � η⊕(v1)) ∈ R;

– the symmetric condition holds.

Proposition 3. Let Z1 and Z2 be open nets, and let η : O1 ↔ O2 be a corre-
spondence between Z1 and Z2. Let R be an up-to η-bisimulation. Then for any
(u1, u2) ∈ R we have that (Z1, u1) ≈η (Z2, u2).

As it often happens with up-to techniques, the above result might allow to show
that two nets are bisimilar by exhibiting finite relations (while bisimulations are
typically infinite). E.g., consider the open nets on the right, where label a is
observable. Then a bisimulation would in-
clude at least the pairs {(k · s, k · s) : k ∈ N},
where s is the only place. Instead, accord-
ing to the definition above {(0, 0), (s, s)} is
an up-to bisimulation.
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Fig. 3. Two pushouts of open nets for the comparison to CCS

Comparison to CCS. We now give some hints as to why weak bisimilarity is
a congruence in the case of open nets, but not in CCS [16]. Remember that
a classical counterexample for CCS is as follows: p1 = τ.a.0 ≈ a.0 = p2, but
q1 = τ.a.0 + b.0 
≈ a.0 + b.0 = q2. The reason for the latter inequality is that q1
can do a τ and become a.0, while q2 cannot mimic this step.

Fig. 3 shows a similar situation of nondeterministic choice for open nets,
where τ is the only unobservable label. However, note that here the two nets Z1
(corresponding to τ.a.0) and Z ′

1 (corresponding to a.0) are not weakly bisimilar.
Whenever the τ -transition is fired in Z1, resulting in the marking m1, this can
not be mimicked in Z ′

1 by staying idle, since then in Z ′
1 a transition with label

−s′
1

is possible, while a transition labelled −s1 is not possible for the net Z1 with
marking m1. Also note that the places s1 respectively s′1 must be output open
in order to allow composition with the net Z2.

Roughly, this means that for open nets we are always able to observe the first
invisible action in an open component, which is reminiscent of the definition of
observation congruence (denoted by ≈c) in CCS: two processes p, q are called
observation congruent if they are weakly bisimilar, with the additional constraint
that whenever the first step of p is a τ -action, then it has to be answered by
at least one τ -action of q (and vice versa). In both settings it is only the first
τ -action that can be observed but not the subsequent ones.

5 Reconfigurations of Open Nets

The results in the previous sections are used here to design a framework where a
system specified as a (possibly open) Petri net can be reconfigured dynamically
by transformation rules, triggered by the state/shape of the system. The con-
gruence result allows to characterise classes of reconfigurations which preserve
the observational behaviour of the system.

The fact that the composition operation over open nets is defined in terms of
a pushout construction suggests naturally a way of reconfiguring open nets by
using the double-pushout approach to rewriting [9].

A rewriting rule over open nets consists of a pair of morphisms in ONet:

p = Lp
lp← Kp

rp→ Rp
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where Lp, Kp, Rp are open nets, called left-hand side, interface and right-hand
side of the rule p, and lp, rp are open net embeddings. Furthermore, it is required
that (rp ◦ l−1

p )|OLp
is a correspondence between Lp and Rp, which we denote by

ηp : Lp ↔ Rp. Intuitively, the rule specifies that, given a net Z, if the left-hand
side Lp matches a subnet of Z then this can be reconfigured into Z ′ by replacing
the occurrence of Lp with the right-hand side Rp, preserving the subnet Kp.
Note that by requiring the existence of the correspondence ηp, we guarantee
that the interface of the transformed net, consisting of the open places, is left
untouched by the reconfiguration (a more general treatment can be found in [4]).
A rewriting rule p is called behaviour preserving if its left- and right-hand sides
are bisimilar: more precisely, if Lp ≈ηp Rp.

Definition 13 (open net transformation). Let p be a rewriting rule over
open nets, let Z be an open net and let m : Lp → Z be a match, i.e., an
open net embedding. We say that Z rewrites to Z ′ using p at match m, writing
Z ⇒p,m Z ′ or simply Z ⇒p Z ′, if the diagram of Fig. 4(a) can be constructed
in ONet, where both squares are pushouts, and morphism n is composable with
both lp and rp.

We stress that we are interested in transformations where the two pushout
squares are built from composable arrows (technically, this ensures that the
transformation can be performed in Net and then “lifted” to ONet).

The next result is now an easy consequence of Theorem 1.

Theorem 2 (behaviour-preserving reconfigurations). Let p be a behaviour-
preserving open net rule. Given an open net Z and a match m : Lp → Z, if
Z ⇒p,m Z ′ then Z ≈ Z ′.

For instance, consider the double-pushout diagram in Fig. 4(b). It can be easily
seen that the left- and right-hand sides of the applied rule are strongly bisimilar.
Hence we can conclude that also Z and Z ′ are strongly bisimilar.

5.1 Applying Rules to Open Nets

As it is common in the categorical approaches to (graph) rewriting, the notion
of open net transformation proposed in Definition 13 is rather “declarative”
in style, because it requires the existence of two pushouts in category ONet,
without stating how they can be constructed, and under which conditions. A
more explicit description of the conditions under which a rule can be applied
to an open net and of the way the resulting net can be constructed, is clearly
necessary for practical purposes. Looking at Fig. 4(a), given a rule p and a match
m : Lp → Z, in order to build the open net transformation:

– The pushout complement of lp and m must exist. The resulting arrows n
and d must be such that lp and n are composable. Additionally, there can
be several pushout complements and in this case a canonical choice should
be considered.
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Fig. 4. Transforming open nets through DPO rewriting

– The resulting arrow n must be composable with rp: then we know how to
build Z ′ by Proposition 2.

Unfortunately, although a general theory of DPO rewriting has been devel-
oped recently in the framework of adhesive categories [11], we cannot exploit
it here since the category of open nets falls outside the scope of the theory.
Sufficient hypotheses under which the above conditions are satisfied are made
explicit in the following lemma (more general conditions are considered in [4]).

Lemma 4 (existence of transformations in ONet). Let p be an open net
rewriting rule, let Z be an open net and let m : Lp → Z be a match such that:

1. for all s ∈ Lp − lp(Kp) we have •m(s) ∪ m(s)• ⊆ m(Lp − Kp);
2. for all s ∈ Kp, if s ∈ in(rp) − in(lp) then m(lp(s)) ∈ O+

Z ;
3. for all s ∈ Kp, if s ∈ in(lp) then lp(s) ∈ O+

L implies m(lp(s)) ∈ O+
Z ;

and the dual of the last two conditions, obtained by replacing in() by out() and
+ by −, hold. Then, there exists a transformation Z ⇒p,m Z ′.

The intuition underlying the conditions above is the following. Condition 1 is
a typical dangling condition: it asserts that a place can be deleted only if all
the transitions connected to this place are removed as well, otherwise the flow
arcs of this transition would remain dangling. Technically, this condition ensures
that the pushout complement exists and is unique in the underlying category
Net. By condition 2, if s ∈ in(rp)− in(lp), i.e., the rule p creates a new (ingoing)
transition connected to place s, without replacing any old one, then the image
of s in Z must be (input) open. Finally, condition 3 says that if s ∈ in(lp), i.e.,
if some (ingoing) transitions are deleted from s then the image of s in Z must
be (input) open if so is its image in Lp.
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Fig. 5. Rules

Technically, conditions 2 and 3 (and their dual) ensure the existence of a
minimal pushout complement D, i.e., a pushout complement which embeds into
any other, which is the one that we choose to define the transformation; the
conditions also guarantee the composability of n with both lp and rp. The net
underlying the minimal pushout complement is D = Z − m(Lp − lp(Kp)) (with
set difference componentwise on places and transitions), and the open places of
D are given by Ox

D = d−1(Ox
Z) for x ∈ {+, −}. The initial marking ûD is defined

as ûD(s) = ûZ(d(s)) for any place s ∈ SD.
As an example, consider again the DPO diagram in Fig. 4(b). It is not difficult

to see that the rule and the match satisfy the conditions of Lemma 4. Hence
we can complete the double-pushout construction transforming Z into Z ′, as
depicted in the same figure.

5.2 Modeling Dynamic Reconfigurations of Services

Open nets allow us to specify a system as built out of smaller components. Then,
its behaviour is captured by the firing behaviour of the open net. However, for
highly dynamic systems, as mentioned in the introduction, it can be useful to
have the possibility of specifying that, under suitable conditions, some struc-
tural changes or reconfigurations of the system can take place. For instance the
invocation of a service could trigger a rule which provides an implementation of
the required service.

The theory of open net reconfigurations can do the job. As an example, con-
sider net N0 in Fig. 6 which models the view of a traveller on the journey planning
and ticket purchase services offered through a travel agency portal.

We distinguish abstract transitions representing services that should be pro-
vided elsewhere and concrete transitions representing local services and control
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Fig. 6. Transformation of open nets representing a travel agent’s portal

flow actions. The invocation of an external service can be seen at different levels
of abstraction. From the point of view of the client process it is just the firing an
abstract transition. At a lower level of abstraction, it is captured by a rule such
as the one at the top of Fig. 5. An application of this rule, replacing the abstract
transition by a new open net, models the discovery and binding of the concrete
services required. The left- and right-hand sides of the rule are weakly bisimilar
if we observe only the interactions at the open (interface) places, i.e., if we take
Λτ = Λ. This can be seen as a proof of the fact that the bound service meets
the requirements: both in the abstract transition and in its concrete counterpart
any inquiry will produce a corresponding itinerary.

The rule in the bottom of Fig. 5 represents a case where a simple pattern
is replaced by a richer one. On the left we say that, given an itinerary, we can
either purchase the required tickets or cancel the processes. On the right the
transaction is refined, adding a prior reservation phase, while keeping the option
to cancel. As above, the rule has weakly bisimilar left- and right-hand sides,
ensuring that the visible effect of the abstract and concrete transitions at the
interfaces is the same.

A possible sequence of transformations is shown in Fig. 6. By the above con-
siderations, we are sure that the transformations do not change the observable
behaviour of the system, a fact that can be interpreted as a proof of conformance
of the provided service with respect to the abstract specification.

6 Conclusion and Related Work

Open nets, introduced in [2,3], are a reactive extension of standard Petri nets
which allows to model systems interacting with an unspecified environment. Sev-
eral other approaches to Petri net composition and reactivity have been proposed
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in the literature (see, e.g., [6,17,10], to mention a few) and a detailed comparison
with the open net model can be found in [3].

In this paper, firstly we have generalised the theory of open nets, including
the characterisation of net composition using pushouts, to the case of marked
nets. Next we have introduced the notions of strong and weak bisimilarity over
open nets. Weak bisimilarity (and, as a particular case, also strong bisimilarity)
is shown to be a congruence with respect to the colimit-based composition op-
eration over open nets. To the best of our knowledge, this is the first time that
a compositionality result is given for weak bisimilarity over Petri nets. Weak
bisimilarity for Petri nets with a composition operation is studied for instance
in [17], but it is not congruence, though a context closure allows one to get a
congruence which is then characterised by means of a universal context. Our re-
sult about strong bisimilarity can be seen as a generalisation of those in [15,20],
which essentially are developed for a special kind of open nets, arising by viewing
them as bigraphical reactive systems or as reactive systems over a cospan cat-
egory. In the resulting reactive Petri net model there is no distinction between
open input and output places. Furthermore the composition operation used in
these papers does not allow synchronisation of transitions. Similarities exist also
with the problem studied in [7], where a reactive Petri net model which ad-
mits a compositional behavioural equivalence is exploited, in the framework of
web-services, to provide a theoretical basis to service composition and discovery.

In the second part of the paper we have proposed a rewriting-based framework
for Petri nets with reconfigurations. We have shown how our congruence results
for the observational semantics can be used to identify classes of reconfigurations
which do not alter the observational behaviour of the system. This is applied to
a small case study of a workflow-like model of a travel agency.

The idea of using rewriting techniques for providing a reconfiguration mech-
anism for Petri nets has been already explored in the literature (see, e.g., re-
configurable nets of [1,13] and high-level replacement systems applied to Petri
nets in [18]). In future work, besides analysing the relationships between these
approaches and ours, we will continue to study the notion of reconfigurable open
nets and describe in more detail how reconfigurations can be triggered by the net
itself, for example by reaching certain markings or by firing certain transitions,
following an intuition similar to that of dynamic nets [8].

Finally, it would be worth studying whether a formal duality can be estab-
lished between our morphisms and standard simulation morphisms for Petri nets.
Viewing our morphisms as inverses of (partial) simulation morphisms would al-
low to get a precise correspondence between our pushout-based composition and
pullback-based synchronisation of Petri nets. Surely by simply taking Winskel’s
morphisms [22] this does not work (technically because when they are undefined
on a transition they must be undefined on the corresponding pre- and post-
set). However a duality result could be possibly obtained by considering suitable
extensions of Winkel’s morphisms, like those in [21,5].
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