
83 83

83 83

Bulletin of the EATCS no 92, pp. 75–81, June 2007
©c European Association for Theoretical Computer Science

T F S C

H E

Technical University of Berlin, Department of Computer Science
Franklinstraße 28/29, D-10587 Berlin, Germany

ehrig@cs.tu-berlin.de

M T F

(May 3, 2007)

Don Batory1, Oscar Diaz2, Hartmut Ehrig3,
Claudia Ermel3, Ulrike Prange3 and Gabriele Taentzer4

1Dept of Computer Sciences 2 Dept of Computer Sciences
University of Texas at Austin, USA Univ. of Basque Country

Austin, USA San Sebastian, Spain
batory@cs.utexas.edu oscar.diaz@ehu.es

3Fac. Electr. Eng. and Comp. Sci. 4 Dept. of Maths and Comp. Science
Technical University of Berlin University of Marburg

Berlin, Germany Marburg, Germany
ehrig,lieske,uprange@cs.tu-berlin.de taentzer@mathematik.uni-marburg.de

Abstract

The concept of model transformations is of increasing importance in dif-
ferent areas of Computer Science, but up to now, there is a lack of common
understanding concerning the mathematical and practical point of view.

In this paper, we discuss some of the different aspects. Especially in-
teresting is the new proposal of the POPL’07 keynote speaker Don Batory
claiming that model transformations should be functors. This claim is com-
pared with different mathematical concepts of model transformation.

84 84

84 84

BEATCS no 92 THE EATCS COLUMNS

76

Introduction

For about 35 years, various specification techniques have been developed in or-
der to model different kinds of systems in computer science and other areas. The
concept of models and model-driven development (MDD) has become very im-
portant for software development. Especially the use of UML is wide-spread in
practice as visual modelling technique [10]. In order to relate different compo-
nents of a system represented by different models, it is most important to have
suitable model transformation techniques. Transformation of models is the key
technology of MDD and serves a variety of purposes, including the refinements
of models, their mapping to implementations, consistency management, and evo-
lution. The most prominent approach to model transformation is the de facto
standardQueries, Views and Transformations(QVT) [11] by the OMG. Model
transformations have been classified in [3, 9] inendogenousandexogenousones.
While endogenous model transformations run within one modelling language, ex-
ogenous ones are used to translate models between different languages.

In this paper, we want to discuss the concept of model transformations from a
mathematical and a practical point of view and analyze how far the expectations
from both sides can be fulfilled in a suitable general framework. In both cases, we
start with a very basic point of view to be followed by a more elaborate one.

1 A Basic Mathematical Point of View

In [2], Bezivin claims that “everything is a model”. From this point of view, we
aim to capture all kinds of models, including programs, by considering model
classes as sets/classes of models of the same kind, such that each model becomes
an element of the corresponding model class. Hence, we define a model transfor-
mationMT from model classM1 to classM2 as a functionMT : M1 → M2. Due
to the properties of functions in set theory, this means that for each model (ele-
ment)m1 ∈ M1 there is a well-defined modelm2 = MT(m1) ∈ M2. If necessary,
the functional property ofMT can be relaxed to be partial or nondeterministic, or
even more general, thatMT is a relation betweenM1 andM2.

This purely mathematical point of view allows us to apply the basic notions
and results of sets and functions to model classes and model transformations, like
union and products of sets and composition of functions or relations. Yet, in many
cases, a semantic compatibility between models before and after the transforma-
tion is desired. Our basic mathematical point of view is useful on an abstract
level, but it does not capture the behaviour of models. This means that model
transformation on this level cannot be expected to preserve the behaviour of cor-
responding models, or to establish at least a relationship between the behaviour

85 85

85 85

The Bulletin of the EATCS

77

of corresponding models. This problem will be discussed from a more elaborate
mathematical point of view in Section 4.

2 A Basic Practical Point of View

From a practical point of view, models are documents belonging to a domain-
specific language which is implemented in a suitable way. This includes all kinds
of documents on the level of requirements and design specifications, programs
on the level of programming languages, and also code on the level of machine
languages. From this point of view, a model transformation is given by a toolT
which transforms documents in model classM1 to documents in classM2, short
T : M1→ M2. Well-known tools of this kind are compilers from programming to
machine languages, code generators from modelling to programming languages,
and also translation tools between different visual or textual modelling languages.
In addition to these cases of exogenous model transformations, tools for program
or model refactoring are examples of endogenous model transformations. From
an abstract point of view, a toolT : M1 → M2 is usually expected to define a
function MT : M1 → M2 in the sense of Section 1. But in a variety of cases, the
tool actually defines only a relation fromM1 to M2, because of non-termination
or in some cases, e.g. for refactoring, even nondeterminism of the tool applied
to specific input documents. Moreover, it is expected that the toolT : M1 →

M2 transforms a documentm1 ∈ M1 to a documentm2 = T(m1) ∈ M2 with a
well-defined semantics. In the case that both source and target languages have
a semantics, we expect that the semantics ofm1 can be related to the semantics
of m2 in a suitable way. But except for some examples in the area of compiler
correctness, which, of course, requires a formal semantic of the source and target
languages, this expectation is not verified for most of the tools in practice.

3 An Elaborate Practical Point of View

A more elaborate practical point of view concerning model transformation is taken
by Batory et al. in [12]. Their approach ofFeature Oriented Model Driven Devel-
opment(FOMDD) is a combination of Model Driven Development (MDD) and
Feature Oriented Programming (FOP). [12] presents a case study of FOMDD, a
product-line of portlets which are building blocks of web portals. A portlet is
specified as a set of models which are refined and transformed, leading to an im-
plementation. Combining model transformation and model refinement exposes a
fundamental commuting relationship that should – as claimed in [12] – arise in
all examples of FOMDD: the transformation of a refined model equals the refine-

86 86

86 86

BEATCS no 92 THE EATCS COLUMNS

78

ment of the transformed models. This is expressed by the following commuting
diagram in [12], whereM1,M2,D1 and D2 are model classes,4M and4D are
model refinements, wherem2 = 4M(m1) can be considered as a refined model
composed ofm1 with some4, and f : (M1 ∪ M2) → (D1 ∪ D2) is a model trans-
formation.

M1

f
��

4M // M2

f
��

D1
4D // D2

In the case study of [12], it turned out that for a specific instancem1 ∈ M1 both
paths in this diagram could be implemented, leading tod2 = f (4M(m1)) and to
d′2 = 4D(f (m1)). In the beginning, both implementations were unequal, i.e.d2 ,
d′2, but after removing some bugs in the implementation of4M,4D and f , they
were equal, i.e.d2 = d′2. The main claim of [12] is that, as a general requirement
within FOMDD, the commutativity of the diagram should be valid. This general
requirement allows to validate the correctness of the abstractions, tools and portlet
specifications, as well as optimize portlet synthesis. In [1], Batory has generalized
this idea, on the one hand, to the synthesis of all kinds of (software) products,
and, on the other hand, to a categorical framework in the following sense: The
function 4M : M1 → M2 is replaced by a categoryM with objectsM1 ∪ M2

and generating morphismsm1
4M
−→ m2 for eachm1 ∈ M1 with 4M(m1) = m2.

Commutativity of the diagram above means now that the functionf becomes a

functor F : M → D with F(m1
4M
−→ m2) = d1

4D
−→ d2, whered1 = F(m1),

d2 = F(m2) and4D = F(4M). His general claim is that model classesM andD
should be replaced by model categoriesM andD, where the objects are models,
and the morphisms are suitable model refinements (calledfeatures). Moreover,
model transformations should be functors

F : M → D,

where the functor properties are important requirements for the compatibility of
model transformations and refinements. Actually, he claims that some compilers
from Java to bytecode and javadoc representation, respectively, can be considered
as functors in this sense.

4 An Elaborate Mathematical Point of View

In Section 1, we have pointed out that on a very basic abstract level, model trans-
formations should be functionsMT : M1→ M2. But this is not really satisfactory

87 87

87 87

The Bulletin of the EATCS

79

because it does not capture the behaviour of models and corresponding preser-
vation requirements by model transformations. As discussed in Section 3, it is
advocated by practitioners like Batory that a model transformation should be a
functor F : M → D. Of course, categories and functors are very important
mathematical concepts, which have been applied successfully to formal software
development (see e.g. text books [5, 8, 6]). In [6], for each parameterized speci-
ficationPSP= (SP,SP1), the parameter specificationSPis a sub-specification of
the target specificationSP1, and the free functorF : Cat(SP)→ Cat(SP1) from the
category ofSP-algebras/data types to that ofSP1-algebras/data types is a model
transformation. The same is true for the semanticsSEM : Cat(IMP)→ Cat(EXP)
of an algebraic module specification in [7] with import and export specifications
IMP andEXP. In [8], coordinated functors may be considered as model transfor-
mations.

But what about model transformation between visual languages like state-
charts and Petri nets? In [5], it is shown how to define this kind of model trans-
formation by graph transformations. It turns out that it is already quite difficult to
show the functional behaviour and hence syntactical correctness of such a model
transformation. Is it realistic to expect that this kind of model transformation is
a functor? Actually, the models are typed attributed graphs and the model trans-
formation can be defined by non-deleting rules and a restriction construction. In
[4] (to appear), we show that these kinds of model transformations are functors
between the corresponding full subcategories of typed attributed graphs. In this
case, the morphisms between models are general graph morphisms, which are not
necessarily refinements beween the corresponding visual models. But there are
good chances to extend the results to more realistic refinements as morphisms be-
tween models. This corresponds to the proposal in Section 3, where morphisms
of the corresponding categories are refinements.

Does this mean that the advanced practical point of view can be considered al-
ready as a theoretical approach? The main problem is that the models and model
transformations in Section 2 and Section 3 are defined by tools which, in gen-
eral, have no proper formalization up to now. There are only a few exceptions
in the area of compiler construction, which have been proven to be correct. But
even if there is no hope in the near future that the models and model transforma-
tions considered in [12] can be defined on a formal basis, the requirement “model
transformations are functors” makes sense, because it has been validated at least
for specific instances. But can this be a basis for a functorial framework of model
transformations which can be applied to FOMDD as discussed in Section 3? We
claim that it should be possible to develop an axiomatic functorial framework for
software development approaches like FOMDD.

Although the axiomatic requirements of the framework can be validated only
for specific instances, the corresponding theory should lead us to new results

88 88

88 88

BEATCS no 92 THE EATCS COLUMNS

80

which are valid in practice. This would show that the theory is adequate at least
for the given practical examples. In a later step it might be possible to find a
suitable mathematical abstraction for the corresponding models and model trans-
formations, which allows to prove that the axiomatic requirements are valid. In
this sense, the elaborate practical and theoretical points of view could be conver-
gent, supporting the requirement that model transformations should be functors.

5 Conclusion

In this paper, we argued that the view of model transformations as functors recon-
ciles the mathematical and practical perspectives. The implications of the “com-
muting property” make sense mathematically and provide grounds for “validation
on the large”. Of course, this is only a proposal up to now, and especially the
advantages of this view should be discussed in more detail, since also other for-
malizations might be useful: on the one hand, model transformations could be
also considered as morphisms in a suitable category (of course, also functors are
morphisms in the category of categories), and on the other hand, also features
(e.g. refinements of models as in product-lines) could be considered as functors,
as a dual observation to our claim “Model transformations should be functors”.
Features as functors would imply that we have categories of representations for a
single model/program, and functors to map the objects and arrows of one repre-
sentation category to another. A consolidation of the formal background for our
proposal “Model transformations should be functors”, as well as a further discus-
sion of the usefulness both of the claim made in this paper and of the dual claim
“Features should be functors”, will be subject of future work.

References

[1] D. Batory. 2007. From Implementation to Theory in Product Synthesis. Keynote
Speech, POPL 2007.

[2] J. Bezivin. 2005.Model-Driven Engineering: Principles, Scope, Deployment, and
Applicability. In Proc. GTTSE 2005.

[3] K. Czarnecki and S. Helsen. 2003.Classification of Model Transformation Ap-
proaches. In Proc. OOPSLA’03 Workshop on Generative Techniques in the Context
of Model-Driven Architecture.

[4] H. Ehrig and C. Ermel. 2007.Model Transformation by Graph Transformation is a
Functor. to appear.

89 89

89 89

The Bulletin of the EATCS

81

[5] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. 2006.Fundamentals of Alge-
braic Graph Transformation. EATCS Monographs in Theoretical Computer Sci-
ence. Springer Verlag, Berlin.

[6] H. Ehrig and B. Mahr. 1985.Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, volume 6 ofEATCS Monographs on Theoretical Computer
Science. Springer Verlag, Berlin.

[7] H. Ehrig and B. Mahr. 1990.Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints, volume 21 ofEATCS Monographs on Theoretical
Computer Science. Springer Verlag, Berlin.

[8] J. F. Fiadeiro. 2005.Categories for Software Engineering, Springer Verlag, Berlin.

[9] T. Mens and P. Van Gorp. 2005.A Taxonomy of Model Transformation. In Proc.
Workshop on Graph and Model Transformation (GraMoT’05).

[10] Object Management Group (OMG). 2004.Unified Modeling Language: Superstruc-
ture – Version 2.0. http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

[11] QVT Merge Group. 2005.Query/View/Transformation (QVT), Version 2.0. http:
//www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf .

[12] S. Trujillo, D. Batory, and O. Diaz. 2007.Feature Oriented Model Driven Develop-
ment: A Case Study for Portlets. In Proc. ICSE 2007.

