Visualization, Simulation and Analysis
of Reconfigurable Systems *

Claudia Ermel' and Karsten Ehrig?

L Institut fiir Softwaretechnik und Theoretische Informatik
Technische Universitdt Berlin, Germany
Email: lieske@cs.tu-berlin.de,

2 Department of Computer Science
University of Leicester, UK
Email: karsten@mcs.le.ac.uk

Abstract. Meta-modeling is well known to define the basic concepts
of domain-specific languages in an object-oriented way. Based on graph
transformation, an abstract meta-model may be enhanced with informa-
tion on concrete visualization of objects and relations, and the language
syntax is defined by a graph grammar. Moreover, graph transformation
can also formalize the semantic aspects of models, thus providing a basis
for model validation by simulation.

Apart from editing and simulating the behavior of a system, there may
be necessary reconfiguration operations which change the underlying sys-
tem structure at runtime. In this paper, we focus on the interrelation of
simulation and reconfiguration operations using formal verification tech-
niques based on graph transformation. Our approach is demonstrated
by the definition of a domain-specific language for building, simulating
and reconfiguring small railway systems, using the TIGER tool environ-
ment. For further verification, we define a model transformation from
the railway domain to Petri nets.

Keywords: graph transformation, model transformation, reconfigurable system,
visualization, simulation, analysis

1 Introduction

Domain-specific modeling (DSM) aims to model a system at the same level of
abstraction with the domain itself. This reduces mental mapping by moving the
modeling language closer to the domain as perceived by designers, and improves
the model quality compared to using generic modeling languages. The disadvan-
tage of DSM is that for each domain a different visual modeling tool is needed.
Here, meta CASE tools can help (like e.g. MetaFEdit+ [1]), which generate e.g. a
visual editor on the basis of a definition of the visual domain-specific language.

* This work has been partially sponsored by the IST-2005- 16004 Integrated Project
SENSORIA (Software Engineering for Service-Oriented Overlay Computers).

Two main approaches to visual language definition can be distinguished:
grammar-based approaches or meta-modeling. Using graph grammars [2], multi-
dimensional representations are described by graphs. This allows not only a
visual notation of the concrete syntax, but also a visualization of the abstract
syntax. While the concrete syntax contains the concrete layout of a visual no-
tation, the abstract syntax abstracts from the layout and provides a condensed
representation to be used for further processing, e.g. behavior simulation or
system reconfiguration. Graph rules are used to manipulate the graph represen-
tation of a language element. Meta-modeling (see e.g. [3]) is also graph-based,
but uses constraints instead of a grammar to define a visual language. While
visual language definition by graph grammars can borrow a number of concepts
from classical textual language definition, this is not true for meta-modeling.

Graph transformation can also formalize the semantic aspects of models.
There are numerous formal graph-transformation-based semantics definitions [4].
In this paper, we use graph transformation not only to construct and visualize
domain-specific visual models, but also to simulate dynamic model behavior.
Apart from operations for editing, there may be necessary operations to change
the underlying system structure at runtime (i. e. during simulation). Systems
allowing to be changed have become an important topic in recent years since the
adaption of a system to a changing environment plays a significant role e. g. in
computer supported cooperative work, multi agent systems or mobile networks.
In our approach, such reconfiguration operations are modeled by reconfiguration
rules, and the corresponding systems are called reconfigurable systems.

As running example, we model a toy railway system. The visualization shows
different kinds of tracks and switches which can be glued at connection points.
Simulation rules allow to move a train to an adjacent track, respecting the switch
modes. Reconfiguration rules allow to toggle between two modes of a switch.
Graph transformation as a formally defined calculus [2,5] offers well-founded
theoretical results that support the formal reasoning about graph-based models
at all levels. We apply formal graph transformation techniques to reason about
the independence of simulation and reconfiguration steps. For further verifica-
tion, we define a model transformation from the railway system language to
Petri nets. We apply the TIGER environment [10] for generating visual editor
plug-ins in ECLIPSE [6] from graph grammars. TIGER is based on the graph
transformation engine and analysis tool Aca [7].

The paper is structured as follows: Section 2 reviews the concepts for the
graph-grammar based definition of visual languages, demonstrated by a domain-
specific language to model small railway systems. In Section 3, concepts for
simulation and reconfiguration of discrete-event systems by graph transformation
are discussed, and the railway system is coming to life by operations for moving
trains and changing switch modes. Section 4 applies verification techniques to
analyze the interrelation of reconfiguration and simulation steps. Furthermore,
a model transformation to Petri nets is defined, which allows to verify further
dynamic system properties.

2 Defining Visual Domain-Specific Languages

Meta-modeling uses UML class diagrams to model a visual languages abstract
syntax (see e.g. the MOF approach by the OMG [3]). While class diagrams
appear to be more intuitive than graph grammars, they are also less expres-
sive. Therefore, meta-modeling additionally uses context conditions to overcome
the weaker expressive power. In the MOF approach, for instance, the Object
Constraint Language (OCL) is used for this purpose. The advantage of meta-
modeling is that UML users, who probably have basic UML knowledge, do not
need to learn a new external notation to be able to deal with syntax definitions.
Graph grammars are more constructive, i.e. closer to the implementation, and
provide a formal basis for visualizing, validating and verifying model behavior.
Hence, in our TIGER approach, we combine the visual definition of domain-
specific languages by meta-modeling, and the definition of editing operations by
graph transformation rules.

2.1 Graph Transformation

The main idea of graph grammars and graph transformation is the rule-based
modification of graphs where each application of a graph transformation rule
leads to a graph transformation step. Graph grammars can be used on the one
hand to generate graph languages, and on the other hand to model state changes
(operational behavior). Meanwhile, graph transformation has been investigated
as a fundamental concept for programming, specification, concurrency, distribu-
tion, visual modeling and model transformation [2, §].

The core of a graph transformation rule (LHS -2~ RHS) is a pair of graphs
(LHS, RHS), called left-hand side and right-hand side, and an injective (partial)
graph morphism p : LHS — RHS. Applying the rule (LHS 2, RHS) means
to find a match of LHS in the source graph and to replace this matched part
in the source graph by the corresponding RH.S, thus transforming the source
graph into the target graph of the graph transformation.

Especially for the application of graph transformation techniques to visual
language (VL) modeling, typed attributed graph transformation systems [2] have
proven to be an adequate formalism. A VL is modeled by a type graph capturing
the definition of the underlying visual alphabet, i.e. the symbols and relations
which are available. Sentences or diagrams of the VL are given by graphs typed
over (i.e. conforming to) the type graph. Such a VL type graph corresponds
closely to a meta model. In order to restrict the visual sentences to valid visual
models, a syntax graph grammar is defined, consisting of a set of language-
generating graph transformation rules, typed over the abstract syntax part of
the VL type graph. The rules describe editing operations which lead to the
construction of valid visual models only.

Intuitively, the application of rule p to graph G via a match m from LHS
to G deletes the image m(LHS) from G and replaces it by a copy of the right-
hand side m*(RH S). Note that a rule may only be applied if the so-called gluing

condition is satisfied, i.e. the deletion step must not leave dangling edges, and
for two objects which are identified by the match, the rule must not preserve
one of them and delete the other one.

Definition 1 (Graph Transformation). Let (LHS Y RHS) be a typed
graph transformation rule and G a typed graph with a typed graph morphism

LHS ™ G, called match. A graph transformation step G 2= H from G to

a typed graph H wvia rule p, match m, and co-

match m* is shown in the diagram to the right.

The rule r may be extended by a set of negative NAC <>— LHS ——> RHS

application conditions (NACs) [9, 2]. A match G
LHS ™ G satisfies a NAC with the injective ql\m m
NAC morphism n : LHS — NAC, if there is G—H

no injective graph morphism NAC -4 G.
A sequence Gy = G1 = ... = G, of graph transformation steps is called graph
transformation and denoted as Gy = G,,. A

The language of a graph grammar consists of the graphs that can be derived
from the start graph by applying the transformation rules.

Although we do not define the attribution concept for graphs formally in this
paper (see [2] for a complete definition of the theory), we use node attributes in
our examples, e.g. text for the names of nodes, or integers for their positions.
This allows us to perform computations on attributes in our rules and offers a
powerful modeling approach.

2.2 Type Graph and Syntax Rules for a Railway System

Using graph transformation, a type graph defines the visual alphabet, i.e. the
symbols and symbol relations of a visual language. Layout information is inte-
grated in the type graph by special shape types connected to symbol nodes, and
by constraints on the relations of visual representations. The shape types include
information about the symbol’s shape (any kind of graphical figure or line), and
the constraints establish certain visual relations (like “The shape for this symbol
type is always glued to the shape for another symbol type,” or “The shape for
this symbol type has always a minimal size of ...”).

Fig. 1 shows the definition of the type graph of our domain-specific language
for building railway systems (without trains so far) in TIGER (Transformation-
based Generation of Environments) [10, 11], a visual editor generation tool. In the
upper editor, we see the abstract syntax type graph with symbol types like Track,
End and Buffer. For each type variant, a child inheriting from the corresponding
abstract type is added to the type graph (e.g. StraightH for a horizontal straight
track, Bendl for a bend which is curved up-left /right-down, and HL for a track End
which is the gluing point gluing two tracks at the first track’s horizontal-left side.
Note that the nodes in the abstract syntax type graph contain layout positions
(x, y: int) allowing the editing rules to set the position of the corresponding figures
in the editor accordingly. In the lower part of Fig. 1, editors for shape types are
shown, depicting the visualization of different track types and the Buffer type.

Dz "raitway. 18 [abstract syntax

v« Alphabet

A

~ {7 Nodes
":"7? Track Track te_Track te_end [End
0 ftrack_end } int

» # End

_—
» # Bend nt glue T e

» H Straight L’
» H Straight_H F g\ue frarm
» “# Straight_V Stralht
|
—

» ‘# Bend1 A Fa)

» 7 Bend2

» 7 Bends Etraight V]

» 7/ Bendd ﬂ Uffer

» HHL Bends3 m hame java.lang Strin

4 = I:I J g String
“l

EED v

I

8o 0o [Outer... 0o OH [Buffe...
layout for Bend1 layout for Bend2 layout for Straight_H layout for Straig |ayout for HL layout for Buffer

[l Ll 4

r - "
: 2 | — i s ez
® % % ® 4 name ||
= = = = = |
a |- (-9 a a
-l (2 13

Fig. 1. Type Graph for the Domain-Specific Railway Language

A type graph together with a syntax graph grammar is used as high-level
visual specification mechanism for VLs. The grammar restricts the allowed vi-
sual sentences conforming to the type graph to the meaningful ones. Grammar
rules define syntactical editing operations. Such an operation is modeled as a
graph rule typed over the VL type graph being applied to the syntax graph of
the current diagram. Thus, only such syntactical changes are allowed which are
described by a syntax rule and which result again in a valid VL diagram. An
editing operation (i.e. the application of a syntax rule) results in a correspond-
ing change of the internal abstract syntax graph of the diagram and the layout
positions of the corresponding symbols.

Fig. 2 shows four of the syntax rules for the railway VL. Rule newStraightH
produces an unconnected track, the other rules add tracks, switches and buffers
by gluing them to tracks which already exist in the model. Numbers (m = ..)
at objects indicate mappings from a rule’s LHS to its RHS. Input parameters
(objects to be identified for the match by mouse click) are indicated by numbers
(tn = ..) in a rue’s LHS. NACs (not depicted) forbid gluing tracks to tracks
at endpoints where already other tracks are glued. Positions relating objects to
each other are defined in each rule’s properties view.

A visual language (VL) definition based on a type graph and a set of syn-
tax rules is used in TIGER to generate a corresponding visual editor. TIGER
combines constructive VL specification using graph transformation with sophis-
ticated graphical editor development features offered by the Eclipse Graphical
Editing Framework (GEF) [12]. The execution of editor commands available in
the generated editor correspond to the application of syntax rules to the under-
lying abstract syntax graph of a diagram. The rule application is performed by
the graph transformation engine AGG [7]. TIGER extends AGG by a concrete

5 glueBufferRight B newStraightH
definition of glueBufferRight @ definition of newStraightH]
LHS RHS LHS RHS
A
m=0 m=0
P m= L]
ng:ﬂ—ﬂ m=1 "2 | hame —'
v
[glueSwitchLeftDown 1 glueRight
definition of glueSwitchLeftDown f definition of glueRight)
LHS RHS LHS RHS
-
0= m=(
in=0 m=(%‘ in=0 m=C m=[
v

Fig. 2. Syntax Rules for the Railway Language

visual syntax definition for flexible means for visual model representation. From
the definition of the VL, the TIGER Generator generates Java source code. The
generated Java code implements an ECLIPSE visual editor plug-in based on GEF
which makes use of a variety of GEF’s predefined editor functionalities. Layout
information (e.g. color, shape, and size, ..) are coded in the corresponding GEF
editor classes. Fig. 3 shows the graphical user interface of the railway editor
generated by TIGER from the VL specification consisting of the railway type
graph similar to the one in Fig. 1, but now also allowing to edit train symbols
(light-blue rectangles), and a railway syntax grammar. Basic editor operations
are available in the tool palette on the left-hand side, or by the context menu
which offers a list of operations depending on the selected symbol type.

3 Validation by Simulation

If a visual language models dynamic aspects of systems, visual simulation is inter-
esting. Usually, a prerequisite for simulation is a (slight) extension of the visual
language such that different execution states can be distinguished. In the case of
our railway system, this is the addition of trains. Simulation then is specified by
a set of simulation rules, typed over the extended VL type graph. The simulation
rules specify the possible simulation steps (e.g. train movements) which do not
change the underlying system structure. A sequence of simulation steps is called
simulation run or simulation scenario. In general, we have non-determinism in
simulation in the sense that there are more than one rules applicable at more
than one possible matches. Up to now, TIGER supports stepwise simulation
only, i.e. the user selects an applicable rule from the rule palette, and defines the
match by clicking on relevant objects in the editor panel.

R7.w RailwayAB. vw traforesult. petrinet

RailwayAB.rw: Railway

I3 Select
£, Marquee

(& Patterns *
ylueLei

glueUp
glueLeftDown
glueLeftUp
glueDownLeft
glueSwitchRightD...
glueSwitchLeftDo... & =
glueBufferLeft
glueBufferTop
glueBufferRight
glueBufferBottom

connectLR
v

Fig. 3. TigER-generated Visual Editor for the Railway Language

Fig. 4 shows the abstract syntax of the railway simulation rules. The first
rule allows to add a train to a track, thus determining how many trains are
distributed initially on which tracks in the railway system. The NAC (drawn as
crossed-out part in the LHS) specifies that there must not be another train on
this track. The second rule has to be applied after the first one, and models the
movement of a train to the next track. Note that using the abstract nodes of
type Track and Train, we only need one abstract rule for moving trains. Again,
the NAC makes sure that the rule is only applied if there is not yet another train
on the target track.

RHS

LHS 1 _]
:Train 3 [:glue M 3 RHS

from to 5 on go from

on o on
1 1 5

LHS

Fig. 4. Simulation Rules for Initial Train Distribution and for Train Movements

In railway simulation not only the position of trains is changing, but also
the underlying net topology is adapted when a switch is changing its mode.
In our approach, such reconfiguration operations are modeled by reconfiguration
rules. Simulation and reconfiguration rules may be applicable to the same system
states. In our railway system, changing the modes of switches is realized by
applying a reconfiguration rule. A switch consists of two tracks (one bend and
one straight track) and may be crossed by a train in only one way. The directions

a train is allowed to go are modeled by the glue edges connecting track end points.
The reconfiguration rule switch is shown in the top row of Fig. 5, and the effect
of its application (a transformation step changing the mode of a sample switch)
is shown in the bottom row of Fig. 5, where the match mapping of the track end
points is indicated by corresponding numbers. In the concrete syntax, a green
arrow indicates the current switch mode.

LHS RHS

4 1 6
“swich | [give] *(ENDee [glue]

from

from from

‘Eoelde]l Ew,

1 2 application of ST 2
ﬁ'ﬁ' i swich _m'—ﬁ-
- o 3 -

Fig. 5. Reconfiguration Rule realizing Switch Modes

4 Analysis

The aim of analyzing the railway specification is to avoid unsafe states in the
simulation. For example, we would like to be sure that

(i) there are never more than one trains on a track,
(ii) a switch can only change its mode when there is no train on it.

In order to check condition (ii), we have to relate a reconfiguration opera-
tion (changing the switch mode) and a simulation operation (moving a train).
We consider this relation in Section 4.1. Moreover, we are interested in safety
properties like deadlocks which can best be analyzed using Petri net tools (see
Section 4.4). Hence, we define a model transformation from the railway VL into
the semantic domain of Petri nets (Sections 4.2 and 4.3).

4.1 Relation of Reconfiguration and Simulation

When reconfiguration of the system structure is allowed during runtime, the
question arises under which conditions a simulation step is independent of a
reconfiguration step, i.e. can the two transformations starting from the same
system state be applied in any order, leading to the same result. The Local
Church-Rosser Theorem for graph transformation systems [2] states that, for two

parallel independent graph transformations G PLAY H) and G P22 H,, there is

a graph G’ together with graph transformations H; "==° G’ and Hy "==' ', In
our case, we need to analyze the parallel independence of rules belonging to two
different rule sets (simulation and reconfiguration rules). To this end, we use the
automatic critical pair analysis offered by AGG, where rule pairs are analyzed to
find out critical pairs of rule matches. Each parallel dependent transformation is
an extension of a critical pair. The result of the critical pair analysis applied to
the reconfiguration rule switch and the simulation rule go yields e.g. the critical
pair shown in Fig. 6.

57) Rule 1 oz | Q0D Ruke2 o
90 :LHS ‘RHS NAC: Nac0 switch:LHS

-

10:te_Track
hte_end

I
1| T i NDEE K (&07) (produce-forbid(NAC:Naco)-conflict o’ &
overlapping of go:RHS and switch:NAC =)

i)
e-{2001e]

22:glue_to

[

4|

Fig. 6. Critical Pair Analysis of Railway Simulation and Reconfiguration

Analyzing this pair, we see that reconfiguration rule switch cannot be applied
if simulation rule go has been applied before and has been moving a train onto
a track which is part of the switch, because the NAC of rule switch forbids to
reconfigure switches with trains on it. Here, we have a so-called produce-forbid
conflict, where one rule produces an object which is forbidden in the match of
the other rule. Applying critical pair analysis to the reconfiguration rule switch
and the other simulation rule init yields a similar conflict. Both conflicts together
confirm that condition (ii) is valid for all possible railway models. Here, conflict
detection is used to analyze safety conditions. Analogously, critical pair analysis
of both simulation rules can be performed to check condition (i).

4.2 Model Transformation from Railway Models to Petri Nets

In this section we present a model transformation from the railway system to
Petri nets with the aim to use Petri net analysis and verification techniques to
analyze the railway behavior. Surely, only a limited class of simulation problems
is sufficiently ” Petri net like” to allow transformation of the more powerful graph

10

rewriting model into Petri nets. Here, the distinction of simulation rules and
reconfiguration rules helps to find the part of the system which behaves ”Petri
net like” (e.g. the trains moving along the tracks), and which can be translated
and analyzed. The other parts describe reconfiguration operations (e.g. adding
tracks or changing switches) and rather correspond to changes of the Petri net
structure, but not to Petri net firing behavior.

Model transformations between visual languages is defined in our approach
by graph transformation rules, as well. We transform the abstract syntax graph
of a source model (e.g. a railway system state) by applying transformation rules
resulting in the abstract syntax graph of the target model (e.g. a state of a
Petri net). The abstract syntax of source and target models are specified by
the type graphs TGgs and TGr. A model transformation is defined by a graph
transformation system GT'S = (T'G, P) consisting of type graph TG and a set
of T'G-typed model transformation rules P, where both type graphs TGg and
TG have to be subgraphs of TG (see Fig. 7). The model transformation starts
with the abstract syntax graph Gg of the source model. As TGg is a subgraph
of TG, Gg is also typed over T'G. Please note that T'G' may contain not only
TGg and TG, but also additional types and relations which are needed for the
transformation process.

After application of all model transformation rules P as long as possible, the
resulting graph G, is typed over T'G, but not yet over the type graph TGt of
the target language. In order to delete all items in G,, which are not typed over
TGr we apply a restriction construction, which restricts G,, to those objects
typed over TGr. The model transformation process is visualized in Fig. 7.

incg incp

TGsC TG DTGy

typeg g T Ttypecn TtyPEGT

Gg —2—s . =2 G~ Gr

Fig. 7. Typing in the Model Transformation Process

Fig. 8 shows the type graph T'G for the model transformation from railway
systems to Petri nets. T'G relates elements of the source type graph for railway
systems (see Fig. 1) to elements of the target type graph for Petri nets, consisting
of symbol types for Places, Transitions and Arcs in two directions. Tokens are
modeled by an integer attribute of the Place type.

Two of the model transformation rules are shown in Fig. 9. Obviously, tracks
are mapped to places (see rule createPlace), and trains to tokens (see rule cre-
ateToken). Here, the possibility to use abstract types like Track or End in the
rules proves to be very useful, since we do not have to relate e.g. all different
types of tracks to places. When mapping connections between tracks to arcs and
transitions in the Petri net, the gluing of ends must be considered to determine
the direction of Petri net arcs. (Rule createTransition is not shown explicitly.)

11

glue_to Transition "~

) int x

Buffer beginArcTP (int y
java lang.String name 6 String name

5 w
- e e — = — = — —{RefArcTP -
- *

. endArcPT
- r3
~ <.
T - endArc TP
RefArePT |- — = — — = — =\ — — »
e_Track y
;:taik e — E - -_ n Place
— . * T~ ~ "plint token
n_Track 8 _ String name
_ == " "« |intx
)
on_Train/ "
Train " ¥

int x
inty

A
TrainStraightH ™

Fig. 8. Type Graph for the Model Transformation Railway2Petri

Nac } : [O]createPlace of Rail2Petri.gragra
- [a]¢
¥ Place
1:Track n 2
1 E - 2 token=0
i = 1:Track |« S
L = X=X
-
=l >
Nac_ : [O]createToken of Rail2Petri.gragra E

»
»

A

6:r1 712
|3:Track}4 - {Z:RefPlace}- —>|1:Place|

8:0n_Track

9:on_Train 9:on_Train /

(Refroken) 7 /
= - (Remoren)

=
=
=g F
5
I TR—

Fig. 9. Two Rules for the Model Transformation Railway2Petri

Model transformations based on graph transformation have been investigated
e.g. in [13], where also techniques are presented to show that a model transforma-
tion has functional behavior, and is syntactically correct, i.e. for each diagram in
the source language we obtain in a finite number of steps in a unique well-defined
diagram in the target language. To execute model transformation rules and to
check functional properties of model transformations (termination and conflu-
ence), the graph transformation engine AGG [7,14] can be used. Furthermore,
TIGER [11] also offers tool support for model transformation by graph trans-
formation between two generated ECLIPSE editor plug-ins. Fig. 10 shows the

12

Petri net resulting from the model transformation of the train system depicted
in Fig. 3 using the Railway2Petri model transformation rules.

traforesult.petrinet: Petrinet

I3 Select

£, Marguee

(= Symbols -
Create
Create’ ition

(= Connections *+
CreateArcPT
CreateArcTP

Fig. 10. Petri Net Obtained by Model Transformation of the Railway System in Fig. 3

4.3 Correctness of the Model Transformation

Apart from syntactical properties of a model transformation, we can argue about
its semantical correctness if both the source and the target language have a
semantics. In our case, the behavioral semantics of railway systems is given by
the simulation rules, and the semantics of Petri nets is the well-known Petri net
firing behavior. We have to show that for each simulation step in the source
railway model, there is a corresponding simulation step in the target model,
i. e. a firing step in the corresponding Petri net. Using formal properties of
model-and-rule-transformation based on graph transformation [15, 16], we argue
as follows: we perform a rule transformation of the simulation rules using the
Railway2Petri model transformation rules. Basically, the model transformation
rules are applied to the LHS, RHS and NACs of each simulation rule. This
results in a transformed simulation rule consisting of the translated LHS, RHS
and NACs. Applying such a rule transformation to the railway simulation rule
go, we obtain the rule go' shown at the bottom of Fig. 11 which models the firing
behavior of a transition with exactly one pre-domain place and one post-domain
place which is enabled only if the post-domain place is unmarked.

All Petri nets which are results of a railway model transformation, have only
transitions of that type. So, the firing rule go' in Fig. 11 describes the firing
behavior for all possible resulting railway nets, provided that we assume ele-
mentary Petri nets (or condition-event (C/E) nets [17]) as underlying semantic
domain, a restricted kind of place/transition nets where place capacity and arc

13

LHS

- : RHS
: 3| 3 :

Train /glue\ m Train

from to on go) from

on 1) 5 / 1 o to 5 on

ﬂ rule transformation ﬂ
Transitc

. : 1 B
Transition | 5 .Plac_e :Place Transition | 3 PIac_e
token=0 % N token=1
/ AN / 5

,
/ Ny 62 / /

LHS 1 RHS

2

Fig. 11. Rule Transformation of the Railway simulation rule go in Fig. 3

weights are always one. The semantics of general place/transition nets would
not correspond to the firing rule in Fig. 11, since in place/transition nets more
than one token may be put to a post-domain place. In the case of C/E nets,
each simulation step in the railway model (a train movement from one track to
the next) corresponds to a transition firing step of the transition between the
places corresponding to the two tracks, and we have the situation depicted in
the following commuting correspondence diagram:

model trafo =

G1:>N1

Railway simulation stepl iC/E net simulation step

model trafo *

G2:>N2

In this diagram, we start with a graph G; of the railway domain, such that
the model transformation G == N, yields the Petri net N, where a transition
can be fired, leading to the Petri net Ny with a different marking. Then, there
exists a simulation step in the railway domain G; — G such that the model
transformation of Gy yields the same Petri net Ns. In fact, we have that the
source railway simulation model and the target Petri net are always bisimilar.
The model transformation establishes one equivalence relation relating railway
graphs and marked C/E nets, and another one relating railway simulation rules
and Petri net transitions. Then, given a railway graph G; and a corresponding
Petri net N; resulting from the model transformation of Gy, i.e. G; ~ Ny, the
equivalence is a bisimulation since for rule r used in the transformation step

G1 — G5 there exists a transition ¢ with r ~ ¢ and N; HON Ny and Ny ~ Gs.

4.4 Analysis in the Petri Net Domain

Now the resulting Petri net can be analyzed using Petri net techniques, e.g. for
liveness (any transition can fire eventually), for place invariants (sets of places
where the sum of tokens remains constant), transition invariants (sets of transi-
tions the firing of which does not change the marking), deadlocks (sets of places
that will never be marked again, once they are empty) or traps (sets of places

14

that will never loose their tokens). An example is the trap in the net in Fig. 10,
consisting of the places corresponding to the horizontal tracks from A to B in
Fig. 3, since in the current switch mode, the train will never leave those tracks.

An interesting aspect in model transformation for analysis is the back-anno-
tation of analysis results to the source model. In our case, places can be traced
back to the corresponding tracks easily, as we have a one-to-one correspondence
between them (see Fig. 8 and rule createPlace in Fig. 9). Thus it is possible to
visualize e. g. deadlocks in the railway system by highlighting the corresponding
tracks in a certain color. Other interesting properties concern path finding (the
shortest connection from point A to point B), and collision detection.

All these properties of reconfigurable systems should be analyzed having in
mind the possible reconfiguration operations. For instance, more interesting than
knowing whether there is a deadlock considering a fixed switch mode is it to know
whether there are deadlocks independent of all possible switch modes. Here, the
open problem is to find a way to generate all possible switch configurations inside
the railroad domain and generate a Petri net for each case. A possible solution
would be to include the switch behavior in the generated Petri net, which leads to
more complex model transformation rules but allows one to analyze all possible
switch configurations. As reconfiguration operations, then only rules for adding,
removing or repairing tracks have to be considered.

5 Related Work

While Petri net modeling and analysis tools like Netlab [18] and CPNTools
[19], are well known and frequently used, domain specific modeling languages as
supported by TIGER may be generated using meta CASE tools like DiaGen [20]
and AtoM? [21]. Those tools have no direct support for model driven analysis
techniques and do not support reconfiguration of systems during runtime. Petri
net transformations that aim at changing the net in arbitrary ways have been
described in [22], and runtime system reconfiguration has been investigated in
[23], but a user friendly, graphical environment for the design and analysis of
reconfigurable systems is still missing.

Model transformations are supported from various tools like VIATRA2 [24],
GrEAT [25], and other tools from the Eclipse Generative Modeling Tools (GMT)
project [26]. In most cases these transformations have to be described textually,
and user friendly support for visual analysis and testing is generally missing.

6 Conclusion

This paper gives an example for using the unifying approach of graph transfor-
mation to define the syntax and semantics of a domain-specific visual modeling
language. The language models a small railway system, and from the graph-
transformation based language definition, a visual editor is generated as ECLIPSE
plug-in. The type hierarchy used for syntax definition provides a good basis also
for describing the semantics of the system in terms of simulation rules, and for

15

a model transformation from the domain-specific language into Petri nets. Since
many systems have to be reconfigurable during runtime, we have investigated
the relation of reconfiguration operations (e.g. changing the mode of a switch)
and simulation operations (e.g. move the train to the next track) by analyzing
rule dependencies. Tool support for language definition, visualization and visual
editor generation is available by the TIGER tool environment and the graph
transformation engine AGG, providing support to analyze termination, conflicts
and dependencies in graph transformation systems.

Using graph transformation for modeling and analyzing reconfigurable sys-
tems has shown to be a solid basis to reason about system properties in different
reconfiguration modes. In this context, interactions between simulation states
and structure should be investigated in more detail, since reconfiguration is of-
ten triggered by certain system state changes [27].

As future work concerning TIGER, we envisage an extension of TIGER to-
wards more sophisticated editing and simulation. We intend to provide basic
syntax-oriented operations automatically instead of requiring the language de-
signer to specify them manually for each VL element. For simulation we aim
at structuring simulation rules using control structures. Abstract rules and rule
structuring techniques are the basis of a formal but scalable approach that hope-
fully will prove to be usable for modeling and analyzing also much larger case
studies. Moreover, work is in progress to transfer results concerning depen-
dencies of simulation and reconfiguration operations from graph transformation
systems to Petri nets, such that reconfigurable Petri nets can be modeled [28].

Acknowledgements

The authors would like to thank Szilvia Varré-Gyapay and the anonymous ref-
erees for their useful comments.

References

1. Tolvanen, J., Rossi, M.: MetaEdit+: Defining and Using Domain-Specific Modeling
Languages and Code Generators. In: Proc. Conf. on Object-oriented programming,
systems, languages, and applications (OOPSLA ’03). ACM Press (2003) 92-93

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer
Verlag (2006)

3. Object Management Group: Meta-Object Facility (MOF), Version 1.4. (2005)
http://www.omg.org/technology/documents/formal/mof.htm.

4. Kreowski, H.J., Holscher, K., Knirsch, P.: Semantics of visual models in a rule-
based setting. ENTCS 148(1), Elsevier Science (2006) 75-88

5. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformations, Vol. 1: Foundations. World Scientific (1997)

6. Eclipse Consortium: Eclipse — Version 3.2.1. (2007) http://www.eclipse.org.

7. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Proc. on Application of Graph Transformations with In-
dustrial Relevance. Vol. 3062 of LNCS. Springer (2004) 446 — 456

16

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.
28.

Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scientific (1999)

Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application
Conditions. Special issue of Fundamenta Informaticae 26(3,4) (1996) 287-313
Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based
Design of Visual Languages using TIGER. In: Proc. Workshop on Graph-Based
Tools. Vol. 1 of EC-EASST (2006)

Tiger Project, TU Berlin (2005) http://www.tfs.cs.tu-berlin.de/tigerpr;j.

Eclipse Consortium: Eclipse Graphical Editing Framework (GEF) — Version 3.2.
(2006) http://www.eclipse.org/gef.

Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations
based on Typed Attributed Graph Transformation. In: Proc. Workshop on Graph
and Model Transformation. Vol. 152 of ENTCS (2005)

AGG, TU Berlin (2005) http://tfs.cs.tu-berlin.de/agg.

Ermel, C., Ehrig, H., Ehrig, K.: Semantical Correctness of Simulation-to-
Animation Model and Rule Transformation. In: Proc. Workshop on Graph and
Model Transformation Vol. 4 of EC-EASST (2006)

Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule
transformation. In Proc. Workshop on Graph Transformation for Verification and
Concurrency. To appear in ENTCS (2007)

Reisig, W.: Systementwurf mit Netzen. Springer-Verlag, Springer Compass (1985)
RWTH Aachen: Petrinetz-Tool Netlab (Windows). (2007) http://www.irt.rwth-
aachen.de/typo3/index.php?id=101&L=0.

CPN Group, University of Aarhus, Denmark: CPN Tools: Computer Tool for
Coloured Petri Nets. (2005) http://wiki.daimi.au.dk/cpntools/cpntools.wiki.
Minas, M., Viehstaedt, G.: DiaGen: A Generator for Diagram Editors Providing
Direct Manipulation and Execution of Diagrams. In: Proc. IEEE Symp. on Visual
Languages (1995) 203-210

de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM®. Software and System Modeling 3(3)
(2004) 194-209

Padberg, J., Urbasek, M.: Rule-Based Refinement of Petri Nets: A Survey. In:
Advances in Petri Nets — Petri Net Technology for Communication Based Systems.
Vol. 2472 of LNCS. Springer (2003) 161-196

Matevska-Meyer, J., Hasselbring, W., Reussner, R.: Software architecture descrip-
tion supporting component deployment and system runtime reconfiguration. In:
Proc. Workshop on Component-Oriented Programming (2004)

Csertéan, G., Huszerl, G., Majzik, 1., Pap, Z., Pataricza, A., Varr6, D.: VIATRA:
Visual automated transformations for formal verification and validation of UML
models. In Proc. Automated Software Engineering. IEEE Press (2002) 267-270
Narayanan, A., Karsai, G.: Towards Verifying Model Transformations. In: Proc.
Workshop on Graph Transformation and Visual Modeling Techniques. ENTCS,
Elsevier Science (2006)

Eclipse Generative Modeling Tools (GMT) http://www.eclipse.org/gmt. (2007)
Wikipedia: Reconfigurable Computing (2007) [Online; accessed 28-August-2007].
Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of Net
Transformations and Token Firing in Reconfigurable Place/Transition Systems.
In Proc. Conf. on Application and Theory of Petri Nets and Other Models of
Concurrency. Vol. 4546 of LNCS, Springer (2007) 104-123

