THE FORMAL SPECIFICATION COLUMN

BY

HARTMUT EHRIG

Technical University of Berlin, Department of Computer Science
Franklinstral3e 229, D-10587 Berlin, Germany
ehrig@cs.tu-berlin.de

M oDEL T RANSFORMATIONS BY GRAPH
T RANSFORMATION ARE FUNCTORS

Hartmut Ehrig, Karsten Ehrig, Claudia Ermél, Ulrike Prangé

!Fac. of Electr. Engineering and Comp. Science
Technical University of Berlin, Germany
ehrig|lieske|uprange@cs.tu-berlin.de

2 Department of Computer Science
University of Leicester, United Kingdom
karsten@mcs.le.ac.uk

Abstract

In this paper, we extend our ideas on model transformations as functors
discussed in the previous issue and embed this concept into the framework
of graph transformation systems. We show that under certain restrictions of
the rules model transformations by graph transformation are functors.

Introduction

In our previous column [2] we have discussed the claim that "model transforma-
tions should be functors” from a mathematical and from a practical point of view.
Especially interesting from the practical side was the proposal of the POPL'07

Bulletin of the EATCS no 93, pp. 134-142, October 2007
(© European Association for Theoretical Computer Science

The Bulletin of the EATCS

keynote speaker Don Batory [1] that model transformations in his approach of
Feature Oriented Model Driven Development (FOMDD) should be functors.

On the theoretical side, we have discussed well-known data type construc-
tions which are functors and can be considered as model transformations. Typical
examples are the semantics of parameterized specification and module specifica-
tion (see [4, 5]). Moreover we have claimed that under suitable conditions model
transformations defined by graph transformations are functors. In this column, we
justify this last claim.

1 Model Transformation by Graph Transformation

In this section, we define model transformation by graph transformation. First we
shortly introduce the necessary definitions of typed graphs, rules and transforma-
tions (see [3]).

A graphG = (V,E, src tar) is given by sets/ and E of nodes and edges,
respectively, and source and target functisnstar : E — V. For graphsz' =
(V,E', srd, tar') with i = 1,2, a graph morphisnfi = (fy, fg) : G' — G?is given
by mappingsfy : V! — V2 and fz : E! — E? compatible with the source and
target functions, i.efy o srct = src® o fz and fy o tar! = tar? o fz. Graphs and
graph morphisms form the categdByaphs.

A type graphT Gis a distinguished graph that defines node and edge types. A
typed graph@,t) is a graphG together with a typing morphistn: G —» TG. If
the typing is clear in the context, we den@as a typed graph without explicitly
namingt. A typed graph morphisnf between typed graph&t, t*) and G2, t?)
is a graph morphisnf : Gt — G2 compatible with the typing, i.et? o f = t.

For a type grapf G, typed graphs and typed graph morphisms form the category
Graphsrg.

A typed graph rulep = (L kL R) consists of three typed graphs
K andR, called left hand side, gluing graph and right hand side, respectively,
and injective typed graph morphisrhandr. Given a rulep and a typed graph
morphismm : L — G, called match, the application of the ryteto G via the
matchm is given by the following two pushouts (1) and (2) leading to the direct
typed graph transformatio@ 22 H A sequencé&s, = G; = ... = G, of
direct transformations is then called transformation and denot@bbyfb Gn.

/N”L'

K—r R
\q/\ Jm) \ @ {
G D H J

135

BEATCS no 93 THE EATCS COLUMNS

A negative application condition (NAC) fquis a typed graph morphism: L —

N. The matchm satisfies the NAQ if there does not exist an injective morphism
g: N — G such thatgon = m. For p we define a seNAC, of NACs. The
application ofp with NACs is allowed only ifm satisfies all NACs1 € NAC,.

A graph transformation syste@TS = (TG, Prod) is how given by a type
graphT G and a seProd of rules with NACs. For graph transformation systems
there are many interesting results like the Local Church—Rosser, Parallelism, Em-
bedding, Extension and Local Confluence Theorems [3].

In the following, we only consider nondeleting rules. In this case we have
L = K and the rule is completely defined by the morphisand its NACs.

For the definition of a model transformation by graph transformation, the
source and target models have to be given as typed graphs typed Gyeand
TGy, respectively, wher@& Gs is the type graph defining the source language
and TGy is the type graph defining the target language Performing model
transformations by typed graph transformations means taking a model as a typed
graph and transforming it according to certain rules. The result is a typed graph
which represents the target model.

For the model transformation, we define a type gra@with TGs € TG and
TGy € TG. This type graph includes not onlyGs andT Gy, but may contain ad-
ditional node and edge types which are needed during the transformation process.
Due to the inclusion, all source and target models are also automatically typed
overTG. Given a graph transformation syst&i S = (TG, Prod), for a source
modelMs we start the model transformation by applying the ruleBriod as long
as possible. If this process terminates, it results in a transformmipﬁ*: M
with a graphM typed overT G. M contains the target model, but also the source
model and possibly additional nodes and edges. To obtain the target model, we
restict M to the target type grapR Gy by constructing the pullbackP@). The
pullback objectM|ra, = M+ is our target model and correctly typed oveBr.

MS £ > M J MT

ts t (P B) tr
‘ TGs incs TG incr TGr |

Given the graph transformation syst€dT S = (TG, Prod), we define the
model transformatiorMT : Ls = Ly, whereLs € Graphsig, andLy C

Graphsrg, are subcategories witils € LsandMy € Lt if and only if Mg —M
is a terminating transformation witM|rc, = Mr, and all injective morphisms.

In general, there may beftirent terminating transformations leading to target
modelsM: and M# for the same source modeMs. If MT(Ms) is uniquely

136

The Bulletin of the EATCS

defined, we saMT has functional behaviour.

2 Model Transformation as a Functor

In this section, we consider a model transformathdm : Ls = L+ with func-
tional behaviour given by a graph transformation sys@msS = (TG, Prod) as
described in Section 1. In addition, we restrict the rule®iod to TG\T Gs-
generating rules, where for a rute: L L Rthere are only elementse R\r(L)
with typetR(x) € TG\TGs, and define thalAC, = {r}, i.e. each rule : L LR
has only one NAC, which is exactly the right hand side. With these restrictions,
we want to show thaM T becomes a functor.

First, we have to definM T (ms) for an injective morphisnms : M — M3

in Ls. For MZ, we have a transformation sequermé — M and a restriction

M3 leading to the model transformatiddT(M3) = Mz. Since only nondeleting
rules are applied iy mg is boundary-consistent w. rII[G] i.e. the transformation
sequence does not delete any boundary elementibreover, due to the restric-
tions of the NACs andns being injective ms is also NAC-consistent w.r.t. [6],

which means that no NAC dfis violated by extending/ to M2 via ms. Thus

we can apply the Embedding Theorem with NACs [6] leading to a transformation
sequencévi2 — My with a morphisnrmy : M — My as shown in diagram (1).
Then we apply the rules of our graph transformation as long as possible leading

to a transformation sequendéy — M2 Since we have only nondeleting rules
there is a morphisrd : My — M2 with t?od = ty, and we definen=dom'. The
restriction ofM? leads to the pullback (2) with pullback objed€. This pullback
andt? o mo j* = incr o t! imply that there exists a uniquer : M — M2 such
that (3) commutes ang o mr = ti, and by pullback decomposition also (3) is a
pullback. Now we defindT(mg) =

X @

> M H it » 2
t d t
{tg W 2 t%J
G TG her TGr

incs

For MT to be a functor we have to show first tHdfl (ns o mg) = MT(ns) o
MT(ms) and second tha¥i T (idwmg) = idmT(mg).-

137

BEATCS no 93 THE EATCS COLUMNS

1. Consider the following diagram with
Ns oms = fs, MT(ms) = mr, MT(ns) = ny andMT (fs) = fr,

as well as the morphism®, nt, n, n” and f, f’ of the construction with
doom =m,d3o” = nandds o f = f, respectively. The functional
behaviour ofMT implies that we can construct the stepwise embedding

M3 = M3t = M3? = M3, sincens is consistent w.r.tt andmy is
consistent w.r.t.t’, and we have thatny om¥ = f', " od, = dzgyomy
andds; o d3; = d;. Combining these results we have tlmt m = f.
Pullback composition and the uniqueness of pullbacks further implies that
fr =nromy,i.e. MT(ns o mg) = MT(ng) o MT(mg).

1 t o nal it 1
Mg > M Mz
I 2 & "]

2 t 2t i 2
M L MH\/'v M2 MT

fs dz f fr
Ns n n nr
. v N32_
Mg Y e —— MH \/'vM3 i T
da1 p dz2
3

2. MT(idyg) = idmr(ms) follows from the functional behaviour d1T.

In the following, we present a model transformation from statecharts to Petri
nets (see [3]). In Fig. 1, the integration of the type graphs for the model transfor-
mation is shown. In the left hand side, the source model type graph for statecharts
is depicted. In the right hand side, the target model type graph for Petri nets is
shown. Together with some additional nodes and edges they form the integrated
type graph.

The rules for the model transformation are given in Figs. 2 and 3. Each
state in the statechart is transformed to a corresponding place in the target Petri
net model, where a token in such a place denotes that the corresponding state is
active initially (rulesinitState2Place andState2Place). A separate place is gen-
erated for each valid event by ruterent2Place. Each step in the statechart is
transformed into a Petri net transition (r8ep2Trans). Naturally, the Petri net
should simulate how to exit and enter the corresponding states in the statechart,
and therefore input and output arcs of the transition have to be generated accord-
ingly (see rulesStepFrom2PreArc and StepTo2PostArc). Furthermore, firing a
transition should consume the token of the trigger evaérngder2PreArc), and

138

The Bulletin of the EATCS

Conf

stname: String
isInit: Boolean

Step trigger

Event

Place

! I

! T

end . | trans2act . |
Transmon—’% !

|

i

i cond2state 3
! tran sZcopd
: s

StateMachine SC type graph PN type graph
smname: String sm2step et
sm2conf presy
from

t A ename: String| §
- Stz ' : Iname: St
conf2state step2trans | A {)oﬂgn:eBooEg;%l
State begin act2event A A postsrc 3

3r2 3r3

7777777777777

irﬁ

Figure 1: The integration of the type graphs

should generate tokens to (the places related to) the target event indicated as the
action @ction2PostArc). All these rules are nondeletind,G\T Gs-generating

and we haveNAC, = {r}. Moreover, the model transformation has functional
behaviour (see [3]), thus we can apply the developed theory and conclude that this
model transformation is a functor.

In Fig. 4, the application of the model transformation to the stateclatis
andS G is shown leading to the Petri nefsT; and PT,, respectively. For the
morphismfs : SG — S G we get a corresponding morphisip: PT; — PT,.

3 Conclusion

In this column we have continued the discussion of the last column concerning
the claim that "model transformations should be functors”. We have shown that
a suitable class of model transformations based on graph transformation defines a
functor between the corresponding visual languages. It remains open to analyze
more general classes of model transformations and morphisms between visual
models, and to show which kinds of functors can be obtained in these cases.

139

BEATCS no 93

THE EATCS COLUMNS

InitState2Place
LHS RHS
NAC=RHS 1 State 1 State r1f r5, Place
stname=n stname=n - plname=n
islnit = true islnit = true token = true
State2Place
LHS RHS
1. State 1. State 1 .5 | Place
NAC=RHS _sanme: n _smame: n plname: n
isinit = false isinit = false token = false
Step2Trans
LHS RHS
1: Step 1: Step . . Trans
NAC=RHS — T2 peisiep |8
Event2Place
LHS RHS
NAC=RHS 1: Event 1: Event 3] ‘r4 Place
ename=e ename=e - plname=e
token = false
Trigger2PreArc
LHS RHS
1: Step %{ 2RefStep }% 3 Trans‘ 1: Step %{ 2RefStep }% 3 Trans‘
“trigger trigger pretgt
NAC=RHS —_—

‘ 4:Event}é3{ 5:Revaent}£{ 6:P|aoe‘

l 4: Evem%a{ 5:Revaent}g{ G:Hacel

StepFrom2PreArc

LHS RHS

‘ 1: Step }eu{ 2:RefStep };6{ 3 Trans‘ ‘ 1: Step M 2:RefStep };6{ 3 Trans‘
NAC=RHS :from :from :

:conf2state :conf2state :presrc|
‘4:State }erl{ 5:RefState }'95{ G:Plaoe‘ ‘A:State }erl{ 5:RefState }%5 G:Ha:e‘
StepTo2PostArc
LHS RHS
1: Step }er{ 2:RefStep }g{ 3 Trms‘ ‘ 1: Step }er{ 2:RefStep }g‘ 3 Trans‘
NAC=RHS J/:to ‘to :postsrd

onf
:conf2state

|45t ‘e’l{ 5:RefState }%5 6:Place]

Conf

:conf2state

[4:5te %l{ 5:RefState }Hs 6:Place]

Figure 2: The rules for the model transformation (1)

140

The Bulletin of the EATCS

Action2PostArc
LHS RHS
1: Step }#{ 2:RefStep }"96{ 3 Trans‘ 1: Step %{ 2:RefStep }%6 3 Trans‘
~ ‘step2trans ‘step2trans /P:postgc
NAGERHS |7:Transition trans2act S:Action‘ - ‘7:Transition: ranszact 8:Acti0n‘ lPostAr#
“act2event “act2event ¢:p0$tgt

‘A:Event%ﬂ 5:Revaent}g{ G:Haoe‘ ‘4:Event}é3{5:Revaent }%4’ G:Haoe‘

Condition2PrePostArc
LHS RHS

1: Step %{ 2RefStep }:—'% 3 Trans‘ ‘ 1: Step M 2RefStep }l% 3 Trans‘

‘step2trans ‘step2trans
“pretgt; ‘postsrc
NAC=RHS | |7 iti 7:Transition|

:trans2cond :trans2cond PreArc | |PostArc
‘presr :posttgt
-cond2state :cond2state

‘4:State }erl{ 5:RefState }'95{ S:Plaoe‘ ‘4:State }erl{ 5:RefState }%5 G:Place‘

Figure 3: The rules for the model transformation (2)

Consumer

roducer. — - produce Producing
(Producng) watsproa

| /
consume /
i
g

sc,

WaitaProd_consume

PT,

Consumer WaitaProd_consume

produce Producing Empty

Figure 4: The model transformation and the translated morphism

References

[1] D. Batory. 2007 From Implementation to Theory in Product SyntheBi®PL 2007,

Keynote Speech
Y P 141

BEATCS no 93 THE EATCS COLUMNS

(2]

(3]

(4]

(5]

(6]

D. Batory, O. Diaz, H. Ehrig, C. Ermel, U. Prange, and G. Taentzer, 260xtel
Transformations Should Be FunctoBulletin of the EATCS, 92:75-81.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, 200Bundamentals of Alge-
braic Graph Transformation EATCS Monographs in Theoretical Computer Sci-
ence, Springer.

H. Ehrig and B. Mahr, 1985-undamentals of Algebraic Specification 1: Equations
and Initial Semanticsvolume 6 of EATCS Monographs on Theoretical Computer
Science, Springer.

H. Ehrig and B. Mahr, 1990Fundamentals of Algebraic Specification 2: Module
Specifications and Constraintyolume 21 of EATCS Monographs on Theoretical
Computer Science, Springer.

L. Lambers, 2007 Adhesive High-level Replacement Systems with Negative Appli-
cation Conditions Technical Report 20074, Technical University of Berlin.

142

