
142 142

142 142

Bulletin of the EATCS no 93, pp. 134–142, October 2007
©c European Association for Theoretical Computer Science

T F S C


H E

Technical University of Berlin, Department of Computer Science
Franklinstraße 28/29, D-10587 Berlin, Germany

ehrig@cs.tu-berlin.de

M T  G
T  F

Hartmut Ehrig1, Karsten Ehrig2, Claudia Ermel1, Ulrike Prange1

1Fac. of Electr. Engineering and Comp. Science
Technical University of Berlin, Germany
ehrig|lieske|uprange@cs.tu-berlin.de

2 Department of Computer Science
University of Leicester, United Kingdom

karsten@mcs.le.ac.uk

Abstract

In this paper, we extend our ideas on model transformations as functors
discussed in the previous issue and embed this concept into the framework
of graph transformation systems. We show that under certain restrictions of
the rules model transformations by graph transformation are functors.

Introduction

In our previous column [2] we have discussed the claim that "model transforma-
tions should be functors" from a mathematical and from a practical point of view.
Especially interesting from the practical side was the proposal of the POPL’07



143 143

143 143

The Bulletin of the EATCS

135

keynote speaker Don Batory [1] that model transformations in his approach of
Feature Oriented Model Driven Development (FOMDD) should be functors.

On the theoretical side, we have discussed well-known data type construc-
tions which are functors and can be considered as model transformations. Typical
examples are the semantics of parameterized specification and module specifica-
tion (see [4, 5]). Moreover we have claimed that under suitable conditions model
transformations defined by graph transformations are functors. In this column, we
justify this last claim.

1 Model Transformation by Graph Transformation

In this section, we define model transformation by graph transformation. First we
shortly introduce the necessary definitions of typed graphs, rules and transforma-
tions (see [3]).

A graphG = (V,E, src, tar) is given by setsV and E of nodes and edges,
respectively, and source and target functionssrc, tar : E → V. For graphsGi =

(Vi ,Ei , srci , tari) with i = 1,2, a graph morphismf = ( fV, fE) : G1→ G2 is given
by mappingsfV : V1 → V2 and fE : E1 → E2 compatible with the source and
target functions, i.e.fV ◦ src1 = src2 ◦ fE and fV ◦ tar1 = tar2 ◦ fE. Graphs and
graph morphisms form the categoryGraphs.

A type graphTG is a distinguished graph that defines node and edge types. A
typed graph (G, t) is a graphG together with a typing morphismt : G → TG. If
the typing is clear in the context, we denoteG as a typed graph without explicitly
namingt. A typed graph morphismf between typed graphs (G1, t1) and (G2, t2)
is a graph morphismf : G1 → G2 compatible with the typing, i.e.t2 ◦ f = t1.
For a type graphTG, typed graphs and typed graph morphisms form the category
GraphsTG.

A typed graph rulep = (L
l
← K

r
→ R) consists of three typed graphsL,

K and R, called left hand side, gluing graph and right hand side, respectively,
and injective typed graph morphismsl andr. Given a rulep and a typed graph
morphismm : L → G, called match, the application of the rulep to G via the
matchm is given by the following two pushouts (1) and (2) leading to the direct

typed graph transformationG
p,m
=⇒ H. A sequenceG0 =⇒ G1 =⇒ . . . =⇒ Gn of

direct transformations is then called transformation and denoted byG0
∗

=⇒ Gn.

N L K R

G D H

n l r

mq/ (1) (2)



144 144

144 144

BEATCS no 93 THE EATCS COLUMNS

136

A negative application condition (NAC) forp is a typed graph morphismn : L→
N. The matchm satisfies the NACn if there does not exist an injective morphism
q : N → G such thatq ◦ n = m. For p we define a setNACp of NACs. The
application ofp with NACs is allowed only ifm satisfies all NACsn ∈ NACp.

A graph transformation systemGTS = (TG,Prod) is now given by a type
graphTG and a setProd of rules with NACs. For graph transformation systems
there are many interesting results like the Local Church–Rosser, Parallelism, Em-
bedding, Extension and Local Confluence Theorems [3].

In the following, we only consider nondeleting rules. In this case we have
L = K and the rule is completely defined by the morphismr and its NACs.

For the definition of a model transformation by graph transformation, the
source and target models have to be given as typed graphs typed overTGS and
TGT , respectively, whereTGS is the type graph defining the source languageLS

andTGT is the type graph defining the target languageLT . Performing model
transformations by typed graph transformations means taking a model as a typed
graph and transforming it according to certain rules. The result is a typed graph
which represents the target model.

For the model transformation, we define a type graphTGwith TGS ⊆ TGand
TGT ⊆ TG. This type graph includes not onlyTGS andTGT , but may contain ad-
ditional node and edge types which are needed during the transformation process.
Due to the inclusion, all source and target models are also automatically typed
overTG. Given a graph transformation systemGTS = (TG,Prod), for a source
modelMS we start the model transformation by applying the rules inProdas long

as possible. If this process terminates, it results in a transformationMS
∗

=⇒ M
with a graphM typed overTG. M contains the target model, but also the source
model and possibly additional nodes and edges. To obtain the target model, we
restict M to the target type graphTGT by constructing the pullback (PB). The
pullback objectM|TGT = MT is our target model and correctly typed overTGT .

MS M MT

TGS TG TGT

∗ j

incS incT

tS t tT(PB)

Given the graph transformation systemGTS = (TG,Prod), we define the
model transformationMT : LS ⇒ LT, whereLS ⊆ GraphsTGS and LT ⊆

GraphsTGT are subcategories withMS ∈ LS andMT ∈ LT if and only if MS
∗

=⇒ M
is a terminating transformation withM|TGT = MT , and all injective morphisms.

In general, there may be different terminating transformations leading to target
modelsM1

T and M2
T for the same source modelsMS. If MT(MS) is uniquely



145 145

145 145

The Bulletin of the EATCS

137

defined, we sayMT has functional behaviour.

2 Model Transformation as a Functor

In this section, we consider a model transformationMT : LS ⇒ LT with func-
tional behaviour given by a graph transformation systemGTS = (TG,Prod) as
described in Section 1. In addition, we restrict the rules inProd to TG\TGS-
generating rules, where for a rulep : L

r
→ R there are only elementsx ∈ R\r(L)

with type tR(x) ∈ TG\TGS, and define thatNACp = {r}, i.e. each rulep : L
r
→ R

has only one NAC, which is exactly the right hand side. With these restrictions,
we want to show thatMT becomes a functor.

First, we have to defineMT(mS) for an injective morphismmS : M1
S → M2

S

in LS. For M1
S, we have a transformation sequenceM1

S

t
=⇒ M1 and a restriction

M1
T leading to the model transformationMT(M1

S) = M1
T . Since only nondeleting

rules are applied int, mS is boundary-consistent w.r.t.t [6], i.e. the transformation
sequence does not delete any boundary element ofn. Moreover, due to the restric-
tions of the NACs andmS being injective,mS is also NAC-consistent w.r.t.t [6],
which means that no NAC oft is violated by extendingM1

S to M2
S via mS. Thus

we can apply the Embedding Theorem with NACs [6] leading to a transformation

sequenceM2
S

t
=⇒ MH with a morphismm′ : M1 → MH as shown in diagram (1).

Then we apply the rules of our graph transformation as long as possible leading

to a transformation sequenceMH
t′

=⇒ M2. Since we have only nondeleting rules
there is a morphismd : MH → M2 with t2◦d = tH, and we definem= d◦m′. The
restriction ofM2 leads to the pullback (2) with pullback objectM2

T . This pullback
andt2 ◦m◦ j1 = incT ◦ t1T imply that there exists a uniquemT : M1

T → M2
T such

that (3) commutes andt2T ◦mT = t1T , and by pullback decomposition also (3) is a
pullback. Now we defineMT(mS) = mT .

M1
S M1 M1

T

M2
S MH M2 M2

T

TGS TG TGT

t

t t′

d

incS incT

j1

j2

mS

t2S

m′ m

tH t2

mT

t2T

t1S

t1

t1T

(1) (3)

(2)

For MT to be a functor we have to show first thatMT(nS ◦mS) = MT(nS) ◦
MT(mS) and second thatMT(idMS) = idMT(MS).



146 146

146 146

BEATCS no 93 THE EATCS COLUMNS

138

1. Consider the following diagram with

nS ◦mS = fS, MT(mS) = mT , MT(nS) = nT andMT( fS) = fT ,

as well as the morphismsm, m′, n, n′ and f , f ′ of the construction with
d2 ◦ m′ = m, d32 ◦ n′ = n andd3 ◦ f ′ = f , respectively. The functional
behaviour ofMT implies that we can construct the stepwise embedding

M3
S

t
=⇒ M31

H

t′

=⇒ M32
H

t′′

=⇒ M3, sincenS is consistent w.r.t.t andm1 is
consistent w.r.t. t′, and we have thatm1 ◦ m′ = f ′, n′ ◦ d2 = d31 ◦ m1

and d32 ◦ d31 = d3. Combining these results we have thatn ◦ m = f .
Pullback composition and the uniqueness of pullbacks further implies that
fT = nT ◦mT , i.e. MT(nS ◦mS) = MT(nS) ◦ MT(mS).

M1
S M1 M1

T

M2
S M2

H M2 M2
T

M3
S M31

H M32
H M3 M3

T

t

t t′

t t′ t′′

j1

j2

j3

mS

nS

m

n

mT

nT

m′

m1 n′
f ′ f fTfS d2

d31 d32
d3

2. MT(idMS) = idMT(MS) follows from the functional behaviour ofMT.

In the following, we present a model transformation from statecharts to Petri
nets (see [3]). In Fig. 1, the integration of the type graphs for the model transfor-
mation is shown. In the left hand side, the source model type graph for statecharts
is depicted. In the right hand side, the target model type graph for Petri nets is
shown. Together with some additional nodes and edges they form the integrated
type graph.

The rules for the model transformation are given in Figs. 2 and 3. Each
state in the statechart is transformed to a corresponding place in the target Petri
net model, where a token in such a place denotes that the corresponding state is
active initially (rulesInitState2Place andState2Place). A separate place is gen-
erated for each valid event by ruleEvent2Place. Each step in the statechart is
transformed into a Petri net transition (ruleStep2Trans). Naturally, the Petri net
should simulate how to exit and enter the corresponding states in the statechart,
and therefore input and output arcs of the transition have to be generated accord-
ingly (see rulesStepFrom2PreArc andStepTo2PostArc). Furthermore, firing a
transition should consume the token of the trigger event (Trigger2PreArc), and



147 147

147 147

The Bulletin of the EATCS

139

Conf Step Event

Cond

Action

trigger

StateMachine

State
stname: String

ename: String

SC type graph PN type graph

PostArc

Trans

PreArc

Place
plname: String
token: Boolean

RefEvent

RefState

RefStep

Transition

smname: String

isInit: Boolean

sm2conf
sm2step

trans2act

cond2state

act2event

conf2state
to

from

trans2cond

r4r3 r5 r6r2r1

posttgt

presrc pretgt

postsrc

end

step2trans

begin

Figure 1: The integration of the type graphs

should generate tokens to (the places related to) the target event indicated as the
action (Action2PostArc). All these rules are nondeleting,TG\TGS-generating
and we haveNACp = {r}. Moreover, the model transformation has functional
behaviour (see [3]), thus we can apply the developed theory and conclude that this
model transformation is a functor.

In Fig. 4, the application of the model transformation to the statechartsSC1

andSC2 is shown leading to the Petri netsPT1 and PT2, respectively. For the
morphismfS : SC1→ SC2 we get a corresponding morphismfT : PT1→ PT2.

3 Conclusion

In this column we have continued the discussion of the last column concerning
the claim that "model transformations should be functors". We have shown that
a suitable class of model transformations based on graph transformation defines a
functor between the corresponding visual languages. It remains open to analyze
more general classes of model transformations and morphisms between visual
models, and to show which kinds of functors can be obtained in these cases.



148 148

148 148

BEATCS no 93 THE EATCS COLUMNS

140

RefState

RefState

InitState2Place

State2Place

Event2Place

Step2Trans

NAC=RHS

NAC=RHS

NAC=RHS

NAC=RHS

RHSLHS

RHSLHS

RHSLHS

RHSLHS

1: State

stname = n
isInit = false

1: State

stname = n
isInit = false

Place

plname = n
token = false

1: State

isInit = true

1: State

stname = n
isInit = true

Place

plname = n
token = true

1: Step 1: Step
RefStep

Trans

1: Event

ename = e

1: Event

ename = e
RefEvent

Place

plname = e
token = false

stname = n

:r1

:r2

:r3 :r4

:r6

:r5

:r5:r1

Trigger2PreArc

LHS

1: Step 2:RefStep

:trigger

4:Event 5:RefEvent

1: Step 2:RefStep

:trigger

4:Event 5:RefEvent

RHS

PreArc

3: Trans

6:Place

3: Trans

6:Place

StepTo2PostArc

LHS

1: Step 2:RefStep

4:State 5:RefState

1: Step 2:RefStep

RHS

PostArc7:Conf

3: Trans

6:Place

3: Trans

7:Conf

4:State 5:RefState 6:Place

:to

StepFrom2PreArc

LHS

1: Step 2:RefStep

4:State 5:RefState

1: Step 2:RefStep

RHS

PreArc7:Conf

3: Trans

6:Place

3: Trans

:from

7:Conf

:from

4:State 5:RefState 6:Place

NAC=RHS

NAC=RHS

NAC=RHS

:r6 :r2 :r6

:r4 :r4

:r6 :r6

:r5 :r5

:conf2state

:conf2state

:r5 :r5

:r6 :r6

:pretgt

:presrc

:pretgt

:r2

:r3 :r3

:r2

:r1 :r1

:r2

:r2 :r2

:to

:conf2state

:conf2state :presrc

:postsrc

:posttgt

:r1:r1

Figure 2: The rules for the model transformation (1)



149 149

149 149

The Bulletin of the EATCS

141

Condition2PrePostArc

LHS

1: Step 2:RefStep 1: Step 2:RefStep

RHS

7:Transition

3: Trans

Action2PostArc

LHS

1: Step 2:RefStep

4:Event 5:RefEvent

1: Step 2:RefStep

RHS

7:Transition

3: Trans

6:Place 4:Event

7:Transition

8:Cond

4:State 5:RefState4:State 5:RefState 6:Place

7:Transition

8:Cond

NAC=RHS

NAC=RHS

:r2 :r6 :r2

:step2trans :step2trans

:trans2act
8:Action

:act2event

8:Action

:r6

:act2event

:r3 :r4

:r6 :r6:r2

:step2trans

:trans2cond

:cond2state :cond2state

:trans2cond

:r5 :r5

PostArc

3: Trans

6:Place

3: Trans

6:Place

PreArc PostArc

:postsrc

:posttgt:presrc

:pretgt

5:RefEvent
:r3 :r4

:r2

:trans2act
:postsrc

:posttgt

:step2trans

:r1 :r1

Figure 3: The rules for the model transformation (2)

Producing

Wait4Cons

Wait4Prod

Consuming

produce consume

Producer Consumer Producing Wait4Prod

Wait4Cons Consuming

produce consume

Producing

Wait4Cons

Empty

Full

Wait4Prod

Consuming

produce [buff.empty]
/buffer++

[buff.full]
/buffer--

buffer--buffer++ consume

Producer Buffer Consumer Producing Empty Wait4Prod

Wait4Cons Full Consuming

buffer++

produce consume

buffer--

======>

======>

fS fT

SC1

SC2

PT1

PT2

Figure 4: The model transformation and the translated morphism

References

[1] D. Batory. 2007.From Implementation to Theory in Product Synthesis. POPL 2007,
Keynote Speech.



150 150

150 150

BEATCS no 93 THE EATCS COLUMNS

142

[2] D. Batory, O. Diaz, H. Ehrig, C. Ermel, U. Prange, and G. Taentzer, 2007.Model
Transformations Should Be Functors. Bulletin of the EATCS, 92:75-81.

[3] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, 2006.Fundamentals of Alge-
braic Graph Transformation. EATCS Monographs in Theoretical Computer Sci-
ence, Springer.

[4] H. Ehrig and B. Mahr, 1985.Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer
Science, Springer.

[5] H. Ehrig and B. Mahr, 1990.Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints, volume 21 of EATCS Monographs on Theoretical
Computer Science, Springer.

[6] L. Lambers, 2007.Adhesive High-level Replacement Systems with Negative Appli-
cation Conditions. Technical Report 2007/14, Technical University of Berlin.




