
Independence of Net Transformations
and Token Firing in Reconfigurable

Place/Transition Systems

Hartmut Ehrig, Kathrin Hoffmann�, Julia Padberg,
Ulrike Prange, and Claudia Ermel

Institute for Software Technology and Theoretical Computer Science
Technical University of Berlin, Germany

Abstract. Reconfigurable place/transition systems are Petri nets with
initial markings and a set of rules which allow the modification of the net
during runtime in order to adapt the net to new requirements of the envi-
ronment. In this paper we use transformation rules for place/transition
systems in the sense of the double pushout approach for graph trans-
formation. The main problem in this context is to analyze under which
conditions net transformations and token firing can be executed in arbi-
trary order. This problem is solved in the main theorems of this paper.
Reconfigurable place/transition systems then are applied in a mobile
network scenario.

Keywords: integration of net theory and graph transformations, parallel
and sequential independence of net transformations and token firing.

1 Introduction

In [23], the concept of reconfigurable place/transition (P/T) systems has been
introduced that is most important to model changes of the net structure while
the system is kept running. In detail, a reconfigurable P/T-system consists of
a P/T-system and a set of rules, so that not only the follower marking can be
computed but also the structure can be changed by rule application to obtain a
new P/T-system that is more appropriate with respect to some requirements of
the environment. Moreover these activities can be interleaved.

For rule-based transformations of P/T-systems we use the framework of net
transformations [17, 18] that is inspired by graph transformation systems [34].
The basic idea behind net transformation is the stepwise development of P/T-
systems by given rules. Think of these rules as replacement systems where the
left-hand side is replaced by the right-hand side while preserving a context. Petri
nets that can be changed, have become a significant topic in the recent years,
as the adaption of a system to a changing environment gets more and more
important. Application areas cover e.g. computer supported cooperative work,
� This work has been partly funded by the research project forMAlNET (see

tfs.cs.tu-berlin.de/formalnet/) of the German Research Council.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 104–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

tfs.cs.tu-berlin.de/formalnet/

Independence of Net Transformations and Token Firing 105

multi agent systems, dynamic process mining or mobile networks. Moreover,
this approach increases the expressiveness of Petri nets and allows a formal
description of dynamic changes.

In this paper we continue our work by analyzing under which conditions a
firing step is independent of a rule-based transformation step. Independence
conditions for two firing steps of P/T-systems, i.e. being conflict free, are well-
known and closely related to local Church-Rosser properties for graph resp.
net transformations (see [34, 17, 18]) that are valid in the case of parallel and
sequential independence of rule-based transformations. In [17] conditions for
two transformation steps are given in the framework of high-level replacement
systems with applications to net transformations, so that these transformation
steps applied to the same P/T-system can be executed in arbitrary order, leading
to the same result. But up to now it is open under which conditions a net
transformation step and a firing step are independent of each other. In more
detail, we assume that a given P/T-system represents a certain system state.
The next evolution step can be obtained not only by token firing, but also by
the application of one of the rules available. Hence, the question arises, whether
each of these evolution steps can be postponed after the realization of the other,
yielding the same result. Analogously, we ask ourselves if they can be performed
in a different order without changing the result.

In Section 2 we present an interesting application of our concept in the area of
mobile ad-hoc networks. While Section 3 reviews the notions of reconfigurable
nets and net transformations, in Section 4 our main theorems concerning the
parallel and sequential independence of net transformation and token firing are
achieved. In Section 5 we show how these concepts and results can be put into
the more general framework of algebraic higher-order nets. Finally, we outline
related work and some interesting aspects of future work in Section 6.

2 Mobile Network Scenario

In this section we will illustrate the main idea of reconfigurable P/T-systems in
the area of a mobile scenario. This work is part of a collaboration with some
research projects where the main focus is on an adaptive workflow management
system for mobile ad-hoc networks, specifically targeted to emergency scenarios1.
So, as a running example we use a scenario in archaeological disaster/recovery:
after an earthquake, a team (led by a team leader) is equipped with mobile
devices (laptops and PDAs) and sent to the affected area to evaluate the state
of archaeological sites and the state of precarious buildings. The goal is to draw a
situation map in order to schedule restructuring jobs. The team is considered as
an overall mobile ad-hoc network in which the team leader’s device coordinates
the other team member devices by providing suitable information (e.g. maps,
sensible objects, etc.) and assigning activities. A typical cooperative process to
be enacted by a team is shown in Fig. 1 as P/T-system (PN1, M1), where we
1 MOBIDIS - http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS, MAIS -

http://www.mais-project.it, IST FP6 WORKPAD - http://www.workpad-project.eu/

http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS
http://www.mais-project.it
http://www.workpad-project.eu/

106 H. Ehrig et al.

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Select Building

Matching

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Go to

(P N1, M′
1)(P N1, M1) (P N1, M′′

1)

Building
Select

Destination

Fig. 1. Firing steps Select Building and Go to Destination

assume a team consisting of a team leader as picture store device and two team
members as camera device and bridge device, respectively.

To start the activities of the camera device the follower marking of the P/T-
system (PN1, M1) is computed by firing transition Select Building and we obtain
the new P/T-system (PN1, M

′
1) depicted in the middle of Fig. 1. In a next step

the task Go to Destination can be executed (see right-hand side of Fig. 1).
To predict a situation of disconnection a movement activity of the bridge

device has to be introduced in our system. In more detail, the workflow has
to be extended by a task to follow the camera device. For this reason we pro-
vide the rule prodfollow depicted in the upper row in Fig. 2. In general, a rule

prod = ((L, ML) l← (K, MK) r→ (R, MR)) is given by three P/T-systems called
left-hand side, interface, and right-hand side, respectively, and a span of two (spe-
cific) P/T-morphisms l and r. For the application of the rule prodfollow to the
P/T-system (PN1, M1) (see Fig. 1) we additionally need a match morphism m
that identifies the relevant parts and has to respect the so-called gluing condition

(see Section 3). Then the transformation step (PN1, M1)
prodfollow=⇒ (PN2, M2)

as shown in Fig. 2 is given as follows: first, the transitions Go to Destina-
tion and Send Photos are deleted and we obtain the intermediate P/T-system
(PN0, M0); then the transitions Go to Destination, Send Photos and Follow
Camera Device together with their (new) environments are added. Note that a
positive check of the gluing condition makes sure that the intermediate P/T-
system is well-defined. Analogously, the application of the rule prodfollow to the

Independence of Net Transformations and Token Firing 107

P/T-system (PN1, M
′
1) in the middle of Fig. 1 leads to the transformation step

(PN1, M
′
1)

prodfollow=⇒ (PN2, M
′
2) in Fig. 3.

Note that in general token game and rule applications cannot be interleaved,
e.g. if the transformation rule deletes the transition or a part of the marking
used for the token firing. Thus we are looking for conditions such that firing
steps and transformation steps can be performed in any order leading to the
same P/T-system. In Section 4 we define in more detail conditions to ensure the
independence of these activities.

Summarizing, our reconfigurable P/T-system ((PN1, M1), {prodfollow}) con-
sists of the P/T-system (PN1, M1) and the set of rules {prodfollow} with one rule
only. We can consider further rules, e.g. those given in [9,31], leading to a more com-
plex reconfigurableP/T-system.But in this paper we use the simple reconfigurable
P/T-system as an example to help the reader understand the main concepts.

3 Reconfigurable P/T-Systems

In this section we formalize reconfigurable P/T-systems. As net formalism we use
P/T-systems following the notation of “Petri nets are Monoids” in [28]. In this
notation a P/T-net is given by PN = (P, T, pre, post) with pre- and post domain
functions pre, post : T → P⊕ and a P/T-system is given by (PN, M) with mark-
ing M ∈ P⊕, where P⊕ is the free commutative monoid over the set P of places
with binary operation ⊕, e.g. the monoid notation M = 2p1 ⊕ 3p2 means that
we have two tokens on place p1 and three tokens on p2. Note that M can also
be considered as function M : P → N where only for a finite set P ′ ⊆ P we
have M(p) ≥ 1 with p ∈ P ′. We can switch between these notations by defining∑

p∈P M(p) · p = M ∈ P⊕. Moreover, for M1, M2 ∈ P⊕ we have M1 ≤ M2 if
M1(p) ≤ M2(p) for all p ∈ P . A transition t ∈ T is M -enabled for a marking
M ∈ P⊕ if we have pre(t) ≤ M , and in this case the follower marking M ′ is given
by M ′ = M
 pre(t) ⊕ post(t) and (PN, M) t−→ (PN, M ′) is called firing step.
Note that the inverse
 of ⊕ is only defined in M1
 M2 if we have M2 ≤ M1.

In order to define rules and transformations of P/T-systems we introduce P/T-
morphisms which preserve firing steps by Condition (1) below. Additionally they
require that the initial marking at corresponding places is increasing (Condition
(2)) or even stronger (Condition (3)).

Definition 1 (P/T-Morphisms)
Given P/T-systems PNi = (PNi, Mi) with PNi = (Pi, Ti, prei, posti) for i =
1, 2, a P/T-morphism f : (PN1, M1) → (PN2, M2) is given by f = (fP , fT) with
functions fP : P1 → P2 and fT : T1 → T2 satisfying

(1) f⊕
P ◦ pre1 = pre2 ◦ fT and f⊕

P ◦ post1 = post2 ◦ fT and
(2) M1(p) ≤ M2(fP (p)) for all p ∈ P1.

Note that the extension f⊕
P : P⊕

1 → P⊕
2 of fP : P1 → P2 is defined by

f⊕
P (

∑n
i=1 ki ·pi) =

∑n
i=1 ki ·fP (pi). (1) means that f is compatible with pre- and

108 H. Ehrig et al.

Follow Camera

Go to Destination

Send Photos

Go to Destination

Send Photos

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Zoom on
damaged part

Capture Scene

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device

Device
Follow Camera

(P N1, M1) (P N0, M0) (P N2, M2)

(R, MR)(K, MK)(L, ML)

l

nm

r

Fig. 2. Transformation step (PN1, M1)
prodfollow=⇒ (PN2, M2)

post domain, and (2) that the initial marking of PN1 at place p is smaller or
equal to that of PN2 at fP (p).

Moreover the P/T-morphism f is called strict if fP and fT are injective and

(3) M1(p) = M2(fP (p)) for all p ∈ P1.

The category defined by P/T-systems and P/T-morphisms is denoted by PTSys
where the composition of P/T-morphisms is defined componentwise for places
and transitions.

Remark 1. For our morphisms we do not always have f⊕
P (M1) ≤ M2. E.g. M1 =

p1 ⊕ p2, M2 = p and fP (p1) = fP (p2) = p implies f⊕
P (M1) = 2p > p = M2, but

M1(p1) = M1(p2) = 1 = M2(p).

Independence of Net Transformations and Token Firing 109

Go to Destination

Send Photos

Go to Destination

Select Building

Go to Destination

Select Building

Go to Destination

Select Building

Send Photos

Device
Follow Cameral

(P N1, M′
1) (P N0, M′

0) (P N2, M′
2)

(R, MR)(K, MK)(L, ML)

m′ n′

r

Fig. 3. Transformation step (PN1, M
′
1)

prodfollow=⇒ (PN2, M
′
2)

As discussed in our paper [23] we are able to define the gluing of P/T-systems via
P/T-morphisms by pushouts in the category PTSys. Informally, a pushout in
a category CAT is a gluing construction of two objects over a specific interface.
Especially we are interested in pushouts of the form where l is a strict and c is a
general morphism. So, we can apply rules. Vice versa, given the left-hand side of
a rule (K, MK) l−→ (L, ML) (see Def. 3) and a match m: (L, ML) → (PN1, M1)
we have to construct a P/T-system (PN0, M0)
such that (1) becomes a pushout. This con-
struction requires the following gluing condi-
tion which has to be satisfied in order to apply
a rule at a given match. The characterization

(K, MK) l ��

c

��
(1)

(L, ML)

m

��
(PN0, M0) �� (PN1, M1)

of specific points is a sufficient condition for the existence and uniqueness of
the so called pushout complement (PN0, M0), because it allows checking for the
applicability of a rule to a given match.

Definition 2 (Gluing Condition for P/T-Systems)

Let (L, ML) m→ (PN1, M1) be a P/T-morphism and (K, MK) l→ (L, ML) a strict
morphism , then the gluing points GP , dangling points DP and the identification
points IP of L are defined by

GP = l(PK ∪ TK)
DP = {p ∈ PL|∃t ∈ (T1 \ mT (TL)) : mP (p) ∈ pre1(t) ⊕ post1(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p �= p′ ∧ mP (p) = mP (p′)}

∪{t ∈ TL|∃t′ ∈ TL : t �= t′ ∧ mT (t) = mT (t′)}

110 H. Ehrig et al.

A P/T-morphism (L, ML) m→ (PN1, M1) and a strict morphism (K, MK) l→
(L, ML) satisfy the gluing condition, if all dangling and identification points are
gluing points, i.e DP ∪ IP ⊆ GP , and m is strict on places to be deleted, i.e.

∀p ∈ PL \ l(PK) : ML(p) = M1(m(p)).

Example 1. In Section 2 examples of P/T-morphisms are given in Fig. 2 by
(K, MK) l→ (L, ML) and (L, ML) m→ (PN1, M1). For the dangling points we
have DP = PL while the set of identification points IP is empty. So, these P/T-
morphisms satisfy the gluing condition because the gluing points GP are also
equal to the set of places PL and all places are preserved.

Next we present rule-based transformations of P/T-systems following the double-
pushout (DPO) approach of graph transformations in the sense of [34,17], which
is restrictive concerning the treatment of unmatched transitions at places which
should be deleted. Here the gluing condition forbids the application of rules in
this case. Furthermore, items which are identified by a non injective match are
both deleted or preserved by rule applications.

Definition 3 (P/T-System Rule)

A rule prod = ((L, ML) l← (K, MK) r→ (R, MR)) of P/T-systems consists of
P/T-systems (L, ML), (K, MK), and (R, MR), called left-hand side (LHS), in-
terface, and right-hand side (RHS) of prod respectively, and two strict P/T-
morphisms (K, MK) l→ (L, ML) and (K, MK) r→ (R, MR).

Note that we have not yet considered the firing of the rule nets (L, ML), (K, MK)
and (R, MR) as up to now no relevant use could be found. Nevertheless, from a
theoretical point of view simultaneous firing of the nets (L, ML), (K, MK) and
(R, MR) is easy as the morphisms are marking strict. The firing of only one of
these nets would require interesting extensions of the gluing condition.

Definition 4 (Applicability of Rules)
A rule prod = ((L, ML) l← (K, MK) r→ (R, MR)) is called applicable at the
match (L, ML) m→ (PN1, M1) if the gluing condition is satisfied for l and m. In
this case we obtain a P/T-system (PN0, M0) leading to a net transformation

step (PN1, M1)
prod,m
=⇒ (PN2, M2) consisting of the following pushout diagrams

(1) and (2). The P/T-morphism n : (R, MR) → (PN2, M2) is called comatch of
the transformation step.

(L, ML)

m

��
(1)

(K, MK)l�� r ��

c

��
(2)

(R, MR)

n

��
(PN1, M1) (PN0, M0)

l∗
��

r∗
�� (PN2, M2)

Now we are able to define reconfigurable P/T-systems, which allow modifying
the net structure using rules and net transformations of P/T-systems.

Independence of Net Transformations and Token Firing 111

Definition 5 (Reconfigurable P/T-Systems)
Given a P/T-system (PN, M) and a set of rules RULES, a reconfigurable P/T-
system is defined by ((PN, M), RULES).

Examples of rule applications and of a reconfigurable P/T-system can be found
in Section 2.

4 Independence of Net Transformations and Token Firing

In this section we analyze under which conditions net transformations and to-
ken firing of a reconfigurable P/T-system as introduced in Section 3 can be
executed in arbitrary order. These conditions are called (co-)parallel and se-
quential independence. Note that independence conditions for two firing steps
of P/T-systems are well-known and independence of two transformation steps is
analyzed already for high-level replacement systems with applications to Petri
net transformations in [17]. We start with the situation where a transformation
step and a firing step are applied to the same P/T-system. This leads to the
notion of parallel independence.

Definition 6 (Parallel Independence)

A transformation step (PN1, M1)
prod,m
=⇒ (PN2, M2) of P/T-systems and a firing

step (PN1, M1)
t1−→ (PN1, M

′
1) for t1 ∈ T1 are called parallel independent if

(1) t1 is not deleted by the transformation step and
(2) ML(p) ≤ M ′

1(m(p)) for all p ∈ PL with (L, ML) = LHS(prod).

Parallel independence allows the execution of the transformation step and the
firing step in arbitrary order leading to the same P/T-system.

Theorem 1 (Parallel Independence). Given parallel independent steps

(PN1, M1)
prod,m
=⇒ (PN2, M2) and (PN1, M1)

t1−→ (PN1, M
′
1) with t1 ∈ T1 then

there is a corresponding t2 ∈ T2 with firing step (PN2, M2)
t2−→ (PN2, M

′
2) and

a transformation step (PN1, M
′
1)

prod,m′

=⇒ (PN2, M
′
2) with the same marking M ′

2.

(PN1, M1)
prod,m

�� ����������

����������
t1

�������������

(PN2, M2)

t2 �������������
(PN1, M

′
1)

prod,m′
�� ����������

����������

(PN2, M
′
2)

Remark 2. Cond. (1) in Def. 6 is needed to fire t2 in (PN2, M2), and Cond. (2) in
Def. 6 is needed to have a valid match m′ in (PN1, M

′
1). Note that m′(x) = m(x)

for all x ∈ PL ∪ TL.

112 H. Ehrig et al.

Proof. Parallel independence implies that t1 ∈ T1 is preserved by the transfor-
mation step (PN1, M1)

prod,m
=⇒ (PN2, M2). Hence there is a unique t0 ∈ T0 with

l∗(t0) = t1. Let t2 = r∗(t0) ∈ T2 in the following pushouts (1) and (2), where l∗

and r∗ are strict.

(L, ML)

m

��
(1)

(K, MK)l�� r ��

��
(2)

(R, MR)

n

��
(PN1, M1) (PN0, M0)

l∗
��

r∗
�� (PN2, M2)

Now t1 being enabled under M1 in PN1 implies pre1(t1) ≤ M1. Moreover,
l∗ and r∗ strict implies pre0(t0) ≤ M0 and pre2(t2) ≤ M2. Hence t2 is enabled
under M2 in PN2 and we define M ′

2 = M2
 pre2(t2) ⊕ post2(t2).
Now we consider the second transformation step, with m′ defined by m′(x) =

m(x) for x ∈ PL ∪ TL.

(L, ML)

m′

��
(1′)

(K, MK)l�� r ��

��
(2′)

(R, MR)

��
n′

��
(PN1, M

′
1) (PN0, M

′
0)

l∗′
��

r∗′
�� (PN2, M

′′
2)

m′ is a P/T-morphism if for all p ∈ PL we have

(a) ML(p) ≤ M ′
1(m

′(p)),

and the match m′ is applicable at M ′
1, if

(b) IP ∪ DP ⊆ GP and for all p ∈ PL \ l(PK) we have ML(p) = M ′
1(m(p)) (see

gluing condition in Def. 2).

Cond. (a) is given by Cond. (2) in Def. 6, because we assume that (PN1, M1)
prod,m
=⇒ (PN2, M2) and (PN1, M1)

t1−→ (PN1, M
′
1) with t1 ∈ T1 are parallel inde-

pendent. Moreover, the match m being applicable at M1 implies IP ∪DP ⊆ GP
and for all p ∈ PL \ l(PK) we have ML(p) = M1(m(p)) = M ′

1(m(p)) by Lemma
1 below using the fact that there is a firing step (PN1, M1)

t1−→ (PN1, M
′
1).

The application of prod along m′ leads to the P/T-system (PN2, M
′′
2), where

l∗′(x) = l∗(x), r∗′(x) = r∗(x) for all x ∈ P0 ∪ T0, and n∗′(x) = n∗(x) for all
x ∈ PR ∪ TR.

Finally, it remains to show that M ′
2 = M ′′

2 . By construction of the transfor-

mation steps (PN1, M1)
prod,m
=⇒ (PN2, M2) and (PN1, M

′
1)

prod,m′

=⇒ (PN2, M
′′
2) we

have

(1) for all p0 ∈ P0: M2(r∗(p0)) = M0(p0) = M1(l∗(p0)),
(2) for all p ∈ PR \ r(PK): M2(n(p)) = MR(p),
(3) for all p0 ∈ P0: M ′′

2 (r∗(p0)) = M ′
0(p0) = M ′

1(l
∗(p0)) and

(4) for all p ∈ PR \ r(PK): M ′′
2 (n′(p)) = MR(p).

Independence of Net Transformations and Token Firing 113

By construction of the firing steps (PN1, M1)
t1−→ (PN1, M

′
1) and (PN2, M2)

t2−→ (PN2, M
′
2) we have

(5) for all p1 ∈ P1: M ′
1(p1) = M1(p1)
 pre1(t1)(p1) ⊕ post1(t1)(p1) and

(6) for all p2 ∈ P2: M ′
2(p2) = M2(p2)
 pre2(t2)(p2) ⊕ post2(t2)(p2).

Moreover, l∗ and r∗ strict implies the injectivity of l∗ and r∗ and we have

(7) for all p0 ∈ P0: pre0(t0)(p0) = pre1(t1)(l∗(p0)) = pre2(t2)(r∗(p0)) and
post0(t0)(p0) = post1(t1)(l∗(p0)) = post2(t2)(r∗(p0)).

To show that this implies

(8) M ′
2 = M ′′

2 ,

it is sufficient to show

(8a) for all p ∈ PR \ r(PK): M ′′
2 (n′(p)) = M ′

2(n(p)) and
(8b) for all p0 ∈ P0: M ′′

2 (r∗(p0)) = M ′
2(r∗(p0)).

First we show that condition (8a) is satisfied. For all p ∈ PR \ r(PK) we have

M ′′
2 (n′(p))

(4)
= MR(p)

(2)
= M2(n(p))

(6)
= M ′

2(n(p))

because n(p) is neither in the pre domain nor in the post domain of t2, which
are in r∗(P0) because t2 is not created by the rule (see Lemma 1, applied to the
inverse rule prod−1).

Next we show that condition (8b) is satisfied. For all p0 ∈ P0 we have

M ′′
2 (r∗(p0))

(3)
= M ′

0(p0)
(3)
= M ′

1(l∗(p0))
(5)
= M1(l∗(p0))
 pre1(t1)(l∗(p0)) ⊕ post1(t1)(l∗(p0))

(1) and (7)
= M2(r∗(p0))
 pre2(t2)(r∗(p0)) ⊕ post2(t2)(r∗(p0))
(6)
= M ′

2(r∗(p0))

It remains to show Lemma 1 which is used in the proof of Theorem 1.

Lemma 1. For all p ∈ PL \ l(PK) we have m(p) �∈ dom(t1), where dom(t1) is
union of pre- and post domain of t1, and t1 is not deleted.

Proof. Assume m(p) ∈ dom(t1).

Case 1 (t1 = m(t) for t ∈ TL): t1 not being deleted implies t ∈ l(TK). Hence
there exists p′ ∈ dom(t) ⊆ l(PK), such that m(p′) = m(p); but this is a
contradiction to p ∈ PL \ l(PK) and the fact that m cannot identify elements
of l(PK) and PL \ l(PK).

114 H. Ehrig et al.

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

(P N2, M′′
2) (P N2, M′′′

2)

Fig. 4. P/T-systems (PN2, M
′′
2) and (PN2, M

′′′
2)

Case 2 (t1 �∈ m(TL)): m(p) ∈ dom(t1) implies by the gluing condition in Def.
2, that p ∈ l(PK), but this is a contradiction to p ∈ PL \ l(PK).

Example 2. The firing step (PN1, M1)
Select Building−→ (PN1, M

′
1) (see Fig. 1) and

the transformation step (PN1, M1)
prodfollow=⇒ (PN2, M2) (see Fig. 2) are par-

allel independent because the transition Select Building is not deleted by the
transformation step and the marking ML is empty. Thus, the firing step can be
postponed after the transformation step or, vice versa, the rule prodfollow can
be applied after token firing yielding the same result (PN2, M

′
2) in Fig. 5.

In contrast the firing step (PN1, M
′
1)

Go to Destination−→ (PN1, M
′′
1) (see Fig. 1)

and the transformation step (PN1, M
′
1)

prodfollow=⇒ (PN2, M
′
2) (see Fig. 3) are not

parallel independent because the transition Go to Destination is deleted and
afterwards reconstructed by the transformation step (it is not included in the
interface K). In fact, the new transition Go to Destination in (PN2, M

′
2) could

be fired leading to (PN2, M
′′
2) (see Fig. 4) and vice versa we could fire Go to

Destination in (PN1, M
′
1) and then apply prodfollow leading to (PN2, M

′′′
2) (see

Fig. 4), but we would have M ′′
2 �= M ′′′

2 .

In the first diagram in Theorem 1 we have required that the upper pair of steps
is parallel independent leading to the lower pair of steps. Now we consider the
situations that the left, right or lower pair of steps are given - with a suitable
notion of independence - such that the right, left and upper part of steps can be
constructed, respectively.

Independence of Net Transformations and Token Firing 115

Definition 7 (Sequential and Coparallel Independence). In the following
diagram with LHS(prod) = (L, ML), RHS(prod) = (R, MR), m and m′ are
matches and n and n′ are comatches of the transformation steps with m(x) =
m′(x) for x ∈ PL ∪ TL and n(x) = n′(x) for x ∈ PR ∪ TR, we say that

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(PN2, M2)

t2 �������������
(PN1, M

′
1)

(prod,m′,n′)�� ����������

����������

(PN2, M
′
2)

1. the left pair of steps, short ((prod, m, n), t2), is sequentially independent if
(a) t2 is not created by the transformation step
(b) MR(p) ≤ M ′

2(n(p)) for all p ∈ PR

2. the right pair of steps, short (t1, (prod, m′, n′)), is sequentially independent
if
(a) t1 is not deleted by the transformation step
(b) ML(p) ≤ M1(m′(p)) for all p ∈ PL

3. the lower pair of steps, short (t2, (prod, m′, n′)), is coparallel independent if
(a) t2 is not created by the transformation step
(b) MR(p) ≤ M2(n′(p)) for all p ∈ PR

Example 3. The pair of steps (Select Building, (prodfollow , m′, n′)) depicted in
Fig. 5 is sequentially independent because the transition Select Building is not
deleted by the transformation step and the marking ML is empty. Analogously,
the pair of steps ((prodfollow , m, n), Select Building) depicted in Fig. 6 is sequen-
tially independent because the transition Select Building is not created by the
transformation step and the marking MR is empty. For the same reason the pair
(Select Building,(prodfollow , m′, n′)) is coparallel independent.

Remark 3. Note that for prod = ((L, ML) l← (K, MK) r→ (R, MR)) we have
prod−1 = ((R, MR) r← (K, MK) l→ (L, ML)) and each direct transformation

(PN1, M1)
prod
=⇒ (PN2, M2) with match m, comatch n and pushout diagrams (1)

and (2) as given in Def. 4 leads to a direct transformation (PN2, M2)
prod−1

=⇒
(PN1, M1) with match n and comatch m by interchanging pushout diagrams
(1) and (2).

Given a firing step (PN1, M1)
t1−→ (PN1, M

′
1) with M ′

1 = M1
 pre1(t1) ⊕

post1(t1) we can formally define an inverse firing step (PN1, M
′
1)

t−1
1−→ (PN1, M1)

with M1 = M ′
1
 post1(t1) ⊕ pre1(t1) if post1(t1) ≤ M ′

1, such that firing and
inverse firing are inverse to each other.

116 H. Ehrig et al.

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Select Building

Go to Destination

Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

Matching

prodfollow

(P N1, M′
1) (P N2, M′

2)(P N1, M1)

Building
Select

Fig. 5. Pair of steps (Select Building, (prodfollow, m′, n′))

Formally all the notions of independence in Def. 7 can be traced back to
parallel independence using inverse transformation steps based on (prod−1, n, m)
and (prod−1, n′, m′) and inverse firing steps t−1

1 and t−1
2 in the following diagram.

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(PN2, M2)
(prod−1,n,m)

������������

����������

t2

������������� (PN1, M
′
1)

(prod,m′,n′)

�� ����������

����������

t−1
1

�������������

(PN2, M
′
2)

(prod−1,n′,m′)

������������

����������t−1
2

�������������

1. ((prod, m, n), t2) is sequentially independent iff ((prod−1, n, m), t2) is parallel
independent.

2. (t1, (prod, m′, n′)) is sequentially independent iff ((prod, m′, n′), t−1
1) is par-

allel independent.
3. (t2, (prod, m′, n′)) is coparallel independent iff ((prod−1, n′, m′), t−1

2) is par-
allel independent.

Now we are able to extend Theorem 1 on parallel independence showing that
resulting steps in the first diagram of Theorem 1 are sequentially and coparallel
independent.

Theorem 2 (Parallel and Sequential Independence). In Theorem 1, where
we start with parallel independence of the upper steps in the following diagram with

Independence of Net Transformations and Token Firing 117

match m and comatch n, we have in addition the following sequential and coparallel
independence in the following diagram:

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(PN2, M2)

t2 �������������
(PN1, M

′
1)

(prod,m′,n′)�� ����������

����������

(PN2, M
′
2)

1. The left pair of steps, short ((prod, m, n), t2), is sequentially independent.
2. The right pair of steps, short (t1, (prod, m′, n′)), is sequentially independent.
3. The lower pair of steps, short (t2, (prod, m′, n′)), is coparallel independent.

Proof. We use the proof of Theorem 1.

1. (a) t2 is not created because it corresponds to t1 ∈ T1 which is not deleted.
(b) We have MR(p) ≤ M ′

2(n(p)) for all p ∈ PR by construction of the
pushout (2′) with M ′′

2 = M ′
2.

2. (a) t1 is not deleted by the assumption of parallel independence.
(b) ML(p) ≤ M1(m(p)) for all p ∈ PL by pushout (1).

3. (a) t2 is not created as shown in the proof of 1. (a).
(b) MR(p) ≤ M2(n(p)) for all p ∈ PR by pushout (2).

Go to Destination

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

Go to Destination

Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

prodfollow Building
Select

(P N1, M1) (P N2, M′
2)(P N2, M2)

Fig. 6. Pair of steps ((prodfollow, m, n), Select Building)

118 H. Ehrig et al.

In Theorem 2 we have shown that parallel independence implies sequential and
coparallel independence. Now we show vice versa that sequential (coparallel) inde-
pendence implies parallel and coparallel (parallel and sequential) independence.

Theorem 3 (Sequential and (Co-)Parallel Independence)

1. Given the left sequentially independent steps in diagram (1) then also the
right steps exist, s.t. the upper (right, lower) pair is parallel (sequentially,
coparallel) independent.

2. Given the right sequentially independent steps in diagram (1) then also the
left steps exist, s.t. the upper (left, lower) pair is parallel (sequentially, co-
parallel) independent.

3. Given the lower coparallel independent steps in diagram (1) then also the
upper steps exist, s.t. the upper (left,right) pair is parallel (sequentially, se-
quentially) independent.

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(1)(PN2, M2)

t2 �������������
(PN1, M

′
1)

(prod,m′,n′)�� ����������

����������

(PN2, M
′
2)

Proof 1. Using Remark 3, left sequential independence in (1) corresponds to
parallel independence in (2). Applying Theorem 1 and Theorem 2 to the left
pair in (2) we obtain the right pair such that the upper and lower pairs are
sequentially and the right pair coparallel independent. This implies by Remark 3
that the upper (right, lower) pairs in (1) are parallel (sequentially, coparallel)
independent.

(PN1, M1)
t1

�������������

(2)(PN2, M2)

(prod−1,n,m)
������������

����������

t2 �������������
(PN1, M

′
1)

(PN2, M
′
2)

(prod−1,n′,m′)

������������

����������

The proofs of items 2. and 3. are analogous to the proof of 1.

5 General Framework of Net Transformations

In [23], we have introduced the paradigm ”nets and rules as tokens” using a
high-level model with suitable data type part. This model called algebraic higher-
order (AHO) system (instead of high-level net and replacement system as in [23])

Independence of Net Transformations and Token Firing 119

exploits some form of control not only on rule application but also on token firing.
In general an AHO-system is defined by an algebraic high-level net with system
places and rule places as for example shown in Fig. 7, where the marking is given
by a suitable P/T-system resp. rule on these places. For a detailed description of
the data type part, i.e. the AHO-System-signature and corresponding algebra
A, we refer to [23].

In the following we review the behavior of AHO-systems according to [23].
With the symbol V ar(t) we indicate the set of variables of a transition t, i.e.,
the set of all variables occurring in pre- and post domain and in the firing-
condition of t. The marking M determines the distribution of P/T-systems and
rules in an AHO-system, which are elements of a given higher-order algebra A.
Intuitively, P/T-systems and rules can be moved along AHO-system arcs and can
be modified during the firing of transitions. The follower marking is computed
by the evaluation of net inscriptions in a variable assignment v : V ar(t) → A.
The transition t is enabled in a marking M , if and only if (t, v) is consistent, that
is if the evaluation of the firing condition is fulfilled. Then the follower marking
after firing of transition t is defined by removing tokens corresponding to the net
inscription in the pre domain of t and adding tokens corresponding to the net
inscription in the post domain of t.

(PN1, M1)

n transformation

m :Mor
cod m = n
applicable(r, m) = tt

n

fire(n, t)

token game

enabled(n, t) =tt
t :Transitions

(AHO-System-SIG,A)

p1 : System

r

p2 : Rules

transform(r, m)
prodfollow

Fig. 7. Algebraic higher-order system

The transitions in the AHO-system in Fig. 7 realize on the one hand firing
steps and on the other hand transformation steps as indicated by the net in-
scriptions fire(n, t) and transform(r, m), respectively. The initial marking is
the reconfigurable P/T-system given in Section 2, i.e. the P/T-system (PN1, M1)
given in Fig. 1 is on the place p1, while the marking of the place p2 is given by
the rule prodfollow given in Fig. 2. To compute the follower marking of the P/T-
system we use the transition token game of the AHO-system. First the variable
n is assigned to the P/T-system (PN1, M1) and the variable t to the transition
Select Building. Because this transition is enabled in the P/T-system, the firing
condition is fulfilled. Finally, due to the evaluation of the term fire(n, t) we
obtain the new P/T-system (PN1, M

′
1) (see Fig. 1).

For changing the structure of P/T-systems the transition transformation is
provided in Fig. 7. Again, we have to give an assignment v for the variables
of the transition, i.e. variables n, m and r, where v(n) = (PN1, M1), v(m)
is a suitable match morphism and v(r) = prodfollow . The firing condition cod
m = n ensures that the codomain of the match morphism is equal to (PN1, M1),

120 H. Ehrig et al.

while the second condition applicable(r, m) checks the gluing condition, i.e. if
the rule prodfollow is applicable with match m. Afterwards, the transformation
step depicted in Fig. 2 is computed by the evaluation of the net inscription
transform(r, m) and the effect of firing the transition transformation is the
removal of the P/T-system (PN1, M1) from place p1 in Fig. 7 and adding the
P/T-system (PN2, M2) to it. The pair (or sequence) of firing and transformation
steps discussed in the last sections is reflected by firing of the transitions one
after the other in our AHO-system. Thus, the results presented in this paper are
most important for the analysis of AHO-systems.

6 Conclusion

This paper continues our work on ”nets and rules as tokens” [23] by transferring
the results of local Church-Rosser, which are well known for term rewriting and
graph transformations, to the consecutive evolution of a P/T-system by token
firing and rule applications. We have presented conditions for (co-)parallel and
sequential independence and we have shown that provided that these conditions
are satisfied, firing and transformation steps can be performed in any order,
yielding the same result. Moreover, we have correlated these conditions, i.e. that
parallel independence implies sequential independence and vice versa, sequential
(coparallel) independence implies parallel and coparallel (parallel and sequential)
independence. The advantage of the presented conditions is that they can be
checked syntactically and locally instead of semantically and globally. Thus,
they are also applicable in the case of complex reconfigurable P/T-systems.

Transformations of nets can be considered in various ways. Transformations
of Petri nets to another Petri net class (e.g. in [7, 10, 35]), to another modeling
technique or vice versa (e.g in [2, 5, 15, 26, 33, 14]) are well examined and have
yielded many important results. Transformation of one net into another without
changing the net class is often used for purposes of forming a hierarchy, in terms
of reductions or abstraction (e.g. in [22,16,20,12,8]) or transformations are used
to detect specific properties of nets (e.g. in [3,4,6,29]). Net transformations that
aim directly at changing the net in arbitrary ways as known from graph trans-
formations were developed as a special case of high-level replacement systems
e.g. in [17]. The general approach can be restricted to transformations that pre-
serve specific properties as safety or liveness (see [30, 32]). Closely related are
those approaches that propose changing nets in specific ways in order to pre-
serve specific semantic properties, as equivalent (I/O-) behavior (e.g in [1, 11]),
invariants (e.g. in [13]) or liveness (e.g. in [19, 37]). Related are also those ap-
proaches that follow the ”nets as tokens”-paradigm, based on elementary object
nets introduced in [36]. Mobile object net systems [24, 21] are an algebraic for-
malization of the elementary object nets that are closely related to our approach.
In both cases the data types, respectively the colors represent the nets that are
the token nets. Our approach goes beyond those approaches as we additionally
have rules as tokens, and transformations of nets as operations. In [24] con-
currency aspects between token nets have been investigated, but naturally not

Independence of Net Transformations and Token Firing 121

concerning net transformations. In [27] rewriting of Petri nets in terms of graph
grammars are used for the reconfiguration of nets as well, but this approach
lacks the ”nets as tokens”-paradigm.

In this paper we present main results of a line of research2 concerning for-
mal modeling and analysis of workflows in mobile ad-hoc networks. So, there
is a large amount of most interesting and relevant open questions directly re-
lated to the work presented here. While a firing step and a transformation step
that are parallel independent can be applied in any order, an aspect of future
work is under which conditions they can be applied in parallel leading to the
notions of parallel steps. Vice versa a parallel step should be splitted into the
corresponding firing and transformation steps. This problem is closely related
to the Parallelism Theorem for high-level replacement systems [17] which is the
basis of a shift construction for transformation sequences. Moreover, it is most
interesting to transfer further results which are already valid for high-level re-
placement systems, e.g. confluence, termination and critical pairs [17]. We plan
to develop a tool for our approach using the graph transformation engine AGG3

as a tool for the analysis of transformation properties like independence and ter-
mination, meanwhile the token net properties could be analyzed using the Petri
Net Kernel [25], a tool infrastructure for Petri nets different net classes.

References

1. Balbo, G., Bruell, S., Sereno, M.: Product Form Solution for Generalized Stochastic
Petri Nets. IEEE Transactions on Software Engineering 28(10), 915–932 (2002)

2. Belli, F., Dreyer, J.: Systems Modelling and Simulation by Means of Predi-
cate/Transition Nets and Logic Programming. In: Proc. Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems (IEA/AIE), pp. 465–474
(1994)

3. Berthelot, G.: Checking properties of nets using transformation. In: Proc. Appli-
cations and Theory in Petri Nets. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg
(1985)

4. Berthelot, G.: Transformations and Decompositions of Nets. In: Petri Nets: Central
Models and Their Properties, Part I, Advances in Petri Nets. LNCS, vol. 254, pp.
359–376. Springer, Heidelberg (1987)

5. Bessey, T., Becker, M.: Comparison of the modeling power of fluid stochastic Petri
nets (FSPN) and hybrid Petri nets (HPN). In: Proc.Systems, Man and Cybernetics
(SMC), vol. 2, pp. 354–358. IEEE Computer Society Press, Los Alamitos (2002)

6. Best, E., Thielke, T.: Orthogonal Transformations for Coloured Petri Nets. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 447–466. Springer,
Heidelberg (1997)

7. Billington, J.: Extensions to Coloured Petri Nets. In: Proc. Petri Nets and Perfor-
mance Models (PNPM), pp. 61–70. IEEE Computer Society Press, Los Alamitos
(1989)

2 The research project Formal Modeling and Analysis of Flexible Processes in Mobile
Ad-hoc Networks (forMAlNET) of the German Research Council.

3 tfs.cs.tu-berlin.de/agg

tfs.cs.tu-berlin.de/agg

122 H. Ehrig et al.

8. Bonhomme, P., Aygalinc, P., Berthelot, G., Calvez, S.: Hierarchical control of time
Petri nets by means of transformations. In: Proc. Systems, Man and Cybernetics
(SMC), vol. 4, p. 6. IEEE Computer Society Press, Los Alamitos (2002)

9. Bottoni, P., De Rosa, F., Hoffmann, K., Mecella, M.: Applying Algebraic Ap-
proaches for Modeling Workflows and their Transformations in Mobile Networks.
Journal of Mobile Information Systems 2(1), 51–76 (2006)

10. Campos, J., Sánchez, B., Silva, M.: Throughput Lower Bounds for Markovian Petri
Nets: Transformation Techniques. In: Proc. Petri Nets and Performance Models
(PNPM), pp. 322–331. IEEE Computer Society Press, Los Alamitos (1991)

11. Carmona, J., Cortadella, J.: Input/Output Compatibility of Reactive Systems. In:
Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377.
Springer, Heidelberg (2002)

12. Chehaibar, G.: Replacement of Open Interface Subnets and Stable State Trans-
formation Equivalence. In: Proc. Applications and Theory of Petri Nets (ATPN).
LNCS, vol. 674, pp. 1–25. Springer, Heidelberg (1991)

13. Cheung, T., Lu, Y.: Five Classes of Invariant-Preserving Transformations on Col-
ored Petri Nets. In: Donatelli, S., Kleijn, J.H.C.M. (eds.) ICATPN 1999. LNCS,
vol. 1639, pp. 384–403. Springer, Heidelberg (1999)

14. Cortés, L., Eles, P., Peng, Z.: Modeling and formal verification of embedded systems
based on a Petri net representation. Journal of Systems Architecture 49(12-15),
571–598 (2003)

15. de Lara, J., Vangheluwe, H.: Computer Aided Multi-Paradigm Modelling to Pro-
cess Petri-Nets and Statecharts. In: Corradini, A., Ehrig, H., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 239–253. Springer, Hei-
delberg (2002)

16. Desel, J.: On Abstraction of Nets. In: Proc. Applications and Theory of Petri Nets
(ATPN). LNCS, vol. 524, pp. 78–92. Springer, Heidelberg (1990)

17. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. In: EATCS Monographs in Theoretical Computer Science,
Springer, Heidelberg (2006)

18. Ehrig, H., Hoffmann, K., Prange, U., Padberg, J.: Formal Foundation for the Re-
configuaration of Nets. Technical report, TU Berlin, Fak. IV (2007)

19. Esparza, J.: Model Checking Using Net Unfoldings. Science of Computer Program-
ming 23(2-3), 151–195 (1994)

20. Esparza, J., Silva, M.: On the analysis and synthesis of free choice systems. In:
Proc. Applications and Theory of Petri Nets (ATPN). LNCS, vol. 483, pp. 243–
286. Springer, Heidelberg (1989)

21. Farwer, B., Köhler, M.: Mobile Object-Net Systems and their Processes. Funda-
menta Informaticae 60(1–4), 113–129 (2004)

22. Haddad, S.: A Reduction Theory for Coloured Nets. In Proc. Applications and
Theory in Petri Nets (ATPN). In: Proc. Applications and Theory in Petri Nets
(ATPN). LNCS, vol. 424, pp. 209–235. Springer, Heidelberg (1988)

23. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-Level Nets with Nets and Rules
as Tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536,
pp. 268–288. Springer, Heidelberg (2005)

24. Köhler, M., Rölke, H.: Concurrency for mobile object net systems. Fundamenta
Informaticae 54(2-3), 221–235 (2003)

25. Kindler, E., Weber, M.: The Petri Net Kernel - An Infrastructure for Building
Petri Net Tools. Software Tools for Technology Transfer 3(4), 486–497 (2001)

Independence of Net Transformations and Token Firing 123

26. Kluge, O.: Modelling a Railway Crossing with Message Sequence Charts and Petri
Nets. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technol-
ogy for Communication-Based Systems. LNCS, vol. 2472, pp. 197–218. Springer,
Heidelberg (2003)

27. Llorens, M., Oliver, J.: Structural and Dynamic Changes in Concurrent Systems:
Reconfigurable Petri Nets. IEEE Transactions on Computers 53(9), 1147–1158
(2004)

28. Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computa-
tion 88(2), 105–155 (1990)

29. Murata, T.: Petri nets: Properties, analysis and applications. In: Proc. IEEE, vol.
77, pp. 541 – 580. IEEE (1989)

30. Padberg, J., Gajewsky, M., Ermel, C.: Rule-based refinement of high-level nets pre-
serving safety properties. Science of Computer Programming 40(1), 97–118 (2001)

31. Padberg, J., Hoffmann, K., Ehrig, H., Modica, T., Biermann, E., Ermel, C.: Main-
taining Consistency in Layered Architectures of Mobile Ad-hoc Networks. In:
Dwyer, M.B., Lopes, A. (eds.) FASE 2007, LNCS, vol. 4422, pp. 383–397, Springer,
Heidelberg (2007)

32. Padberg, J., Urbášek, M.: Rule-Based Refinement of Petri Nets: A Survey. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 161–196. Springer, Heidel-
berg (2003)

33. Parisi-Presicce, F.: A Formal Framework for Petri Net Class Transformations. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 409–430. Springer, Heidel-
berg (2003)

34. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, Singapore (1997)

35. Urbášek, M.: Categorical Net Transformations for Petri Net Technology. PhD the-
sis, Technische Universität Berlin (2003)

36. Valk, R.: Petri Nets as Token Objects: An Introduction to Elementary Object Nets.
In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer,
Heidelberg (1998)

37. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

	Introduction
	Mobile Network Scenario
	Reconfigurable P/T-Systems
	Independence of Net Transformations and Token Firing
	General Framework of Net Transformations
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

