@ ECEASST

Simulating Multigraph Transformations Using Simple Graphs

lovka Boneval, Frank Hermann?, Harmen Kastenberg', and Arend Rensink!

1 bonevai, h.kastenberg, rensink [at] cs.utwente.nl
Department of Computer Science, University of Twente
P.O. Box 217, NL-7500 AE Enschede, The Netherlands

%frank [at] cs.tu-berlin.de
Department of Electrical Engineering and Computer Science
Technical University of Berlin, D-10587 Berlin, Germany

Abstract: Application of graph transformations for software verifioa and model
transformation is an emergent field of research. In padriggraph transformation
approaches provide a natural way of modelling object ceigistystems and seman-
tics of object-oriented languages.

There exist a number of tools for graph transformations dinabften specialised in
a particular kind of graphs and/or graph transformationregghes, depending on
the desired application domain. The main drawback of thisrdity is the lack of
interoperability.

In this paper we show how (typed) multigraph productionesyst can be translated
into (typed) simple-graph production systems. The preskoonstruction enables
the use of multigraphs with DPO transformation approachafstthat only support

simple graphs with SPO transformation approach, e.g. th@@Fe tool.

Keywords: graph transformations, graph transformation tools, toi@roperability,
multigraphs, simple graphs

1 Introduction

Application of graph transformations for software verifioa and model transformation is an
emergent field of research. In particular, graph transftionapproaches provide a natural way
of modelling object oriented systems and semantics of dlgjgented languages<KRO06] or
graphical modelling languages such as the UMIMGO0Y5, see for instanceHau04.

For performing the actual graph transformations, diffeesproaches are around ranging from
hyperedge replacement approach (see é&¢H97]), logic based approach (see e.q.ou97)
to different algebraic approaches such as Single Puskea {EHK"97] and Double Pushout
(pPo) [CMR"97] approach. These different approaches all have specifiticafipn areas in
which their features are used in an optimal fashion.

Another difference is the use of either multigraphs or sergiaphs for modelling the appli-
cation domain. Whereas the former is more general, the latiites better when using graphs
for representing relations between object in order to nreaout these objects using (first-order)
logical formulae Ren04/. While spocan be applied for both multigraphs and simple graphs,
DPOis not defined for simple graphs in general.

Pre-Proceedings GT-VMT 2007 133/195

mailto:bonevai, h.kastenberg, rensink [at] cs.utwente.nl
mailto:frank [at] cs.tu-berlin.de

Simulating Multigraph Transformations @

For most tools performing graph transformations the grapnasentation formalism and the
transformation approach are determined by the targetelicafipn domain. For instance, the
GROOVE tool Ren044 is designed for modelling dynamic systems by generatihgassi-
ble system configurations and verifying properties aboeit thehaviour. GROOVE uses sim-
ple graphs and perfornrsPo based graph transformations. Another example is the AGG too
[TER99 which handles multigraphs witbPoand is used e.g. for independence and termination
analysis on graph grammars.

The main drawback of this diversity in tools is their pooreiaperability. One attempt to
bridge this gap is the introduction of a common language @isedxchanging models among
tools, called the Graph eXchange Languagedyr for short) [SSHW. In order to extend this
work for also exchanging the transformation specificatiamxL [Tae0] has been proposed.
However, since every implementation of a specific approachot aware of details of other
approaches it is very difficult to include all the featuresoimle common standard and thereby
enable tools to perform semantically equivalent transfdioms.

In a previous work HKMO6] we have proposed translations of graph production systems
between GROOVE and AGG, but these translations were todfepedoe applicable in a more
general context. Moreover, these translations were nettiie.

In the current paper, we generalise this translation to #egoithat is tool independent. We
show how one can encode typed multigraph production systetmsimple-graph production
systems and simulatero transformations of multigraphs witbpo transformations on simple
graphs. Then we shortly discuss howo transformations for simple graphs can be handled by
a tool supporting onlsPoon simple graphs. These results should allow, for instaiocese the
GROOVE tool (or any other tool using simple graphs) with ngu#phs. As a further extension,
we believe that it would be possible to apply the theory of &jict Transformation Systems
[CHS0§ in GROOVE.

Running Example. Throughout this paper we will clarify our ideas and resufling a simple
example. In the example we model the dynamic behaviourisaté andObjects that can be
elements of some specifigsts. OneObject may occur in d.ist several times. We assume that
Objects can be created instantly by the environment (which we donaatel in this example).
OnceObjects are around, different actions can be performed.ists andObjects like adding
Objects toLists and moving, removing or copyir@bjects.
Fig. 1 depicts a possible configuration with twasts: one containing a singl®bject and

another having two entries referring to the sa@igect. In each configuration we assume that
all List- andObject-instances have their own identity, although we do not stimsgéd identities.

‘ List ‘ ‘ List ‘

entry entry entry
\ 4 Y VY

‘ Object ‘ ‘ Object ‘

Figure 1: Example configuration afsts andObjects.

Pre-Proceedings GT-VMT 2007 134/195

@ ECEASST

Organisation of the Paper. The remaining of the paper is structured as follows. In $adi

we provide a formal basis for the rest of the paper. In Seciiove define our translation of
multigraphs to simple graphs and prove the equivalen@raftransformations on multigraphs
on the one hand, angpro transformations on (special) simple graphs on the othed.hdn
Section4 we describe how this equivalence can be extended to typedldd graphs. Then, in
Section5 we describe howpo transformations on (special) simple graphs can be handled b
tools implementing thespo transformation approach, such as the GROOVE tool. Finally,
Section6 concludes and gives some hints on the way we would like to hisedsults of this
work for improving state space exploration in GROOVE.

2 Background

2.1 Graphs and Graph Morphisms

Graphs are a very powerful means of modelling systems arndlibbaviour. As will become
clear in this paper, in some cases it is very important whimion of graphs are used, since the
theory applied may depend on this choice quite heavily.

The graph concept is differently interpreted by people working infeliént domains or even
in the same domain. Graphs can e.g. be said tddberministi¢ directedor labelled In this
paper we will explicitly distinguish between what we aallltigraphsandsimple graphs

Definition 1 (multigraph, multigraph morphism) Aultigraphis a tupleG = (Vg, Eg, srcg, tgtg)
where:
e /g is a set olhodes(or vertices);
e Egis asetofdges
e srcg,tgtg: Egc — Vg aresourceandtargetfunctions.
A multigraph morphism f G— H is a pair(fy, fg), wherefy: Vg —Vy and fg: Eg — Eq
are functions compatible wittrc andtgt functions, i.e.
o fyosrcg =srch o fE;
o fyotgtg = tgty o fE.
Definition 2 (simple graph, simple graph morphism) ILeb be a finite set of labels. Aimple
graphlabelled ovelLab is a tupleG = (Vg, Eg) where
e /s is a set ofnodes(or vertices);
e Eg C Vs x Lab x Vg is a set ofedges
The source and target functiosgg, tgtg: Ec — Vi are defined for any edge= (v,1,V) € Eg
by srcg(e) = vandtgtg(e) = V.
A simple graph morphism:fG—H is a pair(fy, fg), wherefy : Vo —Vy and fg: Ec — En

are functions compatible witic andtgt functions and with labelling, i.e. for any edgel V') €
Ee, fe((v1,V)) = (fv(v).1, fv(V)).

Pre-Proceedings GT-VMT 2007 135/195

Simulating Multigraph Transformations @

In the sequel we will call a graph morphisin G — H total if its componentsfy and fg
are total functions, angartial if its components are total functions fro@f to H, whereG' is
some subgraph db. An injectivemorphism is a morphism induced by injective functions. We
will denote the set of multigraphs a#'¥¢ and the set of simple graphs ouerb as.”¥ (Lab).
Hereafter, we will writegraphwhen something holds for both multigraphs and simple graphs

In our formal definitions we use unlabelled multigraphs adtklled simple graphs. We start
with unlabelled multigraphs in order to keep proofs simplewever, all results of the paper can
be extended to labelled graphs, as it will be discussed itid®et Therefore, our examples will
already freely use labels on both nodes and edges.

2.2 Graph Transformations

When modelling system states as graphs, the dynamics of¢iens can be specified by graph
transformations. The changes of states are then descrijpgdaph productions also called
graph transformation rules

Definition 3 (graph production) Agraph production pconsists of two graphk andR, being
its left-hand-sideandright-hand-side respectively, together with a partial graph morphism from
L to R, called therule morphism

We often denote a graph productipnas p: L — R, also usingp when referring to the rule
morphism. When combining a grapgh with a set<” of graph productions, we getgraph
production system GPS (G, 7). In a graph production syster@ is called thestart graph
By applyinggraph productions t& we canderiveother graphs. The applications of graph pro-
ductions are defined on categories in which the objects aratabte class of graphs and the
arrows are the corresponding graph morphisms. For an inttimh to category theory, see e.g.
[BW95]. Whether a rule is applicable and to what resulting grapbréavdtion leads, depends on
the particular graph transformation approach being agpliethis paper we distinguish between
the Single Pushoutsfo [EHK"97] and Double Pushoubfo) [CMR'97] approach. For ap-
plying a production in thepoapproach, we only need an occurrence of the left-hand-ditheeo
graph production. When the application of a graph produoctiould delete a node but not all
of its adjacent edges, thodangling edgesvill also be removed. Furthermore, if the application
prescribes one node (or edge) to be both deleted and prdséhnieconflict is solved in favour
of deletion. These conflicts are resolved in tiro approach by forbidding such applications of
productions, i.e. theprPo approach requires additional conditions on the applioati@hich are
called thedangling edge conditioand theidentification condition(together referred to as the
gluing condition.

In the bPO approach, a graph productign L — R is depicted as a spanL K L Rof total
graph morphisms, such thidt=LNR, I: dom(p) — L, andr: dom(p) — R. To be deterministic,
it is necessary that either rule morphisms or matchingsrgeetive. We will now define how
applications of graph productions and the correspondimyatens for bothspoandbro.

Definition 4 (application, derivation) Theapplication of a graph productiorp: L— R to a
graph G is given by a total graph morphism: L — G, also called amatching The direct

Pre-Proceedings GT-VMT 2007 136/195

@ ECEASST

derivationfrom a graphG to a graphH through an application of productigmvia a matching
m, denoteds =22 H, is constructed

(SPO) as the pushout pfandmin the considered category of graphs (see E{g));

(DPO) by first taking the pushout complemén{with k: K — D andl«: D — G) of | andm, if
it exists (ensured by the gluing condition), and then takivgpushout of andk (see Fig2(b)).

GTH GT DT>H
(a) SPO (b) DPO

Figure 2: GrapiH as the result of aspoand abpo derivation.

Intuitively, applying a graph productiop to a graphG can be seen as a sequence of two
actions:find an occurrence df in G and therreplacethat occurrence biR. This then results in
the graphH. An example direct derivation is shown in Fig.

Another important difference betwee®o andbpPo is the fact thabPo does not work on
simple graphs with arbitrary matchings, because in somesdas required pushout construction
is not unique or does not exist. In this paper we do am#g on simple graphs, but then ensure
that we restrict to a special class of matchings and/or mismph This issue will discussed in
Section3.

2.3 Back to the Example

Now that we have introduced the notion of graphs and the gitapisformation technique, we
can recall the example and give a formal description of thiems. In Fig.3 we specify some of

the actions from the example as graph transformation ryleshbwing their left-hand-side and
right-hand-side graph. The rule morphisms in Hgre defined by the placing of the elements.

L ! 'R | L ! i R
L [w] .
[| | N
0o ’*} entry i entry i’ ’*} entry
i | A 4 I !
o]
(a)add (b) copy

Figure 3: Graph transformation rules for some of the actioriee example.

In Fig. 4 we show a single rule application in which we apply tlgy-rule (Fig.3(b)) on a
graphG consisting of twd_ists each containing on@bject, also showing the resulting grajph

Pre-Proceedings GT-VMT 2007 137/195

Simulating Multigraph Transformations @

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

entry entry i, . , entry iy/ entry i
\ 4 A 4 ! p* | A 4 \ 4 !
Object Object i ! Object Object i

Figure 4. An example direct derivation.

3 From Multigraphs to Simple Graphs and back again

In this section we describe our translation between mualgigs and simple graphs. At a categor-
ical level we will show that these translations are functelgch are isomorphisms, moreover
being each others inverse.

3.1 From Multigraphs to Simple Graphs

Consider the set of labelsyg = {s,t}. The functionSim maps multigraphs from#¥ into
simple graphs in¥(Luc) as follows: every edge in the multigraph with source node
and target nods; is replaced by a special nodg (this we call theproxy node) and two edges
(Ve,s,Vs) @and(Ve,t, ;). Fig. 5 shows an example applying t&m function.
Let G = (Vg, Eg,srcg, tgtg). ThenSim(G) is the graptH = (Vy, Ey) with
e Vg =VgUEg;
® En =Uyeee{(Ve,s;srca(Ve)), (Ve t, tgt(Ve)) }-
The Sim function can be extended on graph morphisms. That 8,ahdH are multigraphs
andm: G— H is a morphism, the®im(m): Sim(G) — Sim(H) is the morphism defined by:
e foranyvin Vg UEg (i.€. V € Vsim(g)), (SIm(m))(v) = m(v);
o for any(V, I 7\/) in ESim(G)’ (Slm(m))((% I 7\/)) - (m(V)7 I) m(\/))
Note that the definition o8im(m) on edges 08im(G) ensures thaim(m) is indeed a simple
graph morphism.

3.2 From Simple Graphs to Multigraphs

Let .Y 4« be the set of bipartite simple graphs olgfs satisfying the following conditions:
G=(V,E) e SY 44 if

Pre-Proceedings GT-VMT 2007 138/195

@ ECEASST

Figure 5: Encoding of a multigraph (on the left) into simplaghs with proxy nodes (on the
right) by theSim function.

1. V =V,UVe whereV, andV, are two disjoint sets;
2. E = EsUE; whereE; andE; are disjoint sets anls C Ve x {s} x Vi, andE; C Ve x {t} x Vy.

3. any nodeve in Ve has exactly two adjacent edgés,s,V,) € Es and (v,t,Vv/,) for some
Vi, Vi € V.

We now define the functioSim1: % ,, — .#% as follows: ifG = (V,UVe, Eg) Where
V, andV, are as in the description o#¥_,, stated above, theH = Sim~1(G) is the graph
(V,E,src,tgt) such tha =V, E =V, and for anye € Ey, src(e) = vs andtgt(e) = v, where
Vs, i € Vj are the nodes such th@s, vs), (e, t,) € Eg. We know by conditior8 of the definition
of the set of graphs”¥ _,« that the nodess andyv; exist and are unique.

TheSim~! function can also be extended on graph morphisms.: I6 — H is a simple graph
morphism, therSim—1(m): Sim(G) — Sim~%(H) is the multigraph morphism such that for
any x in Vg UEg, (Sim~1(m))(x) = m(x). We now show thaBim~*(m) defined this way is
indeed a multigraph morphism.

Let G’ = Sim (G), H = Sim 1(H) andm’ = Sim~*(m). Then for any edge € Eg, (m o
srce) (e) = m(vs) wherevs is the unique node i such thate,s,vs) is an edge ofs. Asmis
a simple graph morphisnim(e),s,m(vs)) is an edge irH. On the other handsrcy: on)(e) =
srcyr(m(e)) is the unique node, in H such thaim(e), s, ;) is a edge irH. We deduce then that
both(m(e),s,v;) and(m(e),s,m(vs)) are edges ifl. By uniqueness of,, necessarily; = m(vs),
som osrcg = srcyr oM. On a similar way we can see thato tgtg = tgty om.

It is not very hard to see tha¥¥ ,« is exactly the set of simple graphs that are images of
multigraphs by thé&im function, and that the functioBim ™ is the inverse of the functio8im.
This will be formally stated in the following section.

3.3 Categories for Multigraphs and Simple Graphs

In this section we define the categorig&s and SGyc (Lmg) on which DPO transformation
is defined for multigraphs and for simple graphs that are dings of multigraphs. We show
also that the functionSim andSim—* define free functors frortMG to SGyg (Lme) and from
SGwi (Lmc) to MG respectively. This will guarantee that performingo transformations on
multigraphs can be simulated oy o transformations on simple graphs that belongA& <,
as stated in Theoreth The reader who is not familiar with category theory will padly only
be interested in the result of this theorem.

Pre-Proceedings GT-VMT 2007 139/195

Simulating Multigraph Transformations @

Definition 5 (categorieMG, SG(L), andSGyg (Lvg)) MG is the category whose objects are
elements of #% and whose arrows are multigraph morphisn®3(L) is the category whose
objects are simple graphs over the set of lahedsid whose arrows are simple graph morphisms.
Finally, SGug (Lme) is the category whose objects are elements®f ,« and whose arrows
are simple graph morphisms.

Note thatSGy (Lms) can be equivalently defined as the full subcategor$sGfLyg) in-
duced by.9 4.

Recall that a functof = (f,, fy) from a categoryC to a categoryp is a function withf, (resp.
fm) associating objects (resp. morphisms)Dofvith objects (resp. morphisms) @ and such
that f preserves morphisms, identities and composition.

The following lemma easily follows from the definitions.

Lemmal Itholds that

1. Simis a functor fromMG to SGy (Lms) and
2. Simtis a functor fromSGyg (Lyg) to MG;
3. the functorsSim and Sim ™! are isomorphisms:

_loSim: IDmc .

SimoSim ™' =1IDgg,g(1ye) and Sim
Graph morphisms are called edge reflecting, if edges aretefl@long their boundary, i.e.
such a morphisni must not map two nodes, if the image nodes are connected kganwhich
is not reached by.

Lemma2 All morphisms f. G — H in SGyg (Lmg) are edge reflecting, i.e.
if (f(x),l,f(y)) € En then (xl,y) € Eg.

Proof. It is enough to show tha®im translates to edge reflecting morphisms, because the cat-
egories are isomorphic. By definitioBjm translates edges to special nodes with two outgoing
edges to other nodes. NodesNtG are connected via structured edgesSByc (Lmg), thus
edges connect an original node with a proxy node. fle¢ a graph morphism MG . If Sim(f)
reaches a proxy nodé,has to map to the original edge. Therefore, also the adjachyds are
reached bysim(f) and thusSim(f) is edge reflecting. O

3.4 Multigraph versus Simple Graph transformations

In the sequel we combine the graph categolks, SGyc (Lmg) andSG(Lug) with the trans-
formation approachespoandppro. We will denote such combinations wikhG +DpPoetc. The
aim of this paper is to translaMG +DpPointo SG(Lyg)+SPQ This is achieved in two steps:

MG +DPO — SGyg(Lug)+DPO — SG(Lmg)+SPO

The first step consists in encoding multigraphs and productiles using th&im function, thus
obtaining simple graphs ¥ _,« and simple graph morphisms. The second step consists in

Pre-Proceedings GT-VMT 2007 140/195

@ ECEASST

encoding thebpo rules intosporules. In HHT96] (Proposition 3.5) it has been shown that
it is possible to translate the application conditions abreo derivation (i.e. dangling edge
and identification condition) itMG to equivalent negative application conditionsaCs) for
performingspoderivations inMG. In Theoreml we show that the initiabpPo transformations
in MG can be simulated by the translatedotransformation irSG(Lyg).

Remarkl (Uniqueness of derivationg)P0O derivations need the uniqueness of pushout com-
plements to be deterministic to a given rule and match. Iresigth categories this is the case
if the rule morphisms are or the match is monomorphic (seerhar5 in LS04]), meaning
injective in the categorgraph. In our setting the categoMG is adhesive and therefore also
SGwuc (Lma) is, because it is isomorphic. The monomorphisms in therlatte are also euqal-
izers by their property of being edge reflecting and thus; #ve regular monomorphisms.

Given a DPO rulep =L L KLR we useSim(p) to denoteSim(L) sipd) Sim(K) Stmr)
Sim(R), and we denote b%im*(p) the translated rule equipped with additiom&lcs, as de-
scribed in HHT96]. For the following lemma we interpret graphs 6y (Lmc) as graphs in
MG by forgetting all labels. This allows us to show that puskare not only translated to those
in a different category, but also remain pushouts in theimaigcategory of multigraphs, after
applyingSim. An extension oMG with lables is direct and only adds information, which does
not interfere with the pushout construction.

Lemma 3
A——=B Sim(A) —— Sim(B)

l (PO) l in MG implies l (PO) l in MG up to label information.
D Sim(C) —— Sim(D)

C——s
Proof. (sketch) Pushouts MG are constructed componentwise for the sets of edges and node
by building the disjoint union and factorizing along the mgience generated by the span of

morphisms. The definition aBim is compatible with the standard pushout construction, i.e.
Sim(D) = Sim(B+aC) = Sim(B) +gjm(a) Sim(C). O

Theorem 1(simulation) Given arule p=L L K 5 Rand amatch mL — G in MG, where
| is injective, the following three are equivalent:

1. G2 . G in MG;

2. Sim(G) SRS, Sim(G') in SGug (Lva);

3. sim(G) 2SI, H in SG(Lyc).

(G) Sim*(p),Sim(m)

Furthermore, if the derivatio®im H exists inSG(Lug), then H= Sim(G).

SPO

Proof. 1< 2 SimandSim~! are isomorphisms by Lemniaand hence, they preserve all Limits
and Colimits. Sincé or m, respectively, is injective thepo-derivations are unique up to
isomorphism.

Pre-Proceedings GT-VMT 2007 141/195

Simulating Multigraph Transformations @

2= 3 The derivation in 2 can be considered as a derivatioM@ up to labels, according to
Lemma3. Then using [HHT96), it is equivalent to arspPoderivation with NACs inMG
with resultSim(G’), that is,Sim(G') is the pushout op andmin MG. But, asSim(G') is
a simple graph, it is also the pushoutpndmin SG(Lug), up to labels. Because of the
strict relation between the labels in graphsit¥_,« and their structure, it is not difficult
to see thaSim(G') is also the pushout gf andmin SG(Ly) without ignoring the labels.

3= 2 Let H' be the result of the derivatiota) Sim(G) S SMM, 't/ jn MG. By

[HHT96] we know that ther{b) Sim(G) Mﬁwo H’is a derivation irMG. Since
Sim(p), Sim(m) are morphisms i8Gyg (Lwg), by Lemma2 we know that they are edge
reflecting, and this allows to deduce that the graplis a simple graph, that is, an object
of SG(Lwmg). Now, asSG(Lue) is a full subcategory dfIG and by(a), we have thah’ is
the pushout oSim*(p) andSim(m) in SG(Lug). By uniqueness of this pushout and the
derivation in point3 we deduce thatl” = H, thus(b) is a derivation irSG(Lwg). Finally,
one can see thal’ and the context graph ifb) are also objects Gy (Lms) because
the translated rule will only produce and delete completectired edges by definition of
Sim. Hence, no garbage (i.e. proxy nodes with either an outgeidge or a-edge, but
not both) will occur. Thus(b) is also a derivation i8Gyg (Lma)-

Result H = Sim(G') is a direct consequence of the last part of the proof for teeipus item.
O

4 Extensions

Theoreml immediately extends to rules with negative applicationdittons, because they con-
tain just additional graphs and morphisms of the same kindusTwe will not describe this
aspect in more detail.

We are also confident that the results from this paper can tem@ad in a straightforward
manner to hypergraph&pn02], which differ from multigraphs in not having source andgetr
functions, but rather a single functiands: Eg — V¢ that associates with every edgestaing
of nodes. Hypergraphs can be translated to simple graphg peécisely the same technique of
encoding edges as proxy nodes, with in this case as manyaayxdges (to nodes) as there are
elements irends(e).

Up to now we have only considered unlabelled and untypedgnatths, but all the results that
we have shown can be easily extended to typed multigraplishamce to labelled ones, since
labelling can be insured by typing; see, e.&EPT0§. Fig. 6 shows how one of our example
labelled multigraphs would be encoded into a simple graph.

A typed graph(G, m) is a graphG together with a morphistm: G — TG to some grapii'G
called the type graph. A typed graph morphism(G,m) — (G, n7) is a morphism for which
m=m o f. Transformations of typed graphs should involve only tygesph morphisms. It is
equivalent to consider transformations islace category That is, typed transformations @©
w.r.t. the type grapf G are equivalent to transformations in the slice categoiyTG, whereC
is eitherMG or SGyc (Lmg) andTGis a multigraph or simple graph, respectively. NowM(S

Pre-Proceedings GT-VMT 2007 142/195

@ ECEASST

S emy .t

entry
e (s ot
entry

Figure 6: Encoding of a labelled multigraph.

and SGyc (Lmg) are isomorphic withSim as isomorphism functor, it is trivial to see that the
slice categories are also isomorphic. Thus, there is a pashdG | TGif and only if there is

a pushout irSGyg (Lmg) | Sim(TG). Then the simulation result stated in Theorgmiso holds
for a typed transformation.

However, in this case an additional translation step ikretjuired to translate to untyped sim-
ple graphs. In this case we have to extend the labels to eticedgping; hence, the translation is
from [SGu (Lmg) | SIM(TG)]4+spPoto [SGue (Lme X (VtcUErg))]+SPo. We are convinced
that this translation is straightforward, but we have neegithe proof.

5 Simulation in SPO Tools

Tools performing graph transformations often implengsince this requires only one pushout
construction where foppo an additional pushout complement construction is needexhléms
arise when performing rule applications usisigothat do not satisfy the gluing conditions. In
the running example such a situation would occur when apglitiedelete rule on anObject
that is e.g. contained in more than drist.

In order still to be able to performpPo transformation, there are basically two alternatives:

1. restrict rule applications by checking the gluing coiodi$ after searching for matchings;

2. encode the gluing conditions using additional negatp@ieation conditions in the trans-
formation rules.

Choosing the first alternative requires that the tool peman additional gluing check on
the found matches. This gluing check means that for all ifleations in the matching and
for all node deletions we need to ensure that there is no meskelete conflict (identification
condition) and that the node-deletions do not cause dapgliiges (dangling condition), respec-
tively. The AGG tool’'s kernel implementsPoand uses a similar mechanism for handlivepo
transformations.

The second alternative is based on Theoferim which we show that it is possible to sim-
ulatebpo on our special simple graphs by adding additional negatiydi@ation conditions as
described infHHT96].

Let us now briefly describe how one can use the GROOVE toolqaresother tool support-
ing simple graph transformations wi?0) for performingbpPo transformations on multigraphs.
Given a (multigraph) graph production system (GFS} (G, &7), one first has to create a pro-
duction systenSim(T) by encoding the grapt® and all graphs and morphisms that are parts

Pre-Proceedings GT-VMT 2007 143/195

Simulating Multigraph Transformations @

of the productions inZ in the manner described in SectiBn Note that if some productions
include negative application conditions, these cond#titmyether with the morphisms that relate
them to the corresponding production are encoded just asai@raphs and morphisms. Now,
if the tool offers the possibility to check for the gluing abtion (choicel above), then the GPS
Sim(T) can be submitted to the tool, specifying that the check fergliing condition has to
be performed. Otherwise (choi@eabove), one has to construct the production syssemi (T)

by augmentindsim(T) with additionalNAcs for encoding the gluing condition Bim(T). The
GPSSIim*(T) is then submitted to the tool as a normal (simple) graph prisolu system. Any
derivation results obtained by the tool (e.g. graphs thateaderived from the start graph or the
actual rule applications) can be transformed back to nmaltigs using th&im~* mapping. This
forth and back translation can be used, for instance, fohaxging results between different
graph transformation tools.

6 Conclusion and Future Work

We have proposed a method for performingo multigraph transformations using tools han-
dling sposimple graph transformations. Compared to previous wiaikNI06], this method is
generic, i.e. has been proved correct on categorical lexkbaes not depend on the tools to be
used.

Pushing theory to work in practice. Tool interoperability is one major motivating point to
translate graph transformation systems using multigrapitkbPO to equivalent systems with
simple graphs andpPo derivations. On the more fundamental level it is even moter@st-
ing to have the possibilities of applying a wide range of tle&oal results and implementing
them in the tool of favour. During the last three decades @fidheory was developed using
DPO and multigraphs. One special new technique is the analysisrivations using Subobject
Transformation Systemst9) presented inCHS0§. Since the GROOVE tool performs graph
derivations to verify systems, there could be the possihili combining the power of both. And
indeed, this idea already has a concrete structure: blysiced can exploit the possible results of
dependencies using a translatiorstss and furthermore, the branching derivations of the state
space can be folded into one summary object. Thus, only d somaber of derivation steps will
have to be performed to construct an abstraction of a muaebigfate space. The idea is then
to use the abstraction equipped with s to deliver only effective states and perform model
checking on these states and their concrete successors.

Acknowledgements. The first and third authors are employed in the GROOVE prdiewed
by the Dutch NWO (project number 612.000.314).

Bibliography

[BW95] M. Barr, C. Wells.Category Theroy for Computing Scienégentice Hall, 1995.

Pre-Proceedings GT-VMT 2007 144/195

S

ECEASST

[CHSO06]

[CMR*97]

[Cou97]

[DKH97]

[EEPTO6]

[EHK*97]

[Hau06]

[HHT96]

[HKMO6]

[KKRO6]

[K6Nn02]

[LS04]

[LS05]

[OMGO5]

A. Corradini, F. Hermann, P. Sobocihski. Subobje@nsformation System#p-
plied Categorical Structure006. To appeatr.

A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heck®. Lowe. Algebraic
Approaches to Graph Transformation, Part I: Basic ConcaptsDouble Pushout
Approach. Pp. 163-246 iRpz97.

B. Courcelle. The Expression of Graph Propertied @raph Transformations in
Monadic Second-Order Logic. Pp. 313—-400/R0E97.

F. Drewes, H.-J. Kreowski, A. Habel. Hyperedge Regiment Graph Grammars.
Pp. 95-162 infRoz97.

H. Ehrig, K. Ehrig, U. Prange, G. TaentzBundamentals of Algebraic Graph
Transformation EATCS Monographs in TCS. Springer Verlag, 2006.

H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wawpr, A. Corradini.
Algebraic Approaches to Graph Transformation, Part Il;g&irPushout Approach
and Comparison with Double Pushout Approach. Pp. 247-31Rdr97.

J. H. Hausmanmynamic Meta Modeling: A Semantics Description Technigue f
Visual Modeling Technique®hD thesis, Universitat Paderborn, 2006.

A. Habel, R. Heckel, G. Taentzer. Graph Grammars hégative Application Con-
ditions. Special issue of Fundamenta Informati2&(3,4):287-313, 1996.

F. Hermann, H. Kastenberg, T. Modica. Towards Ttatisg Graph Transformation
Approaches by Model Transformation. Rroc. of the Int. Workshop on Graph and
Model Transformation (GraMoT’'062006.

H. Kastenberg, A. Kleppe, A. Rensink. Defining Olij€riented Execution Seman-
tics Using Graph Transformations. In Gorrieri and Wehrhéaus.),Proc. of the
8th IFIP Int. Conf. on Formal Methods for Open Object-Basastiibuted Systems
(FMOODS’06) LNCS 4037, pp. 186—201. Springer Verlag, 2006.

B. Konig. Hypergraph Construction and its Apglion to the Static Analysis of
Concurrent Systemdlathematical Structures in Computer Scied@§2):149-175,
2002.

S. Lack, P. Sobacihski. Adhesive Categories. Indkawicz (ed.),Proc. of the 7th
Int. Conf. on Foundations of Software Science and Compuuteditructures (FOS-
SACS’04)LNCS 2987, pp. 273-288. Springer Verlag, 2004.

S. Lack, P. Sobocihski. Adhesive and QuasiadheSategoriesTheoretical Infor-
matics and Application89(2):511-546, 2005.

OMG. Unified Modeling Language Specification. 2088p://www.omg.org/

Pre-Proceedings GT-VMT 2007 145/195

http://www.omg.org/technology/documents/formal/uml.htm

Simulating Multigraph Transformations @

[Ren04a] A. Rensink. The GROOVE Simulator: A Tool for Staf@&e Generation. In Pfaltz
et al. (eds.)Applications of Graph Transformations with Industrial Bednce (AG-
TIVE'03). LNCS 3062, pp. 479-485. Springer Verlag, 2004.

[Ren04b] A. Rensink. Representing First-Order Logic usémgphs. In Ehrig et al. (eds.),
Proc. of the 2nd Int. Conf. on Graph Transformations (ICGH.OLNCS 3256,
pp. 319-335. Springer Verlag, 2004.

[Roz97] G. Rozenberg (ed.lHandbook of Graph Grammars and Computing by Graph
Transformation Volume |: Foundations. World Scientific, 1997.

[SSHW] A. Schirr, S. E. Sim, R. Holt, A. Winter. The GXL GrapiXchange Language.
http://ww. gupro. de/ GXL.

[Tae01] G. Taentzer. Towards Common Exchange Formats faptdrand Graph Transfor-
mation Systems. In Padberg (ed®)pc. of the Workshop on Uniform Approaches to
Graphical Process Specification Techniques (UNIGRA'BNTCS 44. 2001.

[TER99] G. Taentzer, C. Ermel, M. Rudolf. The AGG Approaclanguage and Tool Envi-
ronment. In Ehrig et al. (eds.Handbook of Graph Grammars and Computing by
Graph TransformationsVolume IlI: Applications, Languages and Tools, pp. 163—
246. World Scientific, 1999.

Pre-Proceedings GT-VMT 2007 146/195

