
Theoretical Computer Science 376 (2007) 139–163
www.elsevier.com/locate/tcs

Attributed graph transformation with node type inheritance

Juan de Laraa,∗, Roswitha Bardohlb, Hartmut Ehrigc, Karsten Ehrigd, Ulrike Prangec,
Gabriele Taentzerc

a Escuela Politécnica Superior, Ingenierı́a Informática, Universidad Autónoma de Madrid, Madrid, Spain
b International Conference and Research Centre for Computer Science, Schloss Dagstuhl, Dagstuhl, Germany

c Computer Science Department, Technische Universitat Berlin, Berlin, Germany
d Computer Science Department, University of Leicester, Leicester, United Kingdom

Abstract

The aim of this paper is to integrate typed attributed graph transformation with node type inheritance. Borrowing concepts
from object oriented systems, the main idea is to enrich the attributed type graph with an inheritance relation and a set of abstract
nodes. In this way, a node type inherits the attributes and edges of all its ancestors. Based on these concepts, it is possible to define
abstract productions, containing abstract nodes. These productions are equivalent to a number of concrete productions, resulting
from the substitution of the abstract node types by the node types in their inheritance clan. Therefore, productions become more
compact and suitable for their use in combination with meta-modelling. The main results of this paper show that attributed graph
transformation with node type inheritance is fully compatible with the existing concept of typed attributed graph transformation.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Graph transformation; Meta-modelling; Double pushout approach; Visual languages

1. Introduction

Graphs and visual notations play a central role in modelling and meta-modelling of software systems. Examples
range from simply formatted, graph-like notations such as class diagrams, Petri nets, activity diagrams, etc. to more
elaborated diagram kinds such as message sequence charts and state charts as well as to more domain-specific
notations for modelling, e.g. for industrial production processes.

In graph-based modelling and meta-modelling, graphs are used to define the static structure, such as class and object
structures, data base schemes, as well as visual symbols and interrelations, i.e. visual alphabets and sentences. Graph
manipulations describe the dynamic changes of these structures. Graph transformation [14] is a formal, graphical
and natural means to express graph manipulation based on rules. There are many areas in software engineering where
graph transformation has been applied. Considering especially meta-modelling, there is work done e.g. to define visual

∗ Corresponding author.
E-mail addresses: jdelara@uam.es (J. de Lara), rosi@dagstuhl.de (R. Bardohl), ehrig@cs.tu-berlin.de (H. Ehrig), karsten@mcs.le.ac.uk

(K. Ehrig), uprange@cs.tu-berlin.de (U. Prange), gabi@cs.tu-berlin.de (G. Taentzer).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.02.001

http://www.elsevier.com/locate/tcs
mailto:jdelara@uam.es
mailto:rosi@dagstuhl.de
mailto:ehrig@cs.tu-berlin.de
mailto:karsten@mcs.le.ac.uk
mailto:uprange@cs.tu-berlin.de
mailto:gabi@cs.tu-berlin.de
http://dx.doi.org/10.1016/j.tcs.2007.02.001

140 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

languages [3–5,7,24], visual simulation [21,34], model transformation [11,29,32] and refactoring [25]. The rich theory
developed in the last 30 years [14] allows the analysis of the computations expressed as graph transformations.

For the description of model domains, a classification of possible entities and relations in system structures or
visual alphabets has emerged as a valuable principle. In the object-oriented approach [6], class diagrams are the
basic means to specify classification structures, for instance in UML (Unified Modeling Language) [26] for software
systems and MOF (Meta Object Facility) [26] for visual language specification. When applying graph transformation
for modelling or meta-modelling, type graphs are used to classify graph nodes and edges [8].

One of the main principles to handle complex classification structures comes from the object-orientation paradigm:
class inheritance enhances the typing principle by adding more abstract types on top of the ones concretely used in
the (meta)models. Thus, inheritance allows much more compact representations by reducing redundancy. Moreover,
it can improve flexibility, reusability and extensibility of the specified systems. Although there are slightly different
semantic interpretations of inheritance depending on the approach, the main idea is that in object-oriented systems,
the source element of an inheritance relation, receives features of all the reachable elements through the inheritance
relation. Usually, the inherited features are attributes and relations. For example, in a UML class diagram [26], classes
inherit attributes, methods and associations of all their ancestor classes. Classes may be abstract which means that they
cannot be instantiated at run-time. In UML, it is also possible to define object diagrams, which are run-time system
configurations being consistent with the defined class diagram. An object in an object diagram has actual values
for the attributes, and contains all the relations and attributes defined in its corresponding class, plus the inherited
ones.

We have carried over the principle of inheritance to typed attributed graph transformation by extending the
type graph with an inheritance relation and a set of abstract node types. Thus, in analogy with object diagrams
being consistent with a class diagram, we have attributed graphs typed with respect to an attributed type graph
with inheritance. Moreover, we allow graph grammar productions to contain nodes whose (maybe abstract) type
is the target of some inheritance relations. These productions are equivalent to a number of concrete productions,
resulting from the substitution of this kind of node types by the concrete ones in their inheritance clan. Thus,
productions can become more compact and lead to a denser form of a graph grammar or graph transformation
system.

The incorporation of the inheritance concept in graph transformation is especially relevant in approaches where
graph transformation is combined with meta-modelling concepts, e.g. for visual language definition, simulation and
model transformation. Of course, it can also be advantageously used for object-oriented modelling as done e.g. with
Fujaba [16].

This paper is an extended version of [2], where we presented the inheritance concept for graph transformation
without attributes. We have incorporated further results [10] concerning attribution and show some of the relevant
proofs. Moreover, the handling of the negative application conditions has been improved with respect to [10]. In the
present paper we present all main concepts for attributed graph transformation with node type inheritance and show
how this kind of graph transformation can be translated back to attributed graph transformation without node type
inheritance, i.e. typed, attributed graph transformation, which comes along with a comprehensive theory [9]. Having
the translation to this kind of graph transformation available, its theory can be used also for graph transformation with
inheritance.

The rest of the paper is organized as follows. Section 2 presents a short overview of typed graph transformation,
in the Double Pushout (DPO) algebraic approach. Section 3 extends the supporting structure for graphs to consider
node and edge attributes. Section 4 shows our approach to consider inheritance in type graphs. In Section 5 we use
the inheritance concept in productions by allowing abstract nodes. Section 6 shows the equivalence of abstract and
flattened productions. Section 7 presents a case study, with the simulation of Statecharts. Finally, Section 8 ends with
the conclusions and prospects for future work. An Appendix shows the details of the proofs of the main theorems.
The full proofs of all theorems and lemmas can be found in [20].

2. Introduction to typed graph transformation

This section gives an overview of typed graph transformation (without attributes and inheritance) in the Double
Pushout approach [14]. We start defining some basic concepts about graphs and types; then we show how graph
transformation works.

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 141

G1

type1 !!C
CC

CC
CC

C
f // G2

type2}}{{
{{

{{
{{

TG
Fig. 1. A typed graph morphism.

Fig. 2. Example type graph (left). Typed graph (right).

2.1. Graphs and typed graphs

Definition 1 (Graph). A graph G = (V, E, s, t) consists of a set V of vertices (also called nodes), a set E of edges
and the source and target functions s, t : E → V .

Graphs are related by (total) graph morphisms, mapping the nodes and edges of a graph to those of another one,
preserving source and target of each edge. Graphs together with graph morphisms form the category Graph.

Definition 2 (Graph Morphism). Given two graphs Gi = (Vi , Ei , si , ti)i∈{1,2}, a graph morphism f : G1 → G2,
f = (fV , fE) consists of two functions fV : V1 → V2 and fE : E1 → E2 that preserve the source and target
functions, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE .

As in programming languages, we can assign each element of the graph a type [8]. This can be done by defining
a type graph TG, which is a distinguished graph containing all the relevant types and their interrelations. The typing
itself is depicted by a graph morphism between the graph and the type graph TG. Therefore, a tuple (G, type) of a
graph G and a graph morphism type : G → TG is called a typed graph.

Given typed graphs GT
i = (Gi , typei)i∈{1,2}, a typed graph morphism f : GT

1 → GT
2 is a graph morphism

f : G1 → G2 such that type2 ◦ f = type1, as Fig. 1 shows:
Given a type graph TG, GraphTG is the slice category Graph \ TG, where the category objects and morphisms

are the typing morphisms and the typed morphisms.
Fig. 2 shows an example of a typed graph (right) typed over the type graph to its left. In the typed graph, we have

depicted the node types inside the nodes in a UML-like notation. For the edges, only their types but no names are
given. The type graph example specifies systems made of objects that have a behaviour described by an automaton.
The current state of each object is pointed to by the current edge. There are three kinds of states: initial, final and
regular. There can be transitions between any of them (except transitions whose target is an initial state of whose
origin is a final state). However, due to the fact that there are three different kinds of states, we need different kinds of
transitions and of current edges. This situation will be improved with the inheritance concept to be presented later.

The type graph TG defines a set of valid graphs, namely those that are typed over TG. However, sometimes we
need to constrain more this set. For example, we may need to express the fact that each object has a unique initial state
and one or more final states. This can be done in several ways. One of them is by means of a syntax grammar, which
generates the set of all valid models by means of graph transformation.

2.2. Typed graph transformation

Conceptually, a graph transformation production is made of a left-hand side (LHS) and a right-hand side (RHS).
Roughly, when a production is applied to a graph G (called host graph), a valid matching morphism m has to be found

142 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

L

m
��

(1)

K
loo r //

d
��

(2)

R

m∗

��

Ni

/
AA

A
mi

 A
AAA

L

m
��

nioo K
loo r //

d
��

R

m∗

��
G D

l∗oo r∗ // H G D
l∗oo r∗ // H

Fig. 3. Direct graph transformation in DPO (left). Direct graph transformation in DPO with negative application condition (right).

between the LHS and G. Then, the image of the LHS in G is substituted by the RHS. A graph grammar consists of a
set of productions and a starting graph. The corresponding graph grammar language is made of all possible graphs that
can be derived from the starting graph in any number of steps. At each transformation step, any applicable production
of the grammar can be executed.

One of the formalizations of graph transformation (the one we use in this paper) is called Double Pushout (DPO)
and is based on pushouts in category theory [14]. In the DPO approach, productions are represented by three graphs
and two morphisms as shown in the next definition.

Definition 3 (Graph Production). A (typed) graph production p = L
l
←− K

r
−→ R consists of (typed) graphs

L , K and R, called left-hand side, glueing graph and right-hand side respectively, and two injective (typed) graph
morphisms l and r .

In a production, K contains the preserved elements by the production application. In most examples, l and r are
not only injective but inclusions, and therefore K = L ∩ R. The application of a production to a graph can be
modelled through two pushouts (a categorical construction, which, in the case of graphs is the union of two graphs
through a common subgraph). The first one eliminates the elements in L − K , the second one adds the elements in
R − K , as the left of Fig. 3 shows. In fact, in the first step, the pushout complement has to be calculated, yielding
graph D. A necessary and sufficient condition for the existence of the pushout complement is the well-known gluing
condition [14].

Definition 4 (Graph Transformation). Given a (typed) graph production p = L
l
←− K

r
−→ R and a (typed) graph

G with a (typed) graph morphism m : L → G, called match. A direct (typed) graph transformation G
p,m
=⇒ H from

G to a (typed) graph H is given by the diagram to the left of Fig. 3, where (1) and (2) are pushouts.
A sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of direct (typed) graph transformations is called a (typed) graph

transformation and is denoted as G0
∗
⇒ Gn . For n = 0 we have the identical (typed) graph transformation G0

id
⇒ G0.

Moreover, we allow for n = 0 also graph isomorphisms G0
∼
= G ′0, because pushouts and hence also direct graph

transformations are only unique up to isomorphism.

Fig. 4 shows a direct transformation example. The upper part depicts a production typed over the type graph of
Fig. 2. The production models an object that changes its current state through a transition. The production is applied
to the same typed graph of Fig. 2. Morphisms are depicted with numbers. As the glueing graph K in the production
can be deduced given L and R, we usually ommit it in the following.

Productions can be equipped with a set of additional application conditions, the simpler form of them are negative
application conditions (NACs). These are modelled as additional graphs (Ni to the right of Fig. 3) and morphisms ni
from L to Ni . In order for the production to be applicable, no injective morphism mi should exist between any Ni
and the host graph G such that mi ◦ ni = m. Please note that a NAC is a special case of the more general concept of
application condition [13].

Finally, we define graph transformation systems, grammars and languages.

Definition 5 (GT System, Graph Grammar and Language). A graph transformation system GTS = (P) consists of a
set of graph productions P . A typed graph transformation system GTS = (TG, P) consists of a type graph TG and a set
of typed graph productions P . A (typed) graph grammar GG = (GTS, S) consists of a (typed) graph transformation
system GTS and a (typed) start graph S. The (typed) graph language L of GG is defined by:

L = {G | ∃ (typed) graph transformation S ∗
⇒ G}.

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 143

Fig. 4. Direct graph transformation example.

For practical applications, the previous concept of typed graph has to be extended in two ways. In software
engineering applications, graphs represent data structures where nodes are associated with attributes. The type of these
attributes is defined in the type graph, while at the instance graph level, attributes are assigned values of the proper
type. As stated in the introduction, the concept of inheritance is quite common in most modelling notations (such as
UML) and in object-oriented systems. Inheritance is a special kind of transitive relation, that reflects the fact that a
child node (the source of an inheritance relation) receives all the features of the parent node (the target of the relation).
The features the child node inherits are the attributes and the associations. Using the concept of inheritance is very
useful in large applications as a means to structure the system, reducing its complexity by eliminating redundancy,
and improving flexibility and extensibility. In the next sections we formally define a framework which extends the
presented typed graph transformation concepts with these two features.

3. Attributed type graphs

In this section, we provide nodes and edges in graphs with attributes. We follow the approach of [12] by defining
a new kind of graph, called E-graph. This kind of graph allows attribution for both nodes and edges. This new kind
of attributed graphs combined with the concept of typing leads to a category AGraphsATG of attributed graphs typed
over an attributed type graph ATG.

Definition 6 (E-graph and E-graph Morphism). An E-graph G with G = (VG , VD, EG , ENA, EEA, (source j ,

target j) j∈{G,NA,EA}) consists of sets:

• VG and VD called graph and data nodes (or vertices) respectively;
• EG , ENA, EEA called graph, node attribute and edge attribute edges respectively.

and source and target functions:

• sourceG : EG → VG , targetG : EG → VG for graph edges;
• sourceNA : ENA → VG , targetNA : ENA → VD for node attribute edges;
• sourceEA : EEA → EG , targetEA : EEA → VD for edge attribute edges.

EG

sourceG
--

targetG

11 VG

EEA
targetEA //

sourceEA

OO

VD ENA
targetNAoo

sourceNA

OO

144 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

Let Gk
= (V k

G , V k
D, Ek

G , Ek
NA, Ek

EA, (sourcek
j , targetkj) j∈{G,NA,EA}) for k = 1, 2 be two E-graphs. An E-graph

morphism f : G1
→ G2 is a tuple (fVG , fVD , fEG , fENA , fEEA) with fVi : V 1

i → V 2
i and fE j : E1

j → E2
j for

i ∈ {G, D}, j ∈ {G, NA, EA} such that f commutes with all source and target functions, e.g. fVG ◦ source1
G =

source2
G ◦ fEG .

The sets ENA and EEA are needed as we want to allow nodes and edges to have several attributes. On the contrary,
having directly a function from VG or EG to VD would not allow this. Moreover, attribute edges are needed to replace
attribute values during a graph transformation. Simple functions would not allow this either. E-graphs and E-graph
morphisms form the category EGraphs. An attributed graph is an E-graph combined with an algebra over a data
signature DSIG, in the sense of algebraic signatures (see [15]). In the signature, we distinguish a set of attribute value
sorts. The corresponding carrier sets in the algebra are used for the attribution.

Definition 7 (Attributed Graph and Attributed Graph Morphism). Let DSIG = (SD, OPD) be a data signature with
attribute value sorts S′D ⊆ SD . An attributed graph AG = (G, D) consists of an E-graph G together with a DSIG-
algebra D such that]s∈S′D

Ds = VD .
For two attributed graphs AGi

= (Gi , Di) with i = 1, 2, an attributed graph morphism f : AG1
→ AG2 is a pair

f = (fG , fD) with an E-graph morphism fG : G1
→ G2 and an algebra homomorphism fD : D1

→ D2 such that
(1) commutes for all s ∈ S′D .

D1
s

fD,s //
� _

��
(1)

D2
s� _

��
V 1

D

fG,VD // V 2
D

Given a data signature DSIG, attributed graphs and morphisms form the category AGraphs. For the typing of at-
tributed graphs, we use a distinguished graph, which is attributed over the final DSIG-algebra Z, with Zs = {s} ∀s ∈
SD .

Definition 8 (Typed Attributed Graph and Morphism). Given a data signature DSIG, an attributed type graph is an
attributed graph ATG = (TG, Z), where Z is the final DSIG-algebra.
A typed attributed graph (AG, t) over ATG consists of an attributed graph AG together with an attributed graph
morphism t : AG→ ATG.
A typed attributed graph morphism f : (AG1, t1) → (AG2, t2) is an attributed graph morphism f : AG1

→ AG2

such that t2
◦ f = t1.

Typed attributed graphs over an attributed type graph ATG and typed attributed graph morphisms form the category
AGraphsATG.

As an example, we have extended the type graph in Fig. 2 with some attributes. The resulting type graph is shown
to the left of Fig. 5 using an explicit notation for node and edge attributes. We have provided objects, states and
transitions with names. In addition, transitions are also provided with the name of the event that produces a transition
change and objects may receive events through the rec relation. The edge named current has been provided with an
attribute that counts the number of state changes that the object has performed. Note also that the data node String has
been included twice for better readability. In the centre, the figure shows a compact notation (UML-like) for the same
type graph, where the attributes are depicted in an additional box with the node name, or below the edge type. Finally,
in the right part of the figure, we show an attributed graph typed over the previous type graph.

The fact of using sets of special edges for node and edge attributes (EEA and ENA) implies that a typed graph
may have nodes with an arbitrary number of attributes of a certain type (that is, the typing morphism identifies all
of them with a certain attribute in the type graph), including zero. Although this allows more flexibility for practical
applications, the multiplicity of the attribution edges can be restricted to one by means of constraints [13]. Moreover,
the fact of having a set of attribution edges implies that each element is unique. Although this can be interpreted as
the fact that it is not possible to have attributes with the same name in the type graph, in practice, it is possible to solve
this restriction by naming conventions or considering edges as triples (see Definition 10 and Fig. 7).

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 145

Fig. 5. Attributed type graph, explicit notation (Left). Attributed type graph, compact notation (Centre). Typed attributed graph, compact notation
(Right).

The next section extends the concepts presented so far by adding inheritance to the type graphs. This feature will
solve some of the problems of the example (repetition of the name attribute, different types of transitions, and different
types of current edge).

4. Attributed type graphs with inheritance

An attributed type graph with inheritance is an attributed type graph in the sense of Definition 8 with a distinguished
set of abstract nodes and inheritance relations between the nodes. The inheritance clan of a node represents all its
subnodes. The notion of typed graph morphism has to be extended to capture the inheritance clan. Thus, we introduce
clan morphisms. For this new kind of objects and morphisms, basic properties are shown. The proof for the main
result in this section is given in the Appendix.

Definition 9 (Attributed Type Graph with Inheritance). An attributed type graph with inheritance ATGI =

(TG, Z , I, A) consists of an attributed type graph ATG = (TG, Z) (see Definition 8), where TG is an E − graph
TG = (TGVG , TGVD , TGEG , TGENA , TGEEA , (sourcei , targeti)i∈{G,NA,EA}) with TGVD = S′D and Z the final DSIG-
algebra, and an inheritance graph I = (IV , IE , s, t), with IV = TGVG , and a set A ⊆ IV , called abstract nodes.

For each node n ∈ IV the inheritance clan is defined by

clanI (n) = {n′ ∈ IV | ∃ path n′
∗
→ n in I } ⊆ IV with n ∈ clanI (n).

Remark. x ∈ clanI (y) implies clanI (x) ⊆ clanI (y).

The inheritance graph I could be defined to be acyclic, but this is not necessary for our theory. If n is concrete (i.e.
not abstract), we could define all x ∈ clanI (n) to be concrete, but again this is not necessary from the theoretical point
of view.

Fig. 6 extends the previous examples by adding inheritance to the type graph. In the picture, we have merged graphs
TG and I into a single one, where the edges of the latter are depicted with hollow arrows. There is a unique abstract
node (NamedElement), which is shown in italics (as in the usual UML notation). By adding inheritance we are able to
simplify notably the set of edges in the previous type graphs. Please note also that, as there is a unique current edge,
this contains the steps attribute. This is a difference with the type graph in Fig. 5, where Icurrent and Fcurrent edges
did not have such attribute.

In order to benefit from the well-founded theory of typed attributed graph transformation, we flatten attributed type
graphs with inheritance to ordinary ones. We define the closure of an attributed type graph with inheritance, leading
to an (explicit) attributed type graph, which allows us to define instances of attributed type graphs with inheritance.

146 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

Fig. 6. A type graph with inheritance.

Definition 10 (Closure of Attributed Type Graphs with Inheritance). Given an attributed type graph with inheritance
ATGI = (TG, Z , I, A) with ATG = (TG, Z) as above, the abstract closure of ATGI is the attributed type graph
ATG = (TG, Z) with TG = (TGVG , TGVD , TGEG , TGENA , TGEEA , (sourcei , targeti)i∈

{G,NA,EA})

• TGEG = {(n1, e, n2) | n1 ∈ clanI (sourceG(e)), n2 ∈ clanI (targetG(e)), e ∈ TGEG }

• sourceG((n1, e, n2)) = n1 ∈ TGVG
• targetG((n1, e, n2)) = n2 ∈ TGVG
• TGENA = {(n1, e, n2) | n1 ∈ clanI (sourceNA(e)), n2 = targetNA(e), e ∈ TGENA}

• sourceNA((n1, e, n2)) = n1 ∈ TGVG
• targetNA((n1, e, n2)) = n2 ∈ TGVD
• TGEEA = {((n11, e1, n12), e, n2) | e1 = sourceEA(e) ∈ TGEG ,

n11 ∈ clanI (sourceG(e1)), n12 ∈ clanI (targetG(e1)), n2 = targetEA(e) ∈ TGVD , e ∈ TGEEA}

• sourceEA((n11, e1, n12), e, n2) = (n11, e1, n12) ∈ TGEG
• targetEA((n11, e1, n12), e, n2) = n2 ∈ TGVD

The attributed type graph ÂTG = (T̂G, Z) with T̂G = TG|TGVG \A ⊆ TG is called the concrete closure of ATGI,
because all abstract nodes are removed. T̂G = TG|TGVG \A is the restriction of TG to TGVG\A.

Note that in the current theory, we do not consider attribute overriding. Moreover, in the case of diamond-like
inheritance structures (with more than one path in the inheritance relation between two nodes), the attributes in the
parent class would be copied several times in the child class. This does not present any problem for the theory.
The discrimination between the abstract and the concrete closure of a type graph is necessary. The LHS and RHS
of abstract productions considered in Section 5 are typed over the abstract closure, while ordinary host graphs and
concrete productions are typed over the the concrete closure.

The left of Fig. 7 shows the closure of the type graph in Fig. 6, which corresponds to the type graph in Fig. 5 (note,
however, the renaming of attribute edges due to inheritance).

Remark 1.
(1) Note, that we have TG ⊆ TG with TGVi for i ∈ {G, D} and TGEi ⊆ TGEi if we identify e ∈ TGEi with

(sourcei (e), e, targeti (e)) ∈ TGEi for i ∈ {G, NA, EA}.
Due to the existence of the canonical inclusion TG ⊆ TG all graphs typed over TG are also typed over TG.

(2) Note that there are no inheritance relations in the abstract and the concrete closure of an ATGI, and hence no
inheritance relations in the instance graphs defined below.

Instances of attributed type graphs with inheritance are typed attributed graphs. As before, we can notice a direct
correspondence to object-oriented systems [6], where models consisting of objects with attribute values are instances
of class diagram models, containing the corresponding classes, associations and attribute types.

Definition 11 (Instance of ATGI). An abstract instance of ATGI is an attributed graph over ATG, i.e. (AG, type :
AG→ ATG). Similarily, a concrete instance of ATGI is an instance attributed graph over ÂTG, i.e. (AG, type : AG→
ÂTG).

An example of a concrete instance of the type graph with inheritance in Fig. 6 is shown to the right of Fig. 7.

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 147

Fig. 7. Abstract and concrete closure of the type graph in Fig. 6 (Left). Instance graph of the type graph in Fig. 6 in compact notation (Right).

4.1. Attributed clan morphisms

To formally define the instance-type relation in the presence of inheritance, we introduce attributed clan morphisms.
The choice of triples for the edges of a type graph’s closure allows to express a typing property with respect to the
type graph with inheritance. The instance graph can be typed over the type graph with inheritance (for convenience)
by a pair of functions, one assigning a node type to each node and the other one assigning an edge type to each edge.
Both are defined canonically. A graph morphism is not obtained this way, but a similar mapping called clan morphism,
uniquely characterizing the type morphism into the flattened type graph.

Given an attributed type graph ATGI with inheritance we introduce in this section ATGI-clan morphisms. An
ATGI-clan morphism type : AG→ ATGI corresponds uniquely to a normal type morphism type : AG→ ATG, where
ATG is the abstract closure of ATGI as discussed in the previous section.

Definition 12 (ATGI-clan Morphism). Given an attributed type graph with inheritance ATGI = (TG, Z , I, A)

with TGVD = S
′

D and ATG = (TG, Z) and an attributed graph AG = (G, D) with G =

((GVi)i∈{G,D}, (G Ei , sGi , tGi)i∈{G,NA,EA}) and]s∈S
′

D
Ds = GVD , type : AG → ATGI with type =

(typei)i∈{VG ,VD,EG ,ENA,EEA,D} and

• typeVi
: GVi → TGVi (i ∈ {G, D})

• typeEi
: G Ei → TGEi (i ∈ {G, NA, EA})

• typeD : D→ Z unique final DSIG-homomorphism

is called an ATGI-clan morphism, if

(0) ∀s ∈ S
′

D the following diagram commutes,

Ds
typeD,s //

=

��

Zs = {s}

��
GVD typeVD

// TGVD = S
′

D

i.e. typeVD
(d) = s for d ∈ Ds and s ∈ S

′

D .
(1) typeVG

◦ sGG (e1) ∈ clanI (sourceG ◦ typeEG
(e1)) ∀e1 ∈ G EG

(2) typeVG
◦ tGG (e1) ∈ clanI (targetG ◦ typeEG

(e1)) ∀e1 ∈ G EG

(3) typeVG
◦ sGNA(e2) ∈ clanI (sourceNA ◦ typeENA

(e2)) ∀e2 ∈ G ENA

(4) typeVD
◦ tGNA(e2) = targetNA ◦ typeENA

(e2) ∀e2 ∈ G ENA

(5) typeEG
◦ sGEA(e3) = sourceEA ◦ typeEEA

(e3) ∀e3 ∈ G EEA

(6) typeVD
◦ tGEA(e3) = targetEA ◦ typeEEA

(e3) ∀e3 ∈ G EEA .

An ATGI-clan morphism type : AG → ATG is called concrete if typeVG
(n) /∈ A for all n ∈ GVG .

148 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

G1

g′1 !!B
BB

BB
BB

B

(1)

f1

$$
G0

g1

==||||||||

g2

!!B
BB

BB
BB

B PO G3
f // ATGI

G2

g′2
==||||||||

(2)

f2

::

Fig. 8. Pushout w.r.t. concrete clan morphisms.

The following technical properties of ATGI-clan morphisms are needed to show the results in Section 5 based on
Double Pushout Transformation in the category AGraphs of attributed graphs and morphisms. In order to show the
bijective correspondence between ATGI-clan morphisms and normal type morphisms type : AG → ATG we first
define a universal ATGI-clan morphism.

Definition 13 (Universal ATGI-clan Morphism). Given an attributed type graph with inheritance ATGI =

(TG, Z , I, A) then the universal ATGI-clan morphism uATG : ATG→ ATGI with ATG = (TG, Z) is defined by
uATG,VG = id1 : TGVG → TGVG ,
uATG,VD = id2 : TGVD → TGVD ,
uATG,EG : TGEG → TGEG , uATG,EG [(n1, e, n2)] = e ∈ TGEG ,
uATG,ENA : TGENA → TGENA , uATG,ENA [(n1, e, n2)] = e ∈ TGENA ,
uATG,EEA : TGEEA → TGEEA , uATG,EEA [((n11, e1, n12), e, n2)] = e ∈ TGEEA ,
uATG,D = idZ : Z → Z .

Lemma 1. The universal morphism uATG : ATG → ATGI is an ATGI-clan morphism. ATGI-clan morphisms are
closed under composition with attributed graph morphisms, short AG-morphisms. This means: given an AG-morphism
f : AG′→ AG and an ATGI-clan morphism f ′ : AG→ ATGI then f ′ ◦ f : AG′→ ATGI is an ATGI-clan-morphism.
If f ′ is concrete, so is f ′ ◦ f .

The following theorem is the key property relating ATGI-clan morphisms and AG-morphisms, which is essential
to show the main results in this chapter:

Theorem 1 (Universal ATGI-clan Property). For each ATGI-clan morphism type : AG → ATGI, there is a unique
AG-morphism type : AG→ ATG s.t. uATG ◦ type = type.

AG
type

||zz
zz

zz
zz type

""E
EE

EE
EE

EE

=

ATG uATG
// ATGI

Construction. Given type : AG→ ATGI with AG = (G, D) we construct type : AG→ ATG as follows:

• typeVG
= typeVG

: GVG → TGVG = TGVG

• typeVD
= typeVD

: GVD → TGVD = TGVD

• typeEG
: G EG → TGEG , typeEG

(e1) = (n1, e′1, n2) with e′1 = typeEG
(e1) ∈ TGEG , n1 = typeVG

(sGG (e1)) ∈

TGVG , n2 = typeVG
(tGG (e1)) ∈ TGVG

• typeENA
: G ENA → TGENA , typeENA

(e2) = (n1, e′2, n2) with e′2 = typeENA
(e2) ∈ TGENA , n1 = typeVG

(sGNA(e2)) ∈

TGVG , n2 = typeVD
(tGNA(e2)) ∈ TGVD

• typeEEA
: G EEA → TGEEA , typeEEA

(e3) = ((n11, e′′3 , n12), e′3, n2) with e′3 = typeEEA
(e3) ∈ TGEEA , (n11, e′′3 , n12) =

typeEG
(sGEA(e3)) ∈ TGEG , n2 = typeVD

(tGEA(e3)) ∈ TGVD

• typeD = typeD : D→ Z

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 149

GVG

typeVG

��typeVG
=typeVG

��

�
�

�
�
�
�
�
�
!
#
%
'
)
+
-

G EG

sGG

tt

tGG

jj

typeEG

�� typeEG

��

-
+
)
'
%
#
!
�

�
�
�

�
�

�
�

G ENA

typeENA

��

�
�

�
�
�
�
��
!
$
&
(
+
-
0

sGNA

\\88888888888888

typeENA

��

tGNA // GVD

typeVD
=typeVD

��

0
-
+
(
&
$
!
�

�
�
�

�
�

�
�

typeVD

��

G EEA

tGEAoo

typeEEA

��
typeEEA

��

0
-
+
(
&
$
!
�

�
�
�

�
�

�
�

sGEA

eeKKKKKKKKKKKKKKKKKKKK

TGVG

id

��

TGEG

srcG
tt

tarG

jj

TGENA

srcNA

ccGGGGGGGGG

tarNA

// TGVD

id

��

TGEEAtarEA

oo
srcEA

ii

TGVG TGEG

srcG

tt

tarG

jj

TGENA

srcNA

ddHHHHHHHHH

tarNA
// TGVD TGEEAtarEA

oo
srcEA

ii

Lemma 1 implies that the composition uATG ◦ type is an ATGI-clan-morphism.

Lemma 2 (Pushout Property of ATGI-clan Morphisms).

(1) A pushout in AGraphs is also a pushout w.r.t. (concrete) clan morphisms (cf. Fig. 8). This means more precisely:
Given a pushout PO in AGraphs as shown in Fig. 8 with AG-morphisms g1, g2, g′1, g′2 and ATGI-clan morphisms
f1, f2 with f1 ◦ g1 = f2 ◦ g2, then there is a unique ATGI-clan morphism f : G3 → ATGI with f ◦ g′1 = f1 and
f ◦ g′2 = f2.

(2) Double pushouts in AGraphs can be extended to double pushouts for attributed graphs with typing by concrete
ATGI-clan-morphisms w.r.t. the match morphism and the production (cf. Fig. 9). This means more precisely:
given pushouts (1) and (2) in AGraphs as shown in Fig. 9 and concrete ATGI-clan morphisms typeL , typeK ,
typeR , and typeG for the production and the match graph G s.t. (3), (4) and (5) commute, then there are also
unique concrete ATGI-clan morphisms typeD and typeH s.t. (6) and (7) commute.

5. Typed attributed graph transformation with inheritance

In this section, we show how to adapt the concept of inheritance to the notions of typed attributed graph
transformation, graph grammar and graph language. Our goal is to allow abstractly typed nodes in productions, such

L

typeLwwooooooooooooo

m
��

(1)

(3)

(5)

K

d
��

loo r //

typeK

��

(4)

R

m′

��

typeR

��
(2)

ATGI GtypeG

oo

(6)

D
l ′oo r ′ //

typeD

ff
(7)

H

typeH

bb

Fig. 9. Double pushout for attributed graphs with typing by concrete clan morphism.

150 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

that these abstract productions actually represent a set of structurally similar productions which we call concrete
productions. In order to obtain all concrete productions for an abstract production, any combination of node types of
the corresponding clans in the production’s LHS (being of concrete or abstract type) must be considered. Nodes which
are preserved by the production have to keep their type. Nodes which are created in the RHS must get a concrete type,
since abstract types cannot be instantiated.

We define abstract and concrete transformations for abstract and concrete productions based on attributed type
graphs with inheritance. The first main result shows the equivalence of abstract and concrete transformations. This
allows us to use safely the more efficient presentation of abstract transformations with abstract productions, because
they are equivalent to corresponding concrete transformations with concrete productions. The second main result –
presented in the next section – shows the equivalence of attributed graph grammars with and without inheritance.

In the following we consider productions extended by NACs (see Section 2). As done for type graphs with
inheritance, we define a flattening of abstract productions to concrete ones. Concrete productions are structurally
equal to the abstract production, but their typing morphisms are finer than the ones of the abstract production and are
concrete clan morphisms. A typing morphism is finer than another one, if it distinguishes from the other only by more
concrete types in corresponding clans.

First we introduce the notion of type refinement in order to formalize the relationship between abstract and concrete
productions to be defined below:

Definition 14 (ATGI-Type Refinement). Given an attributed graph AG = (G, D) and ATGI-clan morphisms type :
AG→ ATGI and type′ : AG→ ATGI, then type′ is called an ATGI-type refinement of type, written type′ ≤ type if

• type′VG
(n) ∈ clanI (typeVG

(n)), ∀n ∈ GVG

• type′X = typeX , for X ∈ {VD, EG , ENA, EEA, D}

Remark 2. Given ATGI-clan morphisms type, type′ : AG → ATGI with type′ ≤ type and an AG-morphism
g : AG′→ AG, then also type′ ◦ g ≤ type ◦ g. Note that AG-morphism means morphism in the category AGraphs.

Definition 15 (Abstract and Concrete Production). An abstract production typed over ATGI is given by p = (L
l
←−

K
r
−→ R, type, NAC), where l and r are AG-morphisms, type is a triple of typing morphisms, i.e. ATGI-clan

morphisms type = (typeL : L → ATGI, typeK : K → ATGI, typeR : R→ ATGI), and NAC is a negative application
condition, i.e. a set of triples nac = (N , n, typeN) with an attributed graph N , an AG-morphism n : L → N , and a
typing ATGI-clan morphism typeN : N → ATGI, s.t. the following conditions hold

• typeL ◦ l = typeK = typeR ◦ r
• typeR,VG

(R′VG
) ∩ A = ∅, where R′VG

:= RVG − rVG (KVG)

• typeN ◦ n ≤ typeL for all (N , n, typeN) ∈ NAC
• The datatype part of L , K , R and N is TDSIG(X), the term algebra of DSIG with variables X , and l, r and n are

data preserving, i.e. lD, rD, nD are identities

N
typeN

**

tNi

**

L
noo

typeL

!!B
BB

BB
BB

BB
BB

BB
BB

BB

tL

!!B
BB

BB
BB

BB
BB

BB
BB

BB
K

typeK

��

tK

��

loo r // R

typeR

}}||
||

||
||

||
||

||
||

|tR

}}||
||

||
||

||
||

||
||

|

ATGI

A concrete production pt w.r.t. an abstract production p is given by pt = (L
l
←− K

r
−→ R, t, NAC), where t is a

triple of concrete typing ATGI-clan morphisms t = (tL : L → ATGI, tK : K → ATGI, tR : R→ ATGI), s.t.

• tL ◦ l = tK = tR ◦ r
• tL ≤ typeL , tK ≤ typeK , tR ≤ typeR
• tR,VG (x) = typeR,VG

(x) ∀x ∈ R′VG

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 151

Fig. 10. Abstract production example.

• For each (N , n, typeN) ∈ NAC, we have all (N , n, tN) ∈ NAC with concrete ATGI-clan morphisms tN satisfying
tN ◦ n = tL and tN ≤ typeN

The set of all concrete productions pt w.r.t. an abstract production p is denoted by p̂.

The application of an abstract production can be directly defined or expressed by using the flattening idea, i.e. to
apply one of its concrete productions. Both the host graph and the concrete production are typed by concrete clan
morphisms such that we can define the application of concrete productions. Later we will also define the application
of an abstract production directly and show the equivalence of both.

Fig. 10 shows an example of an abstract production, where variables S, X , T , N1, N2 and the term S+ 1 are taken
as attributes. The production moves an object current edge through a transition marked with an event the object has
received. In addition, the number of steps in the current edge is increased. This abstract production is equivalent to
nine concrete productions, resulting by the substitution of the State node by two more concretely typed nodes, of types
Initial State and Final State. We call the production abstract, although there is no abstract node in the production, but
one of the nodes (State) can be substituted by its inheritance clan (which includes itself).

Definition 16 (Application of Concrete Production). Let pt = (L
l
←− K

r
−→ R, t, NAC) be a concrete production,

(G, typeG) a typed attributed graph with a concrete ATGI-clan morphism typeG : G → ATGI and m : L → G an
AG-morphism. Morphism m is a consistent match w.r.t. pt and (G, typeG), if

• m satisfies the gluing condition [14] w.r.t. the untyped production L
l
←− K

r
−→ R and the attributed graph G,

• typeG ◦ m = tL , and
• m satisfies the negative application conditions NAC, i.e. for each (N , n, tN) ∈ NAC it holds, that there exists no

AG-morphism o : N → G inM′, such that o ◦ n = m and typeG ◦ o = tN .M′ is a suitable class of morphisms
for application conditions, for example, the class of injective morphisms.

Given a consistent match m, the concrete production can be applied to the typed attributed graph (G, typeG), yielding
a typed attributed graph (H, typeH) by constructing the DPO of l, r and m and applying Lemma 2.2.
We write (G, typeG)

pt ,m
=⇒ (H, typeH) for such a direct transformation (see Definition 4).

N

tN

##

/
EE

EE

o ""E
EE

E

L
noo

m
��

tL

yy

G
typeG

��
ATGI

The classical theory of typed attributed graph transformations relies on typing morphisms which are normal graph
morphisms, i.e. no clan morphisms. For showing the equivalence of abstract and concrete graph transformations, we
first have to consider the following: The application of a concrete production typed by concrete clan morphisms is

152 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

N

/
RRRRRRRR

o
))RRRRRRRR

typeN

��3
33

33
33

33
33

33
33

L

typeL

����
��
��
��
��
��
��
�

m
��

(1)

noo K

d
��

loo r //

(2)

R

m′

��
G

typeG

||yyyyyyyy
D

l ′oo r ′ //

typeDvv

H

typeH
ooATGI

Fig. 11. Match and application of abstract rule.

equivalent to the application of the same production correspondingly typed over the concrete closure of the given type
graph. This lemma is formulated and proven in Lemma 2 for productions without NACs.

Although the semantics for the application of an abstract production can be given by the application of its concrete
productions, this solution is not efficient at all. For example, a tool implementing graph transformation with node type
inheritance would have to check all concrete productions of an abstract production to find the right one to apply to
a given instance graph. Thus, as a next step, we want to examine a more direct way to apply an abstract production.
Since abstract and concrete productions differ only in typing, but have the same structure, a match morphism from the
LHS of a concrete production into a given instance graph is also a match morphism for its abstract production. But
of course, the typing morphisms differ. Using the notion of type refinement, however, we can express a compatibility
property.

Definition 17 (Application of Abstract Production). Let p = (L
l
←− K

r
−→ R, type, NAC) be an abstract

production typed over an attributed type graph with inheritance ATGI, (G, typeG) a typed attributed graph with a
concrete ATGI-clan morphism typeG : G → ATGI and m : L → G an AG-morphism. Morphism m is called
consistent match w.r.t. p and (G, typeG), if:

• m satisfies the gluing condition w.r.t. the untyped production L
l
←− K

r
−→ R and the attributed graph G i.e.

pushout (1) in Fig. 11 exists,
• typeG ◦ m ≤ typeL .
• tK ,VG (x1) = tK ,VG (x2) for tK = typeG ◦ m ◦ l and all x1, x2 ∈ KVG with rVG (x1) = rVG (x2).
• m satisfies NAC, i.e. for each nac = (N , n, typeN) ∈ NAC it holds that there exists no AG-morphism o : N → G

inM′ (see Definition 16) such that o ◦ n = m and typeG ◦ o ≤ typeN .

Given a consistent match m, the abstract production can be applied to (G, typeG) yielding an abstract direct
transformation (G, typeG)

p,m
=⇒ (H, typeH) with the concrete ATGI-clan morphism typeH as follows:

(1) Construct the (untyped) DPO of l, r and m in AGraphs given by pushouts (1) and (2) in Fig. 11.
(2) Construct typeD and typeH as follows:
• typeD = typeG ◦ l ′;
• typeH,X (x) = if x = r ′X (x ′) then typeD,X (x ′) else typeR,X (x ′′),

where m′(x ′′) = x and X ∈ {VG , VD, EG , ENA, EEA, D}.

Remark 3. typeH is a well-defined ATGI-clan morphism with typeH ◦r
′
= typeD and typeH ◦m′ ≤ typeR . Moreover,

we have typeG ◦ m ≤ typeL (as required) and typeD ◦ d ≤ typeK (see Lemma 3(3)). The third match condition is not
needed if rVG is injective (as it is the case in most examples).

Fig. 12 shows an example of the application of the abstract production defined in Fig. 10 to a graph. While the S
node in the production is matched to the S2 node in G with the same type, the S′ node is matched to the F node, of
type Final State.

Lemma 3 (Construction of Concrete and Abstract Transformations). Given an abstract production p = (L
l
←−

K
r
−→ R, type, NAC) with NAC = {(Ni , ni , typeNi

)|i ∈ I }, a concrete typed attributed graph (G, typeG : G →
ATGI) and a consistent match morphism m : L → G w.r.t. p and (G, typeG), we have (cf. Fig. 13):

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 153

Fig. 12. Transformation example with abstract production.

Ni

tNi
ppp

ppp

wwppppp

typeNi

��

L

m
��

(1)
tL

sshhhhhhhhhhhhhhhhhhhhhhhhhhh
typeL

sshhhhhhhhhhhhhhhhhhhhhhhhhhh
nioo K

l
oo

r
//

d
��

(2)

=<?> typeK

��

MLON
tK

��

R

m′

��

=<?> typeR

��

MLON
tR

��
TG G

typeGoo D
l ′oo r ′ //

typeD

hh H
typeH

``

Fig. 13. Matching of abstract and concrete productions.

(1) There is a unique concrete production pt ∈ p̂ with pt = (L
l
←− K

r
−→ R, t, NAC) and tL = typeG ◦ m. In this

case, tK , tR and NAC are defined by:
• tK = tL ◦ l;
• tR,VG (x) = if x = rVG (x ′) then tK ,VG (x ′) else typeR,VG

(x) for x ∈ RVG ;
• tR,X = typeR,X for X ∈ {VD, EG , ENA, EEA, D};
• NAC =

⋃
i∈I {(Ni , ni , tNi)|tNi is a concrete ATGI-clan morphism with tNi ≤ typeNi

and tNi ◦ ni = tL}.

(2) There is a concrete direct transformation (G, typeG)
pt ,m
=⇒ (H, typeH) with consistent match m w.r.t. pt , and

typeD = typeG ◦ l ′ and typeH uniquely defined by typeD, tR and pushout properties of (2) (see Lemma 2), where
typeH : H → ATGI is a concrete ATGI-clan morphism explicitly given by:
typeH,X (x) = if x = r ′X (x ′) then typeD(,X x ′) else tR,X (x ′′)
where m′(x ′′) = x and X ∈ {VG , VD, EG , ENA, EEA, D}.

(3) The concrete direct transformation becomes an abstract direct transformation (see Definition 17):
(G, typeG)

p,m
=⇒ (H, typeH) with typeD = typeH ◦ r ′, typeG ◦ m ≤ typeL , typeD ◦ d ≤ typeK and typeH ◦ m′ ≤

typeR , where the typing t = (tL , tK , tR) of the concrete production pt is replaced by type = (typeL , typeK , typeR)

of the abstract production p.

154 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

6. Equivalence results

After having defined concrete and abstract transformations, the question arises how these two kinds of graph
transformation are related to each other. Theorem 2 will answer this question by showing that for each abstract
transformation applying an abstract production p there is a concrete transformation applying a concrete production
w.r.t. p, and vice versa. Thus, an application of an abstract production can also be flattened to a concrete
transformation. The result allows us to use the dense form of abstract productions in graph transformations on one
hand, and to reason about this new form of graph transformation by flattening it to usual typed attributed graph
transformation which comes along with a rich theory. Furthermore, we show the equivalence of typed attributed graph
grammars with and without inheritance. A summary of the main results, with the relationships between the theorems
is shown in Fig. 18.

In the following all typing morphisms type : AG → ATGI are ATGI-clan morphisms, unless stated otherwise.
With type : AG → ATG we denote the corresponding graph morphism.

Theorem 2 (Equivalence of Transformations). Given an abstract production p = (L
l
←− K

r
−→ R, type, NAC)

over an attributed type graph ATGI with inheritance, a concrete typed attributed graph (G, typeG) and a match
morphism m : L → G (which satisfies the gluing condition w.r.t. the untyped production L ←− K −→ R). Then the
following statements are equivalent, where (H, typeH) is the same concrete typed graph in both cases:

(1) m : L → G is a consistent match w.r.t. the abstract production p yielding an abstract direct transformation
(G, typeG)

p,m
=⇒ (H, typeH).

(2) m : L → G is a consistent match w.r.t. the concrete production pt = (L ← K → R, t, NAC) with pt ∈ p̂
and tL = typeG ◦ m (where tK , tR and NAC are uniquely defined by Lemma 3(1)) yielding a concrete direct
transformation (G, typeG)

pt ,m
=⇒ (H, typeH).

Theorem 2 allows us to use the dense form of abstract productions for model manipulation instead of generating and
holding all concrete productions, i.e. abstract transformations are much more efficient than concrete transformations.
That means, on the one hand we have an efficient procedure and on the other hand we are sure that the result
is the same as using concrete productions. Moreover, as a consequence of Theorem 2, graph languages built over
abstract productions are equivalent to graph languages that are built over a corresponding set of concrete productions.
Moreover, graph grammars with inheritance are equivalent to corresponding ones without inheritance, where, however,
the type graph ATGI has to be replaced by the closure ATG. Before showing these main results we define graph
grammars and languages in our context:

Definition 18 (ATGI Graph Grammar and Language). Given an attributed type graph ATGI and an attributed graph
G typed over ATGI with a concrete ATGI-clan morphism typeG , an ATGI-graph grammar is denoted by GG =
(ATGI, (G, typeG : G → ATGI), P), where P is a set of abstract productions that are typed over ATGI.

The corresponding graph language is defined by the set of all concretely typed graphs which are
generated by an abstract transformation (cf. Definitions 16 and 17): L(GG) = {(H, typeH : H →

ATGI) | ∃ abstract transformation(G, typeG)
∗
⇒ (H, typeH)}.

Remark. typeH is always concrete by Lemma 3 item 2.

Theorem 3 (Equivalence of Attributed Graph Grammars). For each ATGI-graph graph grammar GG = (ATGI, (G,

typeG), P) with abstract productions P there are:

(1) An equivalent ATGI-graph grammar ĜG = (ATGI, (G, typeG), P̂) with concrete productions P̂, i.e. L(GG) =

L(ĜG);
(2) An equivalent typed attributed graph grammar without inheritance GG = (ATG, (G, typeG), P) typed over ATG

where ATG is the closure of ATGI, and with productions P, i.e. L(GG)
∼
= L(GG), that means: (G, typeG) ∈

L(GG)⇔ (G, typeG) ∈ L(GG).

Construction.

(1) The set P̂ is defined by P̂ = ∪p∈P p̂ with p̂ the set of all concrete productions w.r.t. p;

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 155

Fig. 14. Type graph with inheritance for statecharts.

(2) typeG : G → ATG is the graph morphism corresponding to the ATGI-clan morphism typeG (see Theorem 1). P
is defined by P = ∪p∈P {pt | pt ∈ p̂}. where for pt ∈ p̂ with pt = (p, t, NAC) we define pt = (p, t, NAC′) with
uATG ◦ tX = tX for X ∈ {L , K , R} and NAC′ is defined by NAC as follows:
For each (N , n, tN) ∈ NAC we have all (N , n, tN) ∈ NAC′ with tN = uATG ◦ tN .

Remark 4. In grammar GG of Part 2 using the abstract closure ATG of ATGI, graphs with concrete typing are
generated only. In fact there is also an equivalent grammar GG′ with type graph ÂTG, the concrete closure of ATGI.

7. Case study

In this section we extend the previous examples by presenting a more detailed case study of the simulation of
Statecharts. The main addition with respect to Fig. 6 is that we consider hierarchical states (composite states have
subvertices). In addition, objects have a queue of pending events. The first event in the queue points to the object by
means of edge receives. Events in the queue point to the next one by means of the next edge. The type graph with
inheritance is shown in Fig. 14 and it is in fact a simplification of the one shown in the UML specification [26] (thus,
we only consider a subset of Statecharts). According to this specification, the PseudostateKind is an enumerate type,
but we only consider the initial value. Note in addition, that the kind of Statecharts we deal with should be constrained
more, either by defining extra constraints (like multiplicities) that the instance graphs should verify, or by defining a
generation grammar (as we did, for example, in [2]). This grammar ensures that each state machine contains a unique
topmost initial state of type Composite State, and that each composite state has a unique initial state.

Fig. 15 shows an instance graph of the type graph in Fig. 14. We have used abbreviations to depict the node types.
The right part of the figure shows a concrete syntax representation of the instance graph. In a visual language, the
concrete syntax defines how the different elements of the language are graphically represented. In our case, we use
the standard UML of representing composite states by placing the substates inside the composite state.

Fig. 16 shows a set of abstract productions for simulating our subset of statecharts. All productions are abstract
because the node types EV (Event), ST (State) and SV (StateVertex) are abstract. We have used a condensed notation
for NACs (used in tools such as AGG [3] and AToM3 [22]). In this notation, the NAC only shows: (i) nodes not having
a pre-image in the LHS (roughly, those in N − n(L)), and their context nodes (those directly connected via edges), or
(ii) nodes whose type is refined from the LHS. The rest of the LHS is isomorphically copied in the NAC.

The first production adds the current relationship (c) to an object (OB) if it does not already have one. The starting
state is the initial state of the top state. Production 2 models a state change due to a transition from the current state.
In this abstract production, StateVertex and Event are abstract nodes. This feature allows us to condense in a single
abstract production the combinations of all concrete sub-types of StateVertex and Event nodes. In fact, the number of
concrete productions according to Definition 15 is very large, because there are three Event nodes with two concrete
instantiations and two StateVertex nodes with four concrete instantiations each. Altogether we have 23

× 42
= 128

156 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

Fig. 15. Statecharts example. Abstract syntax (left), Concrete syntax (right).

Fig. 16. Productions for the simulation of statecharts.

different concrete productions. The NAC in this production forbids its application if the target node is a composite
node (the type of node 6 in the LHS is refined in the NAC), in this case, production three should be used.

Production three is similar to the previous one, but models a state change into a composite state. In this case, the
current state should be its initial state (that is, the PseudoState node is subvertex of the CompositeState). Production
four moves from the initial state to another one without considering events (one does not have to wait for an event to
move from this PseudoState.) Finally, production five models the fact that we can change the state due to transitions
departing from any of the super-states of the current state. Thus, this production allows going up in the subvertex

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 157

Fig. 17. A transformation example.

hierarchy starting from the current state. We cannot apply this production, if the current state is already a subvertex
of the top state, or if the current state is indeed a PseudoState of the initial kind.

Fig. 17 shows a sequence of direct transformations of the previous grammar applied to the Statechart in Fig. 15,
according to the application of abstract productions in Definition 17. In the first step, we apply production one, setting
the current state pointer to the PseudoState (initial kind) of the top state. Then, abstract production four moves the
current state to node ‘SS1’. Node 6 in the production (StateVertex type) is matched to node ‘SS1’ in the graph, typed
over SimpleState. Next, abstract production three is applied and the pointer is moved to the initial state of composite
state ‘CS2’. Node 2 (of type StateVertex) in the production matches node ‘SS1’ of type SimpleState in the graph; and
the Event is of type CallEvent. Then, abstract production four can be applied, which moves the pointer to node ‘SS2’.
The type instantiation is from StateVertex in the production to SimpleState in the graph. Now, abstract production five
is applied, moving the current pointer up in the hierarchy to node ‘CS2’. The type of node 2 (CompositeState) in the
production is instantiated to SimpleState of node ‘SS2’ in the graph. For the following step, abstract production two
can be applied, and the pointer is set to node ‘FS1’. The type instantiation is from StateVertex and Event in the rules
to CompositeState, FinalState and CallEvent in the graph. Here, no production can be applied anymore.

According to Theorems 2, 3(1) and Definition 17, this transformation with abstract productions P , is equivalent to
a corresponding transformation with concrete productions P̂ typed over ATGI in Fig. 14. Moreover, by Theorems 1
and 3.2, it is equivalent to a transformation with productions P typed over the closure ATG of ATGI according to
the theory of typed attriuted graph transformation without inheritance (see [12]). Nonetheless, note that the set P of
abstract productions is much smaller than P̂ and P as discussed above for production two.

158 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

Fig. 18. Summary of main results.

8. Conclusion

In this paper we have presented a formal integration of node type inheritance with typed attributed graph
transformation. The new concept allows the definition of abstract productions, in which abstractly typed nodes
may appear. These can be matched to nodes of any of their concrete subtypes. The main results of the paper
are summarized in Fig. 18 which shows that abstract productions (transformations) can be flattened to concrete
productions (transformations), typed over the abstract or the flattened concrete type graph.

The presented inheritance concept is extremely useful in applications, since graph grammars and graph transforma-
tion systems can be notably more compact. This has already been demonstrated in our previous paper [2]. However,
that work was restricted to graph transformation without an attribution concept. In this extended paper, we have shown
how to obtain a formal integration of an inheritance concept with typed attributed graph transformation as presented
in [12,10]. The presented concepts have been implemented in the AGG [31] and AToM3 [22] tools. Altogether, this
work is a crucial step towards a precise integration of object-orientation and graph transformation concepts.

In the literature, the inheritance concept has been integrated to a number of graph transformation approaches and
corresponding tools already, as e.g. Progres [27], Fujaba [16], ViaTra [33], GReAT [1]. Some of them follow quite
a different approach for expressing the inheritance concept. For example, Progres is based on Logic-Based Structure
Replacement Systems [28], in which graphs and type graphs (so called structure schemas) are encoded as a set of
first-order predicate logic formulae. In this way, inheritance can be expressed as a set of implications. Fujaba uses
a UML-like notation for graphs and rules, which are translated into progress models. While those integrations show
a lot of similarities with ours from the operational point of view, none of them is thoroughly formalized such that
existing theory becomes applicable to this new form of graph transformation.

Another related approach (although for the Single Pushout approach to graph transformation) can be found in [23].
In that work, the inheritance is encoded by considering graphs whose nodes and edges are partially ordered, in such a
way that typing and graph morphisms should preserve such order. Although they consider overriding, they are limited
to single inheritance and do not consider attribution in our sense.

Although existing theoretical results become applicable to attributed graph transformation with inheritance already,
some of the analysis techniques available might not be usable in a seamless way yet. While constraint checking,
introduced in [19], has been lifted to graph transformation with inheritance already in [30], this lifting has to be
extended to attributed graph transformation in future work. Termination of graph transformation [11] can be easily
used on the basis of graph transformation without inheritance, since the results of termination checks do not have to
be further interpreted. Instead, critical pair analysis [17] which is useful to, e.g. optimize visual language parsers [7]
and to show correctness of model transformation [18], should be lifted to type graphs with inheritance. While minimal
conflicts of flat productions can be considered already, a conflict consideration on the level of abstract productions is
desirable from the application point of view.

Having extended graph transformation by node type inheritance, one might also extend it to edge type inheritance.
This extension has been already considered in [30] for graph transformation without attributes. We consider edge
type inheritance to restrict the combinations of source and target sub-types allowed when node type inheritance
is used. The formalization of edge inheritance differs completely from that of node type inheritance, since edge
inheritance relations are translated to graph constraints, as well as multiplicities for node and edge types. Again this
work has to be extended to attributed graph transformation. By integrating all main object-orientation concepts to
graph transformation, we aim at a comprehensive and visual formal framework with a mature theory to be applied to
object-oriented modelling and meta-modelling.

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 159

Acknowledgements

This work has been partially sponsored by the EC’s Human Potential Programme under contract HPRN-
CT-2002-00275 (SegraVis: Syntactic and Semantic Integration of Visual Modelling Techniques), the IST-2005-
16004 Integrated Project SENSORIA (Software Engineering for Service-Oriented Overlay Computers), the German
Research Foundation with project “Application of graph transformation to visual modeling languages” and the Spanish
Ministry of Science and Education with project MOSAIC TSI2005-08225-C07-06. The authors would also like to
thank the referees for their useful comments.

Appendix. Proofs of the theorems

In the following we give the proofs of Theorems 1–3. For the proofs of Lemmas 1–3, we refer to our Technical
Report [20].

Proof 1 (Theorem 1). By Lemmas 1 and 2, mATG is an ATGI-clan morphism and composition is well-defined. We
have to show

(1) type : AG→ ATG is well-defined AG-morphism
(2) uATG ◦ type = type′

(3) For each AG-morphism f : AG → ATG with uATG ◦ f = type′ we have f = type

(1) We have to show that type : AG → ATG is well-defined AG-morphism.
(a) Well definedness means typeEi

(ei) ∈ T G Ei for i = G, N A, E A
(i) typeEG

(eG) = (n1, e′1, n2) ∈ T G EG means to show
e′1 ∈ T G EG , n1 ∈ clanI (sourceG(e′1)), n2 ∈ clanI (targetG(e′1)).
By definition of typeEG

we have e′1 = type′EG
(eG) ∈ T G EG ,

n1 = typeVG
(sGG (eG)) = type′VG

(sGG (eG)) ∈ clanI (sourceG ◦ type′EG
(eG)) = clanI (sourceG(e′1))

n2 = typeVG
(tGG (eG)) = type′VG

(tGG (eG)) ∈ clanI (targetG ◦ type′EG
(eG)) = clanI (targetG(e′1))

(ii) typeENA
(eNA) = (n1, e′2, n2) ∈ T G ENA means to show

e′2 ∈ T G ENA , n1 ∈ clanI (sourceNA(e′2)), n2 = targetNA(e′2).
By definition of typeENA

we have e′2 = type′ENA
(eNA) ∈ TGENA ,

n1 = typeVG
(sGNA(eNA)) = type′VG

(sGNA(eNA)) ∈ clanI (sourceNA◦ type′ENA
(eNA)) = clanI (sourceNA(e′2))

n2 = typeVG
(tGNA(eNA)) = type′VG

(tGNA(eNA)) = targetNA ◦ type′ENA
(eNA) = targetNA(e′2)

(iii) typeEEA
(eEA) = ((n11, e′′3 , n12), e′3, n2) ∈ T G EEA means to show

e′3 ∈ T G EEA , e′′3 = sourceEA(e′3) ∈ T G EG ,
n11 ∈ clanI (sourceG(e′′3)), n12 ∈ clanI (targetG(e′′3)),
n2 = targetEA(e′3) ∈ TGVD .
By definition of typeEEA

we have e′3 = type′EEA
(eEA) ∈ TGEEA ,

n2 = typeVNA
(tGEA(eEA)), (n11, e′′3 , n12) = typeEG

(sGEA(eEA)), which is in TGEG according to typeEG
in

step (i).
By Definition 10 this implies: n11 ∈ clanI (sourceG(e′′3)), n12 ∈ clanI (targetG(e′′3)), e′′3 ∈ T G EG .

Now using type′ ATGI-clan morphism we have
n2 = typeVD

(tGEA(eEA)) = type′VD
(tGEA(eEA)) = targetEA ◦ type′EEA

(eEA) = targetEA(e′3) and now

typeEG
(sGEA(eEA)) = (n11, e′′3 , n12) ∈ T G EG implies by definition of typeEG

(eG)

e′′3 = type′EG
(sGEA(eEA))

(∗)
= sourceEA ◦ type′EEA

(eEA) = sourceEA(e′3),
where (∗) holds, because type′ is ATGI-clan morphism.

(b) The AG-morphism property of type : AG → ATG requires to show the following properties: (i)–(vii)
(i) typeVD

(d) = s for d ∈ Ds and s ∈ S′D
this is true because corresponding property holds for type′VD

and type′VD
= typeVD

160 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

(ii) typeVG
◦ sGG (e1) = sourceG ◦ typeEG

(e1) ∀e1 ∈ G EG

By definition of typeEG
we have

typeEG
(e1) = (n1, e′1, n2) with n1 = typeVG

(sGG (e1)) ∈ T GVG ⇒

sourceG ◦ typeEG
(e1) = sourceG[(n1, e′1, n2)] = n1 =

typeVG
(sGG (e1))

(iii) typeVG
◦ tGG (e1) = targetG ◦ typeEG

(e1) ∀e1 ∈ G EG

By definition of typeEG
we have

typeEG
(e1) = (n1, e′1, n2) with n1 = typeVG

(tGG (e1)) ∈ T GVG ⇒

targetG ◦ typeEG
(e1) = targetG[(n1, e′1, n2)] = n1 =

typeVG
(tGG (e1))

(iv) typeVG
◦ sGNA(e2) = sourceNA ◦ typeENA

(e2) ∀e2 ∈ G ENA

By definition of typeENA
we have

typeENA
(e2) = (n1, e′2, n2) with n1 = typeVG

(sGNA(e2)) ∈ T GVG ⇒

sourceNA ◦ typeENA
(e2) = sourceNA[(n1, e′2, n2)] = n1 =

typeVG
(sGNA(e2))

(v) typeVD
◦ tGNA(e2) = targetNA ◦ typeENA

(e2) ∀e2 ∈ G ENA

By definition of typeENA
we have

typeENA
(e2) = (n1, e′2, n2) with n2 = typeVD

(tGNA(e2)) ∈ T GVD ⇒

targetNA ◦ typeENA
(e2) = targetNA[(n1, e′2, n2)] = n2 =

typeVD
(tGNA(e2))

(vi) typeEG
◦ sGEA(e3) = sourceEA ◦ typeEEA

(e3) ∀e3 ∈ G EEA

By definition of typeEEA
we have

typeEEA
(e3) = ((n11, e′′3 , n12), e′2, n2) with (n11, e′′3 , n12) =

typeEG
(sGEA(e3))⇒

sourceEA ◦ typeEEA
(e3) = sourceEA[((n11, e′′3 , n12), e′3, n2)] =

(n11, e′′3 , n12) = typeEG
(sGEA(e3))

(vii) typeVD
◦ tGEA(e3) = targetEA ◦ typeEEA

(e3) ∀e3 ∈ G EEA

By definition of typeEEA
we have

typeEEA
(e3) = ((n11, e′′3 , n12), e′3, n2) with n2 = typeVD

(tGEA(e3))⇒

targetEA ◦ typeEEA
(e3) = targetEA[((n11, e′′3 , n12), e′3, n2)] = n2 = typeVD

(tGEA(e3))

(2) We have to show uATG ◦ type = type′

AG
type

||zz
zz

zz
zz type′

""D
DDDDDDD

=

ATG uATG
// ATG

(a) uATG,VG ◦ typeVG
= typeVG

= type′VG

(b) uATG,VD ◦ typeVD
= typeVD

= type′VD

(c) for typeEG
(e1) = (n1, e′1, n2) ∈ TGEG with e′1 = type′EG

(e1) we have
uATG,EG ◦ typeEG

(e1) = uATG,EG [(n1, e′1, n2)] = e′1 = type′EG
(e1)

(d) for typeENA
(e2) = (n1, e′2, n2) ∈ TGENA with e′2 = type′ENA

(e2) we have
uATG,ENA ◦ typeENA

(e2) = uATG,ENA [(n1, e′2, n2)] = e′2 = type′ENA
(e2)

(e) for typeEEA
(e3) = ((n11, e′′3 , n12), e′3, n2) ∈ TGEEA with e′3 = type′EEA

(e3) we have
uATG,EEA ◦ typeEEA

(e3) = uATG,EEA [(n11, e′′3 , n12)] = e′3 = type′EEA
(e3)

(f) uATG,D ◦ typeD = typeD = type′D
(3) Given AG-morphism f : AG → ATG with uATG ◦ f = type′

we have to show f = type, which will be shown in (a)–(f) below

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 161

(a) fVG (n1) = uATG,VG ◦ fVG (n1) = type′VG
(n1) = typeVG

(n1)⇒

fVG = typeVG

(b) fVD (n2) = uATG,VD ◦ fVD (n2) = type′VD
(n2) = typeVD

(n2)⇒

fVD = typeVD

(c) Let fEG (e1) = (n1, e′1, n2) ∈ TGEG . Now type′E = uATG ◦ f implies
type′EG

(e1) = uATG,EG ◦ fEG (e1) = uATG,EG [(n1, e′1, n2)] = e′1
f AG-morphism implies:
fVG ◦ sGG (e1) = sourceG ◦ fEG (e1) = sourceG[(n1, e′1, n2)] = n1
fVG ◦ tGG (e1) = targetG ◦ fEG (e1) = targetG[(n1, e′1, n2)] = n2

⇒ n1 = fVG ◦ sGG (e1)
(a)
= typeVG

(sGG (e1))

n2 = fVG ◦ tGG (e1)
(a)
= typeVG

(tGG (e1))

⇒ fEG (e1) = typeEG
(e1) by definition of typeEG

→ fEG = typeEG

(d) Let fENA(e2) = (n1, e′2, n2) ∈ TGENA for e′2 ∈ TGENA with n2 = targetNA(e′2).
Now type′ = uATG ◦ f implies
type′ENA

(e2) = uATG,ENA ◦ fENA(e2) = uATG,ENA [(n1, e′2, n2)] = e′2
f AG-morphism implies:
fVG ◦ sGNA(e2) = sourceG ◦ fENA(e2) = sourceG[(n1, e′2, n2)] = n1
fVD ◦ tGNA(e2) = targetG ◦ fENA(e2) = targetG[(n1, e′2, n2)] = n2

⇒ n1 = fVG ◦ sGNA(e2)
(a)
= typeVG

(sGNA(e2))

n2 = fVD ◦ tGNA(e2)
(b)
= typeVD

(tGNA(e2))

⇒ fENA = typeENA

(e) Let fEEA(e3) = ((n11, e′′3 , n12), e′3, nG2) ∈ TGEEA .
Now type′ = uATG ◦ f implies
type′EEA

(e3) = uATG,EEA ◦ fEEA(e3) = uATG,EEA [((n11, e′′3 , n12), e′3, n2)] = e′3
f AG-morphism implies:
fEG ◦ sGEA(e3) = sourceEA ◦ fEEA(e3) = sourceEA[((n11, e′′3 , n12), e′3, n2)]

= (n11, e′′3 , n12)

fVD ◦ tGEA(e3) = targetEA ◦ fEEA(e3) = targetEA[((n11, e′′3 , n12), e′3, n2)]

= n2

⇒ (n11, e′′3 , n12) = fEG ◦ sGEA(e3)
(c)
= typeEG

(sGEA(e3))

n2 = fVD ◦ tGEA(e3)
(b)
= typeVD

(tGEA(e3))

⇒ fEEA = typeEEA

(f) type′ = uATG ◦ f implies type′D = uATG,D ◦ fD = fD → fD = typeD

Proof 2 (Theorem 2).
“1⇒ 2” This follows directly from Lemma 3.
“2⇒ 1” If m is a consistent match w.r.t. pt and (G, typeG) with tL = typeG ◦m we have tL = typeG ◦m ≤ typeL .

For x1, x2 ∈ KVG with rVG (x1) = rVG (x2) it follows that tK ,VG (x1) = tR,VG ◦ rVG (x1) = tR,VG ◦ rVG (x2) = tL ,VG (x2).
Match m satisfies NAC, i.e. ∀(N , n, tN) ∈ NAC, there is no morphism o ∈M′ with o ◦ n = m and typeG ◦ o = tN . It
follows that m also satisfies NAC. Otherwise, there would exist nac = (N , n, typeN) ∈ NAC, o ∈M′ with o ◦ n = m
and typeG ◦ o ≤ typeN . This would contradict that m satisfies nac = (N , n, tN) with tN = typeG ◦ o ≤ typeN . That
means, m is a consistent match w.r.t. p and (G, typeG).

Now we apply Lemma 3, where the induced concrete production in Item 1 coincides with the given on, and obtain
the abstract direct transformation (G, typeG)

p,m
=⇒ (H, typeH).

162 J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163

Proof 3 (Theorem 3).

(1) With Theorem 2 the abstract direct transformation (G1, typeG1
)

p,m
=⇒ (G2, typeG2

) and the concrete direct

transformation (G1, typeG1
)

pt ,m
=⇒ (G2, typeG2

) with tL = typeG1
◦ m are equivalent and if one exists, so does

the other one. That means if (G1, typeG1
) ∈ L(GG) ∩ L(ĜG) then (G2, typeG2

) ∈ L(GG) ∩ L(ĜG). Since we
start in both grammars with the same start graph, L(GG) = L(ĜG).

(2) We show, that
(a) for a concrete direct transformation (G1, typeG1

)
pt ,m
=⇒ (G2, typeG2

) in ĜG there is a corresponding direct

transformation (G1, typeG1
)

pt ,m
=⇒ (G2, typeG2

)) in GG with uATG ◦ typeGi
= typeGi

for i = 1, 2 and
(b) if a production pt can be applied to (G1, typeG1

) via m in GG then pt can be applied to (G1, uATG ◦ typeG1
)

via m in ĜG.
(a) For all objects (X, typeX) in the DPO diagram corresponding to the concrete direct transformation

(G1, typeG1
)

pt ,m
=⇒ (G2, typeG2

) Theorem 1 gives us a morphism typeX : X → ATG. The DPO diagram

with these new morphisms corresponds to the direct transformation (G1, typeG1
)

pt ,m
=⇒ (G2, typeG2

) in GG.
It remains to show that pt can by applied to G1 via m, i.e. m satisfies the negative application condition

NAC
′
. Suppose not, and we have a negative application condition (N , n, tN) ∈ NAC

′
, that is not satisfied by

m and corresponds to (N , n, tN) ∈ NAC with uATG ◦ tN = tN . Then there is a morphism o : N → G1
with o ◦ n = m and since o is a typed attributed graph morphism typeG1

◦ o = tN . Then typeG1
◦ o =

uATG ◦ typeG1
◦ o = uATG ◦ tN = tN . According to Definition 17 that means m does not satisfy NAC, which is

a contradiction.
(b) The application of pt to G1 via m leads to a direct transformation (G1, typeG1

)
pt ,m
=⇒ (G2, typeG2

). For all
objects (X, typeX) in the corresponding DPO diagram we define typeX = uATG ◦ typeX and get a new DPO
diagram corresponding to the concrete direct transformation (G1, typeG1

)
pt ,m
=⇒ (G2, typeG2

).
We have to check that m satisfies NAC. Suppose not, then there is a negative application condition

(N , n, tN) ∈ NAC and an AG-morphism o : N → G such that o ◦ n = m and typeG1
◦ o = tN . Then

the negative application condition (N , n, tN) ∈ NAC
′

with tN = typeG1
◦ o is not satisfied by m. This is a

contradiction.
For an concrete transformation (G, typeG)

∗
⇒ (H, typeH) in ĜG item (a) gives us the corresponding

transformation (G, typeG)
∗
⇒ (H, typeH) in GG. Item (b) guarantees, that for a transformation (G, typeG)

∗
⇒

(H, typeH) in GG there is a corresponding concrete transformation (G, typeG)
∗
⇒ (H, typeH) in ĜG. Combining

(a) and (b) we have L(ĜG) ∼= L(GG). By part 1 we have L(GG) = L(ĜG), which implies L(GG) ∼= L(GG) as
required.

References

[1] A. Agrawal, G. Karsai, F. Shi, Graph transformations on domain-specific models, Technical Report ISIS-03-403 of the Institute for Software
Integrated Systems, Vanderbilt University, November, 2003.

[2] R. Bardohl, H. Ehrig, J. de Lara, G. Taentzer, Integrating meta modelling aspects with graph transformation for efficient visual language
definition and model manipulation, in: Proc. FASE’04, in: LNCS, vol. 2984, Springer, 2004, pp. 214–228.

[3] R. Bardohl, A visual environment for visual languages, Science of Computer Programming 44 (2002) 181–203.
[4] R. Bardohl, G. Taentzer, M. Minas, A. Schürr, Application of graph transformation to visual languages, in: H. Ehrig, G. Engels,

H.-J. Kreowski, G. Rozenberg (Eds.), Handbook of Graph Grammars and Computing by Graph Transformation, Volume 2, World Scientific,
1999, pp. 105–181.

[5] L. Baresi, M. Pezze, A toolbox for automating visual software engineering, in: Proc. FASE’02, in: LNCS, vol. 2306, Springer, 2002,
pp. 189–202.

[6] G. Booch, Object Oriented Design, Benjamin-Cummings, 1991.
[7] P. Bottoni, G. Taentzer, A. Schürr, Efficient parsing of visual languages based on critical pair analysis and contextual layered graph

transformation, in: Proc. IEEE International Symposium on Visual Languages, VL’00, 2000, pp. 59–60.
[8] A. Corradini, U. Montanari, F. Rossi, Graph processes, Fundamenta Informaticae 26 (3–4) (1996) 241–265.
[9] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph Transformation, in: Monographs in Theoretical Computer

Science, Springer, 2006.

J. de Lara et al. / Theoretical Computer Science 376 (2007) 139–163 163

[10] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Formal integration of inheritance with typed attributed graph transformation for efficient vl
definition and model manipulation, in: Proc. 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Dallas,
USA, 2005, pp. 71–78.

[11] H. Ehrig, K. Ehrig, J. de Lara, T. Taentzer, D. Varró, S. Varró-Gyapay, Termination criteria for model transformation, in: Proc. FASE’05,
in: LNCS, vol. 3442, Springer, 2005, pp. 49–63.

[12] H. Ehrig, U. Prange, G. Taentzer, Fundamental theory for typed attributed graph transformation, in: Proc. ICGT’04, in: LNCS, vol. 3256,
Springer, 2004, pp. 161–177.

[13] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann, Constraints and application conditions: From graphs to high-level structures, in: Proc.
ICGT’04, in: LNCS, vol. 3256, Springer, 2004, pp. 287–303.

[14] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformation. Vol 1.
Foundations, World Scientific, 1999.

[15] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specifications 1: Equations and Initial Semantics, in: EATCS Monographs on Theoretical
Computer Science, vol. 6, Springer, 1985.

[16] T. Fischer, J. Niere, L. Torunski, A. Zuendorf, Story diagrams: A new graph rewrite language based on the unified modeling language, in: Proc.
TAGT’98, in: LNCS, vol. 1764, Springer, 1998, pp. 296–309. See also the Fujaba home page http://www.fujaba.de.

[17] H. Heckel, J. Küster, G. Taentzer, Towards automatic translation of UML models into semantic domains, in: Proc. AGT 2002, 2002, pp.
11–22.

[18] R. Heckel, J. Küster, G. Taentzer, Confluence of typed attributed graph transformation systems, in: Proc. ICGT’02, in: LNCS, vol. 2505,
Springer, 2002, pp. 161–176.

[19] H. Heckel, A. Wagner, Ensuring Consistency of Conditional Graph Grammars — A Constructive Approach, in: ENTCS, vol. 2, Elsevier,
1995.

[20] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Attributed graph transformation with node type inheritance: Long version.
Technical Report 2005/3, TU Berlin, 2005.

[21] J. de Lara, H. Vangheluwe, Defining visual notations and their manipulation through meta-modelling and graph transformation, in: Domain-
Specific Modeling with Visual Languages, Journal of Visual Languages and Computing 15 (3–4) (2004) 309–330 (special issue).

[22] J. de Lara, H. Vangheluwe, AToM3: A tool for multi-formalism modelling and meta-modelling, in: Proc. FASE’02, in: LNCS, vol. 2306,
Springer, 2002, pp. 174–188. See also the AToM3 home page http://atom3.cs.mcgill.ca.

[23] A.P. Lüdtke, L. Ribeiro, Derivations in object oriented grammars, in: Proc. ICGT’04, in: LNCS, vol. 3256, Springer, 2004, pp. 416–430.
[24] K. Marriot, B. Meyer, Visual Language Theory, Springer, 1998.
[25] T. Mens, S. Demeyer, D. Janssens, Formalising behaviour preserving program transformations, in: Proc. ICGT’02, in: LNCS, vol. 2505,

Springer, 2002, pp. 286–301.
[26] MDA, MOF and UML specifications at the OMG web page: http://www.omg.org.
[27] A. Schürr, Introduction to PROGRES, an attribute graph grammar based specification language, in: Proc. WG89, in: LNCS, vol. 411, Springer,

1990, pp. 151–165.
[28] A. Schürr, Programmed graph replacement systems, in: [14], 1999, pp. 479–546.
[29] J. Sprinkle, G. Karsai, A domain-specific visual language for domain model evolution, Journal of Visual Languages and Computing 15 (3–4)

(2004) 291–307.
[30] G. Taentzer, A. Rensink, Ensuring structural constraints in graph-based models with type inheritance, in: Proc. FASE’05, in: LNCS, vol. 2984,

Springer, 2005, pp. 64–79.
[31] G. Taentzer, AGG: A graph transformation environment for modeling and validation of software, in: Proc. AGTIVE’03, in: LNCS, vol. 3062,

Springer, 2003, pp. 446–453. See also the AGG home page http://tfs.cs.tu-berlin.de/agg/.
[32] D. Varro, A. Pataricza, Generic and meta-transformations for model transformation engineering, in: Proc. UML’04, in: LNCS, vol. 3273,

Springer, 2004, pp. 290–304.
[33] D. Varro, A. Pataricza, VPM: A visual, precise and multilevel metamodeling framework for describing mathematical domains and UML (The

Mathematics of Metamodeling is Metamodeling Mathematics), Software and Systems Modeling 2 (3) (2003) 187–210.
[34] D. Varro, A formal semantics of UML Statecharts by model transition systems, in: Proc. ICGT’02, in: LNCS, vol. 2505, Springer, 2002,

pp. 378–392.

http://www.fujaba.de
http://atom3.cs.mcgill.ca
http://www.omg.org
http://tfs.cs.tu-berlin.de/agg/

	Attributed graph transformation with node type inheritance
	Introduction
	Introduction to typed graph transformation
	Graphs and typed graphs
	Typed graph transformation

	Attributed type graphs
	Attributed type graphs with inheritance
	Attributed clan morphisms

	Typed attributed graph transformation with inheritance
	Equivalence results
	Case study
	Conclusion
	Acknowledgements
	Proofs of the theorems
	References

