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Abstract

The goal of this paper is the generalization of parallelism and concurrency results for adhesive High-Level
Replacement (HLR) systems to adhesive HLR systems with negative application conditions. These condi-
tions restrict the application of a rule by expressing that a specific structure should not be present before
or after applying the rule to a certain context. Such a condition influences thus each rule application or
transformation and therefore changes significantly the properties of the replacement system. The effect of
negative application conditions on parallelism and concurrency in the replacement system is described in
the generalization of the following results, formulated already for adhesive HLR systems without negative
application conditions: Local Church-Rosser Theorem, Parallelism Theorem and Concurrency Theorem.
These important generalized results will support the development of formal analysis techniques for adhesive
HLR systems with negative application conditions.

Keywords: Negative Application Conditions, Adhesive High-Level Replacement Categories, Parallelism,
Concurrency

1 Introduction

Adhesive High-Level Replacement (HLR) categories as introduced in [3] provide
a formal method to describe transformation systems. The resulting framework is
called adhesive HLR systems. These systems are based on rules that describe in an
abstract way how objects in adhesive HLR categories can be transformed. In [3],
it is explained moreover how to define application conditions for rules that restrict
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the application of a rule. Most of the theoretical results in [3] though have been
formulated for adhesive HLR systems based on rules without application conditions.
These results should thus be generalized to adhesive HLR systems based on rules
holding application conditions. The most frequently used kind of application condi-
tion is the so-called negative application condition (NAC) as introduced in [4] and
used e.g. in [1,5,6,12,13]. It forbids a certain structure to be present before or after
applying a rule. Therefore at first we concentrate on generalizing the theoretical
results formulated for adhesive HLR systems based on rules without application
conditions to adhesive HLR systems based on rules holding NACs. Shortly, we will
speak about adhesive HLR systems with NACs.

Some important theoretical results for the particular case of graph transforma-
tion with NACs have been presented already in [10]. The overall goal is to come up
with practical techniques for conflict detection and analysis [11,9] in transformation
systems. In practice though most of these results are needed for the instantiation of
typed attributed graph transformation systems with application conditions. This
more general kind of graph transformation technique is most significant for model-
ing and metamodeling in software engineering and visual languages. Therefore the
availability of all results for typed attributed graph transformation with NACs is an
important motivation for the generalization to adhesive HLR systems with NACs.
In [3], it has been already proven that such a typed attributed graph transformation
system is a valid instantiation of adhesive HLR systems. Moreover results within
adhesive HLR systems can be applied to all other instantiations of adhesive HLR
systems such as e.g. hypergraph, algebraic signature or specification transforma-
tions with NACs. In this paper, we concentrate on the generalization of parallelism
and concurrency results to adhesive HLR systems with NACs. In [8], though, also
results for critical pairs, embedding, extension and local confluence are generalized
to adhesive HLR systems with NACs.

The structure of this paper is as follows. In Section 2, it is explained how to
augment the adhesive HLR framework with negative application conditions. Sec-
tion 3 then formulates all results needed to generalize the notion of parallelism to
transformations with NACs. At first the local Church-Rosser property is described
for transformations with NACs. Therefore a new notion of parallel and sequential
independence is defined between transformations with NACs. This is necessary be-
cause it can not only happen that a transformation deletes a structure that is used
by the second transformation as considered in the case without NACs. Moreover
we should consider the case of the first transformation producing a structure which
is forbidden by the second one. Using the generalized notion of sequential indepen-
dence for transformations with NACs it is now possible to formulate a Parallelism
Theorem for transformations with NACs. This theorem expresses how to summa-
rize a sequence of two sequentially independent transformations into one parallel
transformation step with the same effect. If sequential dependencies occur between
direct transformations in a transformation sequence the Parallelism Theorem can
not be applied in order to summarize this transformation sequence into one trans-
formation step. In Section 4, therefore it is explained how to construct a so-called
concurrent rule with NACs establishing the same effect in one transformation step
with NACs as the whole transformation sequence. In the Concurrency Theorem
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it is proven that a concurrent rule holding NACs equivalent to a sequence of rules
holding NACs is applicable with the same result if and only if the rule sequence
with NACs is applicable. The construction of the concurrent rule itself is analog to
the case without NACs. It is necessary though to translate all NACs occurring in
the rule sequence into equivalent NACs on the concurrent rule. Therefore we will
use results for application conditions already described in [3] and some new results.

2 Adhesive HLR systems with NACs

In this section, we introduce adhesive HLR systems with NACs. Nacs are an impor-
tant feature for the modeling of transformation systems, expressing that a certain
structure is not present when performing the transformation [4] and thus enhancing
the expressiveness of the transformation. In order to provide a rich theory for such
transformations with NACs, they are integrated into the framework of adhesive
HLR systems. For this integration, mainly some new morphism classes have to be
defined which are necessary for successful adaption of the theory.

First we repeat the definition for an adhesive HLR category as introduced in [3].

Definition 2.1 [adhesive HLR category] A category C with a morphism class M
is called an adhesive HLR category, if

(i) M is a class of monomorphisms closed under isomorphisms, composition and
decomposition,

(ii) C has pushouts (PO) and pullbacks (PB) along M-morphisms and M-
morphisms are closed under pushouts and pullbacks,

(iii) pushouts in C along M-morphisms are Van Kampen squares.

Remark 2.2 In [3], adhesive HLR systems are based on either adhesive HLR or
weak adhesive HLR categories, which only slightly differ in the van Kampen square
property. In this paper, we only consider adhesive HLR categories and enhance
them with NACs. Note though that all results formulated in this paper will be
applicable as well in weak adhesive HLR categories with NACs such as e.g. for
Petri net transformations with NACs.

For an adhesive HLR category with NACs we need in addition to an adhesive
HLR category without NACs some additional properties on the special morphism
classes in the category in order to be able to generalize all results. We distinguish
three classes of morphisms, namelyM,M′ and Q, and a class of pairs of morphisms
E ′. M is a subset of the class of all monomorphisms as given in [3] and the rule
morphisms are always inM. The non-existing morphism q in Def. 2.6 for negative
application conditions is an element of the morphism class Q. For pair factorization
in Def. 5.25 in [3] we need moreover the classes M′ and E ′. M, E ′,M′ and Q
should have the properties described in the following definition. Note that to each
condition a remark is made in which theorem, lemma or definition this condition is
needed for the first time.
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Definition 2.3 [adhesive HLR category with NACs] An adhesive HLR category
with NACs is an adhesive HLR category C with special morphism class M and in
addition three morphism classes M′, E ′ and Q with the following properties:

• unique E ′ −M′ pair factorization (see Def. 5.25 in [3])
needed for Completeness Theorem (see [8]), Definition 4.6, Embedding Theorem
(see [8]),

• epi - M factorization needed for Lemma 4.2,
• M−M′ PO-PB decomposition property (see Def. 5.27 in [3])

needed for Induced Direct Transformation Lemma (see [8]), Definition 4.6, Em-
bedding Theorem (see [8]),

• M−Q PO-PB decomposition property (see Def. 5.25 in [3])
needed for Lemma 2.11,

• initial PO over M′ - morphisms (see Def. 6.1 in [3])
needed for Extension Theorem (see [8]),

• M′ is closed under PO’s and PB’s along M - morphims
needed for Completeness Theorem (see [8]), Definition 4.6, Extension Theorem
(see [8]),

• Q is closed under PO’s and PB’s along M - morphisms
needed for Lemma 2.11, Lemma 4.2,

• induced PB-PO property forM and Q (see Def. 2.4)
needed for Lemma 4.2,

• If f : A→ B ∈ Q and g : B → C ∈M′ then g ◦ f ∈ Q.
Composition property for morphisms in M′ and Q,
needed for Induced Direct Transformation Lemma (see [8]),

• If g ◦ f ∈ Q and g ∈M′ then f ∈ Q.
Decomposition property for morphisms inM′ and Q,
needed for Completeness Theorem (see [8]),

• Q is closed under composition and decomposition
needed for Lemma 4.2, Lemma 2.11.

Note that these properties hold in particular for the case of graph transforma-
tion systems with NACs with Q = M′ = M, where M is the set of all graph
monomorphisms and E ′ the set of jointly surjective pairs of graph morphisms.

Definition 2.4 [induced PB-PO property for M and Q] Given a : A → C ∈ Q
and b : B → C ∈M and the following PB and PO

D

(PB)d1

��

d2 //B

b
��

A
a //C

D

(PO)

d2 //

d1

��

B

e1

��
A

e2 //E

then the induced morphism x : E → C with x ◦ e1 = b and x ◦ e2 = a is a
monomorphism in Q.

Remark 2.5 Theorem 5.1 in [7] proves this property in adhesive categories for a,b
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being mono with the result that x is also mono.

A negative application condition or NAC as introduced in [4] forbids a certain
structure to be present before or after applying the rule.

Definition 2.6 [negative application condition, rule with NACs]

• A negative application condition or NAC(n) on L is an arbitrary morphism n :
L → N . A morphism g : L → G satisfies NAC(n) on L, written g |= NAC(n),
if and only if 6 ∃ q : N → G ∈ Q such that q ◦ n = g.

L

g

��

n //N

qX
qqG

A set of NACs on L is denoted by NACL = {NAC(ni)|i ∈ I}. A morphism
g : L → G satisfies NACL if and only if g satisfies all single NACs on L i.e.
g |= NAC(ni) ∀i ∈ I.

• A set of NACs NACL (resp. NACR) on L (resp. R) for a rule p : L
l← K

r→ R

(with l, r ∈M) is called left (resp. right) NAC on p. NACp = (NACL, NACR),
consisting of a set of left and a set of right NACs on p is called a set of NACs on
p. A rule (p, NACp) with NACs is a rule with a set of NACs on p.

Definition 2.7 [adhesive HLR system with NACs]

• An adhesive HLR system with NACs AHS = (C,M,M′, E ′,Q, P ) consists of
an adhesive HLR category with NACs (C,M,M′, E ′,Q) and a set of rules with
NACs P .

• A direct transformation G
p,g⇒ H via a rule p : L ← K → R with NACp =

(NACL, NACR) and a match g : L → G consists of the double pushout [2]
(DPO)

L

g

��

K //

��

oo R

h
��

G D //oo H

where g satisfies NACL, written g |= NACL and h : R → H satisfies NACR,
written h |= NACR. Since pushouts along M-morphisms in an adhesive HLR
category always exist, the DPO can be constructed if the pushout complement of
K → L→ G exists. If so, we say that the match g satisfies the gluing condition
of rule p. A transformation, denoted as G0

∗⇒ Gn, is a sequence G0 ⇒ G1 ⇒
· · · ⇒ Gn of direct transformations.

Remark 2.8 From now on we consider only adhesive HLR systems with rules
having an empty set of right negative application conditions. This is without loss of
generality, because each right NAC can be translated into an equivalent left NAC
as explained in [3], where Def. 7.16 and Theorem 7.17 can be specialized to NACs
as shown in the following construction and lemma.

Definition 2.9 [construction of left from right NACs] For each NAC(ni) on R

with ni : R → Ni of a rule p = (L ← K → R), the equivalent left application
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condition Lp(NAC(ni)) is defined in the following way:

L

n′i
��

Koo //

��
(2) (1)

R

ni

��
N ′

i Zoo //Ni

• If the pair (K → R,R → Ni) has a pushout complement, we construct (K →
Z,Z → Ni) as the pushout complement (1). Then we construct pushout (2) with
the morphism n′i : L→ N ′

i . Now we define Lp(NAC(ni)) = NAC(n′i).
• If the pair (K → R,R → Ni) does not have a pushout complement, we define

Lp(NAC(ni)) = true.

For each set of NACs on R, NACR = ∪i∈INAC(ni) we define the following set of
left NACs:

Lp(NACR) = ∪i∈I′Lp(NAC(n′i))

with i ∈ I ′ if and only if the pair (K → R, R→ Ni) has a pushout complement.

Remark 2.10 Note that Z is unique since pushout complements along M-
morphisms are unique up to isomorphism in adhesive HLR categories.

Lemma 2.11 (equivalence of left and right NACs) For every rule p with
NACR a set of right NACs on p, Lp(NACR) as defined in Def. 2.9 is a set of
left NACs on p such that for all direct transformations G

p,g⇒ H with comatch h,

g |= Lp(NACR)⇔ h |= NACR

Proof The proof corresponds to case 1 and 3 in the proof of Theorem 7.17 in [3].2

Definition 2.12 [inverse rule with NACs] For a rule p : L← K → R with NACp =
(NACL, ∅), the inverse rule is defined by p−1 = R ← K → L with NACp−1 =
(Lp−1(NACL), ∅).

Theorem 2.13 (Inverse Direct Transformation with NACs) For each di-
rect transformation with NACs G ⇒ H via a rule p : L ← K → R with NACp

a set of left NACs on p, there exists an inverse direct transformation with NACs
H ⇒ G via the inverse rule p−1 with NACp−1.

Proof This follows directly from Def. 2.12 and Lemma 2.11. 2

Example 2.14 Consider as an example of an adhesive HLR system a graph trans-
formation system consisting of two rules with NACs where Q = M = M′ are
injective typed graph morphisms. On the left hand side of Fig. 1 the type graph
is shown and the following three pictures of a glass represent the different states
that a glass can have in our system and how to represent them by a typed graph.
An empty glass is represented by a single node of type G. If in addition an edge
to a node of type F (resp. D) is present then the glass is full (resp. has been
drunk or used already). The rules p1 = fill and p2 = drink of our example system
are shown in the upper row of Fig. 2. They express respectively that a glass can
be filled whenever it is empty and not used already and that a full glass can be
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Figure 1. graph model

Figure 2. fill some glass and drink another one

drunk whenever two glasses have not been drunk already. In Fig. 2, you can see a
two-step transformation in which the left glass is filled and the right one is being
drunk. Note that the matching in our example is injective.

3 Parallelism in Adhesive HLR Systems with NACs

In order to generalize the notion of parallelism to adhesive HLR systems with NACs
at first it is necessary to define when two direct transformations with NACs are par-
allel independent. For a pair of transformations with NACs it is not only possible
that one transformation deletes a structure which is needed by the other one, but
also that one transformation produces a structure which is forbidden by the other
one. For this new notion of parallel independence and thus also sequential indepen-
dence it is possible to formulate the local Church-Rosser property with NACs and
also a Parallelism Theorem with NACs as described in this section.

Definition 3.1 [parallel and sequential independence] Two direct transformations

G
(p1,m1)
=⇒ H1 with NACp1 and G

(p2,m2)
=⇒ H2 with NACp2 are parallel independent if

∃h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACp1)

and

∃h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACp2)
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as in the following diagram:

N1 N2

R1

��

K1
//oo

��

L1

n1

OO

h12

''
m1

  A
AA

AA
AA

A L2

n2

OO

h21

ww
m2

~~}}
}}

}}
}}

K2
oo //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
//H2

Two direct transformations G
(p1,m1)
=⇒ H1 with NACp1 and H1

(p2,m2)
=⇒ H2 with

NACp2 are sequentially independent if

∃h12 : R1 → D2 s.t. (d2 ◦ h12 = m′
1 and e2 ◦ h12 |= NACp−1

1
)

and
∃h21 : L2 → D1 s.t. (e1 ◦ h21 = m2 and d1 ◦ h21 |= NACp2)

as in the following diagram:

N1 N2

L1

n1

OO

��

K1
//oo

��

R1

h12

''
m′

1 !!B
BB

BB
BB

B L2

n2

OO

h21

ww
m2

}}||
||

||
||

K2
oo //

��

R2

��
G D1 e1

//
d1

oo H1 D2d2

oo
e2
//H2

Remark 3.2 Note that as for the case without NACs we have the following rela-
tionship between parallel and sequential independency: G

p1⇒ H1
p2⇒ H2 are sequen-

tially independent iff G
p−1
1⇐ H1

p2⇒ H2 are parallel independent.

Theorem 3.3 (Local Church-Rosser Theorem with NACs) Given an adhe-
sive HLR system with NACs AHS and two parallel independent direct transforma-
tions with NACs H1

p1,m1⇐ G
p2,m2⇒ H2, there are an object G′ and direct trans-

formations H1
p2,m′

2⇒ G′ and H2
p1,m′

1⇒ G′ such that G
p1,m1⇒ H1

p2,m′
2⇒ G′ and

G
p2,m2⇒ H2

p1,m′
1⇒ G′ are sequentially independent. Vice versa, given two sequentially

independent direct transformations with NACs G
p1,m1⇒ H1

p2,m′
2⇒ G′ there are an

object H2 and sequentially independent direct transformations G
p2,m2⇒ H2

p1,m′
1⇒ G′

such that H1
p1,m1⇐ G

p2,m2⇒ H2 are parallel independent:

H1 p2,m′
2

"*MMM
MMM

MMM
MMM

G

p1,m1
4<rrrrrr

rrrrrr

p2,m2 "*LLL
LLL

LLL
LLL G′

H2
p1,m′

1

4<qqqqqq
qqqqqq
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Proof

(i) Given the parallel independent transformations H1
p1,m1⇐ G

p2,m2⇒ H2 :

L1

m1

��

K1
//oo

��

R1

n1

��
G D1 g1

//
f1

oo H1

L2

m2

��

K2
//oo

��

R2

n2

��
G D2 g2

//
f2

oo H2

Because of Def. 3.1 and the parallel independence with NACs of H1
p1,m1⇐

G
p2,m2⇒ H2 we know that there exists i2 : L2 → D1 (resp. i1 : L1 → D2)

s.t. f1 ◦ i2 = m2 (resp. f2 ◦ i1 = m1) and moreover g1 ◦ i2 |= NACp2 (resp.
g2 ◦ i1 |= NACp1). Because of the Local Church-Rosser Theorem for parallel
independent transformations without NACs all necessary pushouts in H1

p2⇒ G′

and H2
p1⇒ G′ can be constructed s.t. G

p1⇒ H1
p2⇒ G′ and G

p2⇒ H2
p1⇒ G′ are

sequentially independent according to Def. 5.9 in [3] for direct transformations
without NACs. This means in particular that t1 : R1 → D′

2 (resp. t2 : R2 →
D′

1) exist s.t. s1 ◦ t1 = n1 (resp. s2 ◦ t2 = n2) and the following pushout
diagrams exist:

L2

g1◦i2
��

K2
//oo

��

R2

g′1◦t2
��

H1 D′
2

g′2 //s1oo G′

L1

g2◦i1
��

K1
//oo

��

R1

g′2◦t1
��

H2 D′
1

g′1 //s2oo G′

Since g1 ◦ i2 |= NACp2 and g2 ◦ i1 |= NACp1 , H1
p2⇒ G′ and H2

p1⇒ G′ are
valid direct transformations with NACs. For the sequential independence of
G

p1⇒ H1
p2⇒ G′ we have to show that i2, t1 are the required morphisms. For i2 we

have f1◦i2 = m2, and therefore f1◦i2 |= NACp2 follows by assumption. Now we
investigate g′2 ◦ t1. Because of Theorem 2.13 and the fact that g2 ◦ i1 |= NACp1

it follows directly that also g′2 ◦ t1 |= NACp−1
1

. Analogously the sequential

independence of G
p2⇒ H2

p1⇒ G′ can be proven.

(ii) Given sequentially independent direct transformations with NACs G
p1,m1⇒

H1
p2,m′

2⇒ G′ with comatches n′1 and n′2, respectively, from Remark 3.2 we obtain

parallel independent direct transformations with NACs G
p−1
1 ,n1⇐ H1

p2,m′
2⇒ G′.

Now part (i) of the proof gives us sequentially independent direct transforma-

tions with NACs H1
p−1
1 ,n1⇒ G

p2,m2⇒ H2 and H1
p2,m′

2⇒ G′ p−1
1 ,n′1⇒ H2. Applying

again Remark 3.2 to the first transformation we obtain parallel independent
direct transformations with NACs H1

p1,m1⇐ G
p2,m2⇒ H2: G p2,m2

"*MMMMMM
MMMMMM

H1

p−1
1 ,n1

4<qqqqqq
qqqqqq

p2,m′
2
"*MMM

MMM
MMM

MMM
H2

G′ p−1
1 ,n′1

4<qqqqqq
qqqqqq

2

Now we can generalize the notion of parallelism to adhesive HLR systems with
NACs.
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Remark 3.4 In order to build parallel rules we need as explained also in [3] the
following property. Let for Definition 3.5, Theorem 3.6, Definition 3.7 and Theorem
3.8 AHS = (C,M,M′, E ′,Q, P ) be an adhesive HLR system with NACs, where
(C,M) has binary coproducts compatible withM (see Def. 5.14 in [3]).

Definition 3.5 [parallel rule and transformation with NAC] Given two rules p1 =

(L1
l1← K1

r1→ R1) with NACp1 and p2 = (L2
l2← K2

r2→ R2) with NACp2 , the parallel
rule p1 + p2 with NACp1+p2 is defined by the coproduct constructions over the

corresponding objects and morphisms: p1+p2 = (L1+L2
l1+l2← K1+K2

r1+r2→ R1+R2)
and NACp1+p2 = {n1 + idL2 |n1 ∈ NACp1} ∪ {idL1 + n2|n2 ∈ NACp2}. A direct
transformation G ⇒ G′ via p1 + p2 with NACp1+p2 and a match m : L1 + L2 →
G satisfying NACp1+p2 is a direct parallel transformation with NAC or parallel
transformation with NAC for short.

The following Theorem describes that two sequentially independent transforma-
tions with NACs can be synthesized to a parallel transformation with NACs. Please
note that in order to apply this theorem an extra composition property should hold
in the adhesive HLR category with NACs.

Theorem 3.6 (Parallelism Theorem with NACs : Synthesis) Let the com-
position of a coproduct morphism with a morphism in Q be again in Q. Then given
a sequentially independent direct transformation sequence with NACs G⇒ H1 ⇒ G′

via p1,m1 (resp. p2,m
′
2) with NACp1 (resp. NACp2), there is a construction lead-

ing to a parallel transformation with NACs G ⇒ G′ via [m1,m2] and the parallel
rule p1 + p2 with NACp1+p2, called a synthesis construction.

G

p1+p2,[m1,m2]

��

p2,m2

"*MMMMMM
MMMMMMp1,m1

t| qqqqqq
qqqqqq

H1

p2,m′
2
"*MMM

MMM
MMM

MMM
H2

p1,m′
1

t| qqq
qqqqqq
qqq

G′

Proof Given the sequentially independent direct transformations with NACs

G
p1,m1⇒ H1

p2,m′
2⇒ G′, using the Parallelism Theorem (Theorem 5.18 in [3]) with-

out NACs we can construct the following double pushout:

L1 + L2

[m1,m2]

��

K1 + K2
//oo

��

R1 + R2

��
G D //oo G′

Now we have to prove that [m1,m2] |= NACp1+p2 such that according to Def. 3.5
this double pushout becomes a direct parallel transformation with NACs. Suppose
that [m1,m2] 6|= NACp1+p2 = {n1 + idL2 |n1 ∈ NACp1} ∪ {idL1 + n2|n2 ∈ NACp2}.
Then we have two cases.

• Suppose that q : L1 + N2 → G exists such that q ◦ idL1 + n2 = [m1,m2] for some
n2 ∈ NACp2 . Consider the following diagram in which η2 : L2 → L1 + L2 and
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η′2 : N2 → L1 + N2 are coproduct morphisms.

L2
n2 //

η2
$$I

IIIIIIII N2
η′2 //L1 + N2

q //G

L1 + L2

idL1
+n2

88qqqqqqqqqq [m1,m2]

44iiiiiiiiiiiiiiiiiiii

Then by q ◦ idL1 + n2 = [m1,m2] and the coproduct properties of L1 + N2 and
L1 +L2 the following commutativity holds in this diagram: m2 = [m1,m2] ◦ η2 =
q ◦ idL1 + n2 ◦ η2 = q ◦ η′2 ◦n2. Because of the composition property on coproduct
morphisms and Q morphisms q ◦ η′2 ∈ Q and thus m2 6|= NAC(n2). This is a
contradiction and thus [m1,m2] |= NAC(idL1 + n2).

• Suppose that q : N1 + L2 → G exists such that q ◦ n1 + idL2 = [m1,m2]. Then
we can prove analogously that m1 6|= NAC(n1) and thus by contradiction that
[m1,m2] |= NAC(n1 + idL2).

2

In order to be able to sequentialize a parallel transformation with NACs G⇒ G′

via a match m and a parallel rule p1 + p2 with NACp1+p2 it is necessary to call for
an extra condition on the parallel transformation called NAC-compatibility. This
condition expresses that the NACs on rule p1 and p2 are satisfied by the matches
m1,m

′
1,m2,m

′
2 occurring in the direct transformations when sequentializing the

direct parallel transformation without NACs. It is necessary to ask for satisfiability
of the single NACs by these matches, since in general this does not follow from the
satisfaction of NACp1+p2 by m.

G

p1+p2,m

��

p2,m2

"*MMMMMM
MMMMMMp1,m1

t| qqqqqq
qqqqqq

H1

p2,m′
2
"*MMM

MMM
MMM

MMM
H2

p1,m′
1

t| qqq
qqqqqq
qqq

G′

Definition 3.7 [NAC-compatible Parallel Transformation] Given a parallel trans-
formation with NACs G ⇒ G′ via match m : L1 + L2 → G and the parallel rule
p1 + p2 with NACp1+p2 . Let m1 : L1 → G, m2 : L2 → G be the matches of the
direct transformations G ⇒ H1 and G ⇒ H2 via p1 resp. p2 and m′

1 and m′
2 the

matches of the direct transformations H2 ⇒ G′ and H1 ⇒ G′ via p1 resp. p2 as
constructed in the Parallelism Theorem without NACs (Analysis part in Theorem
5.18 in [3]). The parallel transformation with NACs G ⇒ G′ is NAC-compatible if
m1,m

′
1 |= NACp1 and m2,m

′
2 |= NACp2 .

Theorem 3.8 (Parallelism Theorem with NACs: Analysis) • Given a
NAC-compatible direct parallel transformation with NACs G ⇒ G′ via
m : L1 + L2 → G and the parallel rule p1 + p2 with NACp1+p2, then there is a
construction leading to two sequentially independent transformation sequences
with NACs G ⇒ H1 ⇒ G′ via p1,m1 and p2,m

′
2 and G ⇒ H2 ⇒ G′ via p2,m2

and p1,m
′
1, called an analysis construction.

11
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• Bijective Correspondence. The synthesis construction of Theorem 3.6 and the
analysis construction are inverse to each other up to isomorphism.

G

p1+p2

��

p2,m2

"*MMMMMM
MMMMMMp1,m1

t| qqqqqq
qqqqqq

H1

p2,m′
2
"*MMM

MMM
MMM

MMM
H2

p1,m′
1

t| qqq
qqqqqq
qqq

G′

Proof

• Given a parallel transformation with NACs G
p1+p2,m

=⇒ G′ then because of the
Parallelism Theorem without NACs (Theorem 5.18 in [3]) it follows that G⇒ H1

and G⇒ H2 are parallel independent without NACs and moreover the necessary
double pushouts for G ⇒ H1 ⇒ G′ via p1,m1 and p2,m

′
2 and G ⇒ H2 ⇒ G′

via p2,m2 and p1,m
′
1 can be constructed s.t. they are sequentially independent

without NACs. Moreover we know because of NAC-compatibility of G
p1+p2,m

=⇒ G′

that m1,m
′
1 |= NACp1 and m2,m

′
2 |= NACp2 . Therefore G ⇒ H1 and G ⇒ H2

are parallel independent as transformations with NACs as defined in Def. 3.1.
From Theorem 3.3 it follows that G ⇒ H1 ⇒ G′ and G ⇒ H2 ⇒ G′ are then
sequentially independent with NACs.

• Because of the uniqueness of pushouts and pushout complements, the construc-
tions are inverse to each other up to isomorphism.

2

Example 3.9 We continue with the example adhesive HLR system as described
in Example 2.14. In Fig. 2, we had a two-step transformation in which the left
glass is filled and the right one is being drunk. Since the direct transformations in
this sequence are sequentially independent, in Fig. 3 the parallel transformation
with NACs for this two-step transformation according to Theorem 3.6 and Def.
3.5 is shown. On the contrary, in Fig. 4, you can see a parallel transformation
with rules p1 = drink and p2 = drink which is not NAC-compatible. In order to
sequentialize a parallel transformation into two direct transformations with NACs it
has to be NAC-compatible (see Theorem 3.8). In Fig. 5 the parallel transformation
in Fig. 4 without NACs is sequentialized. Afterwards it is checked if the NACs
NAC(N1) on p1 = drink (resp. NAC(N2) on p2 = drink are satisfied. It becomes
clear that NAC-compatibility as defined in Def. 3.7 is violated because there exists
q′2 : N2 → H1 with q′2 ◦n2 = m′

2 (and analogously q′1 : N1 → H2 with q′1 ◦n1 = m′
1).

Intuitively speaking, the second transformation in Fig. 5 describes that another
glass is drunk although two glasses have been drunk already and this is exactly
what the NAC on the drink rule forbids.

4 Concurrency in adhesive HLR Systems with NACs

Let t be a transformation via the rules p0, · · · , pn−1 with NACs and matches
g0, · · · , gn−1. In general there will be dependencies between several direct trans-
formations in this transformation sequence. Therefore it is not possible to apply
the Parallelism Theorem in order to summarize the transformation sequence into

12
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Figure 3. fill some glass and drink another one in parallel

Figure 4. drink two glasses, if one is already drunk: parallel transformation which is not NAC-compatible

Figure 5. drink a glass, if one is already drunk and afterwards drink another one

one equivalent transformation step. It is possible though to formulate a Concur-
rency Theorem which expresses how to translate such a sequence into one equivalent
transformation step anyway. Therefore we build on the notion of a concurrent rule
of a transformation sequence without NACs as introduced in [3]. Moreover we have
to translate all the NACs occuring in the rule sequence p0, · · · , pn−1 backward into
an equivalent set of NACs on the concurrent rule pc of this rule sequence. This

13
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means, a set NACpc should be found such that this set of NACs is equivalent to
NACp0 , · · · , NACpn−1 for the transformation t. This section describes gradually
how to obtain this concurrent NAC and generalizes then the Concurrency Theorem
to transformations with NACs.

Let us consider at first a two-step transformation with NACs:

N0 N1

L0

OO

��

K0
//

��

oo R0

h0 !!B
BB

BB
BB

B L1

g1
}}||

||
||

||

OO

K1
oo //

��

R1

��
G0 D0

//oo G1 D1
oo //G2

The goal is to translate all NACs on p0 and p1 into an equivalent set of NACs on the
concurrent rule pc : Lc ← Kc → Rc inducing as explained in Theorem 5.23 in [3] a
concurrent transformation G0 ⇒ G2 via pc and match gc as shown in the following
diagram:

N0 N1

L0

OO

��

��

K0

��

//

��

oo R0

e0
!!

h0

��

L1

e1
}}

g1

��

OO

K1

��

oo //

		

R1

��

		

Lc

gc

��

C0

��

oo //E

h

��

C1

��

oo //Rc

��

Kc

��

aa 44

G0 D0
//oo G1 D1
oo //G2

Dc

aa 44

Consequently the two necessary steps are:

• Translate each set of NACs on L0 into an equivalent set of NACs on Lc.
• Translate each set of NACs on L1 into an equivalent set of NACs on Lc.

We can prove the first step as desribed in the following construction and Lemma.

Definition 4.1 [construction of NACs on Lc from NACs on L0] Consider the fol-
lowing diagram:

Nj
ei //

(1)

N ′
i

L0

nj

OO

m0 //Lc

n′i

OO

For each NAC(nj) on L0 with nj : L0 → Nj and m0 : L0 → Lc, let

Dmo(NAC(nj)) = {NAC(n′i)|i ∈ I, n′i : Lc → N ′
i}

14
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where I and n′i are constructed as follows: i ∈ I if and only if (ei, n
′
i) with ei : Nj →

N ′
i jointly epimorphic, ei ◦ nj = n′i ◦m0 and ei ∈ Q.

For each set of NACs NACL0 = {NAC(nj)|j ∈ J} on L0 the downward translation
of NACL0 is then defined as:

Dmo(NACL0) = ∪j∈JDmo(NAC(nj))

Lemma 4.2 (equivalence of set of NACs on L0 and set of NACs on Lc)
Given gc : Lc → G0, m0 : L0 → Lc with NACL0 and g0 = gc ◦ m0 as in the
following diagram:

Nj
ei //

q

%%

(1)

N ′
i

q′qq

L0
=

nj

OO

m0 //

g0

��

Lc

gc
}}||

||
||

||

n′i

OO

G0

then the following holds :

g0 |= NACL0 ⇔ gc |= Dm0(NACL0)

.

Proof

• (⇒) Let gc 6|= Dm0(NAC(L0)) = ∪j∈JDm0(NAC(nj)) with NACL0 =
{NAC(nj)|j ∈ J}. Then for some j ∈ J there is a NAC n′i : Lc → N ′

i ∈
Dm0(NAC(nj)) and ei : Nj → N ′

i for which holds that gc 6|= NAC(n′i), (ei, n
′
i)

jointly epi, ei ∈ Q and ei ◦ nj = n′i ◦m0. Consequently there exists a morphism
q′ : N ′

i → G0 ∈ Q such that q′ ◦ n′i = gc. Since g0 = gc ◦ m0 = q′ ◦ n′i ◦ m0 =
q′ ◦ ei ◦ nj there exists a morphism q : Nj → G0 defined by q = q′ ◦ ei s.t.
q ◦nj = q′ ◦ei ◦nj = g0. Because of the composition property for morphisms in Q

we have q ∈ Q since q′ ∈ Q and ei in Q. Hence g0 6|= NAC(nj)⇒ g0 6|= NACL0 .
• (⇐) Let g0 6|= NACL0 with NACL0 = {NAC(nj)|j ∈ J}. Then for some j ∈ J

a morphism q : Nj → G0 ∈ Q exists such that q ◦ nj = g0. Let (e∗,m∗) be an
epi-M-factorization of gc. Construct X with p1 : X → E and m1 : X → Nj as
pullback of m∗ and q.

Nj

q

��
(PB)

X
m1oo

p1

��
G0 E

m∗oo Lc
e∗oo

gc

gg

Nj
ei //

q

��

p2∈Q

''

(1)

N ′
i

q′qq

Y

x
ii

L0
=

nj

OO

m0 //

g0

��

Lc

gc
}}||

||
||

||

n′i

OO

e∗
//E

m2

OO

G0

Then we have m1 ∈ M and p1 ∈ Q, since m∗ ∈ M, q ∈ Q, PBs preserve M and
PBs along M preserve Q. Now construct Y with m2 : E → Y and p2 : Nj → Y

15
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as pushout of m1 and p1. Then we have m2 ∈M, p2 ∈ Q, since m1 ∈M, p1 ∈ Q,
POs preserve M and POs along M preserve Q. Because of the induced PB-PO
property the induced morphism x : Y → G0 with x ◦m2 = m∗ and x ◦ p2 = q is
a monomorphism in Q.

X

(PO)

p1 //

m1

��

E

m2

�� m∗





Nj

q
++

p2 // Y

x
��
G0

It holds moreover that p2,m2 ◦ e∗ jointly epimorphic because e∗ epimorphic and
p2,m2 jointly epimorphic. Summarizing we have the following equations: x◦m2 ◦
e∗ ◦m0 = m∗ ◦ e∗ ◦m0 = gc ◦m0 = g0 = q ◦ nj = x ◦ p2 ◦ nj and since x mono
we have m2 ◦ e∗ ◦ m0 = p2 ◦ nj . Since m2 ◦ e∗ and p2 are jointly epimorphic,
p2 ◦ nj = (m2 ◦ e∗) ◦ m0 and p2 ∈ Q we can conclude that m2 ◦ e∗ : Lc → Y

equals one of the morphisms n′i : Lc → N ′
i ∈ Dm0(NAC(nj)). Moreover since

x◦m2◦e∗ = m∗◦e∗ = gc and x ∈ Q it holds that gc 6|= NAC(m2◦e∗) = NAC(n′i)
and consequently gc 6|= NAC(n′i)⇒ gc 6|= Dm0(NAC(nj))⇒ gc 6|= Dm0(NACL0).

2

Remark 4.3 It is possible to cancel the fact that Q is a class of special morphisms,
by defining that Q is the class of all morphisms in the category, and thus generalize
the definition of NAC-satisfiability. We should assume in this case though either
that the NAC-morphism is inM or each match is inM. (1) would be constructed
then as a pushout instead of as a set of jointly epimorphic pairs of morphisms. This
result is formulated and proven explicitely in [8].

In Def. 2.9 and Lemma 2.11 it is explained how to construct an equivalent
set of left NACs from a set of right NACs on a rule. Now we are ready to define
a set of equivalent NACs on the left hand side of the concurrent rule of a two-
step transformation from the set of NACs on the LHS of the second rule of this
transformation.

Definition 4.4 [construction of NACs on Lc from NACs on L1] Given an E-
dependency relation (e0, e1) ∈ E ′ for the rules p0 and p1 and pc = p0 ∗E p1 : Lc ←

16
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Kc → Rc the E-concurrent rule of p0 and p1 as depicted in the following diagram:

Nj

(1)

z1

~~
N ′

i

L0

��

K0

��

//oo R0

e0
!!

L1

e1
}}

nj

OO

K1

��

oo //R1

��
Lc C0
oo //E

n′j

OO

C1
oo //Rc

Kc

aa 44

For each NAC(nj) on L1 with nj : L1 → Nj :

DLpc(NAC(nj)) = Lp(De1(NAC(nj)))

with p : Lc ← C0 → E and De1 , Lp according to Def. 4.1 and Def. 2.9.
For each set of NACs NACL1 = {NAC(nj)|j ∈ J} on L1 the down- and leftward
translation of NACL1 is defined as:

DLpc(NACL1) = ∪j∈JDLpc(NAC(nj))

Lemma 4.5 (equivalence of NACs on rule p1 and NACs on pc) Given a
two-step E-related transformation via p0 : L0 ← K0 → R0 and p1 : L1 ← K1 → R1

Nj

L0

��

K0
//

��

oo R0

h0 !!B
BB

BB
BB

B

!!

L1

}}
g1

}}||
||

||
||

nj

OO

K1
oo //

��

R1

��
G0 D0

//oo G1 D1
oo //G2

with gc being the match from the LHS of the E-concurrent rule pc = p0 ∗E p1 into G0

(as described in the synthesis construction of Theorem 5.23 in [3]) then the following
holds:

g1 |= NACL1 ⇔ gc |= DLpc(NACL1).
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Proof Consider the following diagram:

Nj

(1)

z1

~~
N ′

i

L0

��

��

K0

��

//

��

oo R0

e0
!!

h0

��

L1

e1
}}

g1

��

nj

OO

K1

��

oo //

		

R1

��

		

Lc

gc

��

C0

��

oo //E

n′j

OO

h

��

C1

��

oo //Rc

��

Kc

��

aa 44

G0 D0
//oo G1 D1
oo //G2

Dc

aa 44

The E-concurrent rule p0 ∗E p1 is the rule pc : Lc ← Kc → Rc, as described in
Def. 5.21 in [3]. The derived span of the E-concurrent transformation G0

pc,gc⇒ G2

is G0 ← Dc → G2. Because of Lemma 4.2 g1 |= NACL1 ⇔ h |= De1(NACL1).
Moreover because of Lemma 2.9 gc |= Lp(De1(NACL1)) ⇔ h |= De1(NACL1) with
p : Lc ← C0 → E. Note that Lp(De1(NACL1)) = ∪j∈JLp(De1(NAC(nj))) =
∪j∈JDLpc(NAC(nj)). Consequently, it holds that g1 |= NACL1 ⇔ gc |=
DLpc(NACL1)). 2

Definition 4.6 [concurrent rule with NAC, concurrent (co-)match induced by
G0

n+1=⇒ Gn+1]

n = 0 For a direct transformation G0 ⇒ G1 via match g0 : L0 → G0, comatch
g1 : R1 → G1 and rule p0 : L0 ← K0 → R0 with NACp0 the concurrent rule pc

with NAC induced by G0 ⇒ G1 is defined by pc = p0 with NACpc = NACp0 ,
the concurrent comatch hc is defined by hc = g1 and the concurrent match gc by
gc = g0 : L0 → G0.

n ≥ 1 Consider p′c : L′
c ← K ′

c → R′
c (resp. g′c : L′

c → G0, h′c : R′
c → Gn), the

concurrent rule with NACs (resp. concurrent match, comatch) induced by G0
n=⇒

Gn. Let ((e′c, en), h) be the E ′ −M′ pair factorization of the comatch h′c and
match gn of Gn ⇒ Gn+1. According to Fact 5.29 in [3] PO-PB decomposition,
PO composition and decomposition lead to the diagram below in which (1) is a
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pullback and all other squares are pushouts:

L′
c

mc

��

g′c

��

K ′
c

��

//oo R′
c

e′c   

h′c
��

Ln

en
~~

gn

��

Kn

��

oo //Rn

��

gn+1

		

Lc

gc

��

Cc

��

loo //E

h

��

Cn

��

oo r //Rc

hc

��

Kc

(1)
kc

aa
kn

44

G0 Dn
//oo Gn Doo //Gn+1

For a transformation sequence G0
n+1=⇒ Gn+1 the concurrent rule pc with NACs

(resp. concurrent match, comatch) induced by G0
n+1=⇒ Gn+1 is defined by pc =

Lc
l◦kc← Kc

r◦kn→ Rc (gc : Lc → G0, hc : Rc → Gn+1). Thereby NACpc is defined by
NACpc = DLpc(NACLn) ∪Dmc(NACL′

c
).

Theorem 4.7 (Concurrency Theorem with NACs) (i) Synthesis. Given a
transformation sequence t : G0

∗=⇒ Gn+1 via a sequence of rules p0, p1, . . . , pn,
then there is a synthesis construction leading to a direct transformation G0 ⇒
Gn+1 via the concurrent rule pc : Lc ← Kc → Rc with NACpc, match gc :
Lc → G0 and comatch hc : Rc → Gn+1 induced by t : G0

∗=⇒ Gn+1.

(ii) Analysis. Given a direct transformation G′
0 ⇒ G′

n+1 via the concurrent rule pc :
Lc ← Kc → Rc with NACpc induced by t : G0

∗=⇒ Gn+1 via a sequence of rules
p0, p1, . . . , pn then there is an analysis construction leading to a transformation
sequence t′ : G′

0
∗=⇒ G′

n+1 with NACs via p0, p1, . . . , pn.

(iii) Bijective Correspondence. The synthesis and analysis constructions are inverse
to each other up to isomorphism.

Proof We prove this theorem by induction over the number of transformation steps
n + 1.

(i) Synthesis.
Basis. n=0. For a direct transformation t : G0

p0,g0⇒ G1 via match g0 : L0 → G0

and rule p0 : L0 ← K0 → R0 with NACp0 the concurrent rule pc with NAC
induced by G0 ⇒ G1 is defined by pc = p0 with NACpc = NACp0 and
the concurrent match gc is defined by gc = g0 : L0 → G0. Therefore the
synthesis construction is equal to G0

pc,gc⇒ G1.

Induction Step. Consider t : G0
n=⇒ Gn ⇒ Gn+1 via the rules p0, p1 . . . , pn.

Let p′c : L′
c ← K ′

c → R′
c (resp. g′c : L′

c → G0, h′c : R′
c → Gn), be the

concurrent rule with NACs (resp. concurrent match, comatch) induced by

G0
n=⇒ Gn. Suppose that G0

p′c,g′c=⇒ Gn is a direct transformation with NAC
leading to Gn. Let ((e′c, en), h) be the E ′ −M′ pair factorization of the co-
match h′c and match gn of Gn ⇒ Gn+1. PO-PB decomposition, PO compo-
sition and decomposition as described in Fact 5.29 in [3] lead to the diagram
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below in which (1) is a pullback and all other squares are pushouts:

L′
c

mc

��

g′c

��

K ′
c

��

//oo R′
c

e′c   

h′c
��

Ln

en
~~

gn

��

Kn

��

oo //Rn

��

gn+1

		

Lc

gc

��

Cc

��

loo //E

h

��

Cn

��

oo r //Rc

hc

��

Kc

(1)
kc

aa
kn

44

G0 Dn
//oo Gn Doo //Gn+1

The concurrent rule pc with NACs (resp. concurrent match, comatch) in-
duced by G0

n+1=⇒ Gn+1 is pc = Lc
l◦kc← Kc

r◦kn→ Rc (gc : Lc → G0, hc :
Rc → Gn+1). Thereby NACpc is NACpc = DLpc(NACLn) ∪Dmc(NACL′

c
).

We should prove that G0
pc,gc=⇒ Gn+1 is a valid direct transformation with

NACs. At first an analog synthesis construction to the one for two direct
transformations without NACs in Theorem 5.23 in [3] can be done. Thus,
in a second step we shall show that gc satisfies NACpc if g′c satisfies NACp′c
and gn satisfies NACpn . This follows because of Lemma 4.2, Lemma 4.5

and the fact that G0
p′c,g′c=⇒ Gn is a direct transformation via the rule p′c with

concurrent NAC NACp′c .

(ii) Analysis.
Basis. n=0. For a direct transformation G′

0 ⇒ G′
1 via the concurrent rule

pc = p0 with NACpc = NACp0 the analysis construction is equal to G′
0 ⇒

G′
1.

Induction Step. Given a direct transformation G′
0 ⇒ G′

n+1 via the concurrent
rule pc : Lc ← Kc → Rc with NACpc induced by t : G0

∗=⇒ Gn+1 via a
sequence of rules p0, p1, . . . , pn. The concurrent rule pc induced by t can be
interpreted as p′c ∗En pn in which the En-dependency relation between the
rules is induced by the E ′−M′ pair factorization of the comatch h′c induced
by G0

∗=⇒ Gn and the match gn of Gn → Gn+1 as described in Def. 4.6. So
we have a direct transformation G′

0 ⇒ G′
n+1 via pc = p′c ∗En pn and because

of the Analysis part of Theorem 5.23 in [3] there is an analysis construction
leading to a transformation sequence without NACs G′

0 ⇒ G′
n ⇒ G′

n+1 via
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p′c and pn and matches g′′c resp. g′n.

L′
c

mc

��

g′′c

��

K ′
c

��

//oo R′
c

e′c   

��

Ln

en
~~

��

Kn

��

oo //Rn

��

g′n+1

		

Lc

g′

��

Cc

��

loo //E

��

Cn

��

oo r //Rc

��

Kc

(1)
kc

aa
kn

44

G′
0 D′

n
//oo G′

n D′oo //G′
n+1

We know by assumption that the match g′ of G′
0 ⇒ G′

n+1 satisfies NACpc .
Since Lemma 4.2 and Lemma 4.5 hold in both directions, i.e. translate NACs
in an equivalent way, we can conclude that NACp′c and NACpn are satisfied
by g′′c resp. g′n. Therefore G′

0 ⇒ G′
n ⇒ G′

n+1 is a valid transformation
sequence with NACs. Because of the induction hypothesis there exists an
analysis construction G′

0 ⇒ G′
1 ⇒ . . . G′

n via p0, p1, . . . , pn−1 for G′
0 ⇒ G′

n

via p′c. Thus we obtain a transformation sequence with NACs G′
0 ⇒ G′

1 ⇒
. . . G′

n+1 via p0, p1, . . . , pn for the direct transformation G′
0 ⇒ G′

n+1 via the
concurrent rule pc : Lc ← Kc → Rc with NACpc .

(iii) Bijective Correspondence. The bijective correspondence follows from the fact
that the E ′ −M′ pair factorization is unique, and pushout and pullback con-
structions are unique up to isomorphism.

2

Example 4.8 We continue with Example 2.14. In Fig. 6 you can see a transfor-
mation in which a glass is filled and the same glass is being drunk. Since these
direct transformations are sequentially dependent because they use the same glass,
it is only possible to build the concurrent transformation according to Def. 4.6 and
Theorem 4.7 which is shown in Fig. 10. The following three steps explain this
synthesis construction of the two-step transformation. In Fig. 7 the construction of
the concurrent rule according to Def. 4.6 induced by this two-step transformation
without NACs is shown. In Fig. 8 the construction is shown of the equivalent NACs
on Lc from NAC(n1) and NAC(n2) on L0. In Fig. 9 the construction is shown of
the equivalent NAC on Lc from NAC(n) on L1 according to Lemma 4.5.

5 Conclusion

In this paper results for parallelism and concurrency are described in order to ex-
tend these notions on Algebraic Graph Transformation in [3] to Transformations
with Negative Application Conditions. Summarizing we have proven the Local-
Church-Rosser Theorem, Parallelism Theorem and Concurrency Theorem for trans-
formations with NACs. These results are formulated in the context of the Adhesive
High-Level Replacement Framework introduced in [3] with an extra necessary mor-
phism class Q. This makes these results on parallelism and concurrency applicable
to all transformation systems with NACs fitting into the adhesive HLR framework.
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Figure 6. fill some glass and drink the same one

Figure 7. concurrent rule induced by two-step transformation

Figure 8. equivalent NAC on Lc to NAC(n1) and NAC(n2) on L0

Moreover these results serve as a basis for the extension of other notions like Em-
bedding and Local Confluence for adhesive HLR systems with NACs described
technically already in [8]. Future work will be necessary on the applicability and
refinement of all new results and on the development of efficient analysis algorithms
for transformations with NACs.
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Figure 9. equivalent NAC on Lc to NAC(n) on L1

Figure 10. fill some glass and drink the same one concurrently
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