
Iterative Model-Driven Development of Adaptable
Service-Based Applications

Leen Lambers and Hartmut Ehrig
Technical University Berlin

Franklinstrasse, 28/29 - 10587 Berlin
{leen,ehrig}@cs.tu-berlin.de

Leonardo Mariani and Mauro Pezzè
∗

University of Milano Bicocca
via Bicocca degli Arcimboldi, 8 - 20126 Milano

{mariani,pezze}@disco.unimib.it

ABSTRACT
Flexibility and interoperability make web services well suited
for designing highly-customizable reactive service-based ap-
plications, that is interactive applications that can be rapidly
adapted to new requirements and environmental conditions.
This is the case, for example of personal data managers that
many users tailor to their needs to meet different usage con-
ditions and requests.

In this paper, we propose a model-based approach that
provides users with the ability of rapidly developing, adapt-
ing and reconfiguring reactive service-based applications to
meet new requirements and needs. Users specify their needs
by describing sample executions that include interactions
with web services through an intuitive interface. Interac-
tions are stored in a visual formalism that integrates live
sequence charts with graph transformation systems. Mod-
els can be visualized, modified, executed and automatically
analyzed to identify inconsistencies.

Categories and Subject Descriptors: D.2.1 [Software
Engineering]: Requirements/Specifications - languages,
methodologies D.2.4 [Software Engineering]: Software/Pro-
gram Verification - formal methods, validation D.2.6 [Soft-
ware Engineering]: Programming Environments - graphical
environments, interactive environments

General Terms: verification.

Keywords: visual languages, live sequence charts, graph
transformations, service integration, automated analysis.

1. INTRODUCTION
People often interact with functionalities provided by mod-

ern Internet-based systems by invoking web services. For
example, people order items from e-commerce systems, ask
for weather forecast news, and search through documents
available on the Web by invoking web services. Many useful
applications can be built at the users’ sites by composing

∗Mauro Pezzè is also at the University of Lugano.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

available web services, for example, applications that iden-
tify the best route between locations by interacting with
services that provide maps, traffic information and weather
forecasts [7].

Despite the availability of engineering processes well suited
for developing service-based applications [8, 1], often people
integrate web services manually, by invoking web services,
extracting information from responses, transforming data
formats, and generating requests to other web services. This
happens because common users do not have enough skills to
develop their own applications, and it is not cost effective for
software experts to develop applications that satisfy needs
of small sets or even individual users. Consequently, peo-
ple spend a lot of time interacting with web services, often
repeating the same patterns of actions.

In this paper, we present a requirement-driven iterative
methodology for semi-automatically developing, adapting
and reconfiguring highly customizable reactive service-based
applications. The methodology enables expert users to quickly
specify and develop service-based applications, and common
users to adapt and reconfigure applications to meet emerging
and evolving requirements that cannot be effectively man-
aged with standard engineering processes [8, 1].

2. ITERATIVE DEVELOPMENT OF SOA-
BASED ADAPTABLE APPLICATIONS

Figure 1 illustrates the methodology proposed in this pa-
per to iteratively develop highly customizable reactive service-
based applications. The methodology is composed of a de-
velopment and an adaptation cycle. In the development cy-
cle, expert users develop the initial interactive service-based
applications. In the adaptation cycle, common users adapt
and reconfigure the applications to meet emerging require-
ments and new needs. Development and adaptation cycles
are based on the same technology, but while in the develop-
ment cycle, users may need to interact with the underlying
models, thus needing specific skills, in the adaptation cycle,
users interact through a simple GUI that does not require
specific skills.

Expert users start by selecting the services to be inte-
grated in the application. Service interfaces are augmented
with GT-based specifications, which describe the external
behavior of the web service [3]. These descriptions can be
provided either by web service developers or expert users.
GT-based specifications simulate the behavior of the web
services, thus allowing users to incrementally build the ap-
plication by playing with web services. Expert users play-in
sample executions that result in interactions between users,

453

automated
analysis

inspection

code
generation

non-deterministic
behaviors,
inconsistencies,
…
and suggested
solutions

dialogue

WS interface
WS interface

WS interface

import

development
cycle

adaptation
cycle

automated
analysis

execute
(play-out)

Figure 1: Development and adaptation cycles

application and web services. The technique merges the in-
teractions that correspond to played-in executions, into an
integrated model that describes the control flow by means of
LSCs [2], and the data flow and data processing by means of
GTs. The integrated model represents the behavior of the
application.

Models are incrementally analyzed during the develop-
ment cycle to reveal inconsistencies. The analysis frame-
work identifies inconsistencies by cross checking LSC and
GT models, and suggests modifications to the models to
solve the identified inconsistencies. Expert users can either
chose the most appropriate suggestion or manually modify
the underlying models to eliminate the inconsistencies, and
thus enable the execution of the specification.

Once the service interfaces are augmented with GT-based
specifications and the core application has been developed,
users do not need to access the underlying models, but can
adapt and modify the application by incrementally adding,
removing, or modifying sample behaviors through a visual
interface. While during the development cycle, expert users
may react to inconsistencies by either following the sug-
gested solution, or manually modifying the underlying mod-
els, during the adaptation cycle, common users may react to
inconsistencies by simply selecting from alternative sugges-
tions proposed by the system through an intuitive interface,
for example answering to questions like: “When C occurs,
behavior A contradicts behavior B, do you want: (1) delete
either A or B, (2) invert the call to A and B, . . . ”.

Models that capture both interactions (LSC) and data
transformations (GT) support not only execution, but also
automatic code generation.

Our approach leverages Harel’s play-in/play-out
approach [4], which supports playing-in of LSCs to gener-
ate executable requirements.

3. INTEGRATED MODEL
Our integrated model represents the current state of the

system by means of a disjoined set of graphs (a single graph
can represent the state of either the application under devel-
opment or a web service), the flow of messages exchanged be-
tween user, application, and web services by means of LSCs,
and the changes on the system state induced by sent and re-
ceived messages by means of GT rules. Every time a LSC is
traversed, each message in the LSC triggers the application
of the GT rule associated with the message. For example,
the reception of the message setRoute(Route) specified in
the LSC shown in Figure 2 triggers the execution of the
corresponding GT rule shown in Figure 3.

User Application RouteMapWS TrafficJamWS

click(Select)

Means = car

RequestRouteMap(Dep,Dest)

ResponseRouteMap(Route)

RequestTrafficJam(Route)

ResponseTrafficJam(Jam)

Jam = false

setRoute(Route)

setDestination(Dest)

setDepature(Dep)

setMeans(Car)

updateView()

Figure 2: An example LSC that specifies the con-
trol flow of messages exchanged when users search a
route connecting two places by considering traffic in-
formation. The dotted box indicates the pre-chart.

Since GT rules specify how the operations modify the
system state, they can be intuitively interpreted as con-
tracts that specify how LSCs can legally invoke these oper-
ations. The LSC-based specification indicates the behavior
that users expect from the application under development.
Discrepancies between GT- and LSC-based specifications in-
dicate system inconsistencies, for instance, the existence of
LSCs that activate illegal sequences of graph transforma-
tions. Such discrepancies can be automatically identified
and reported to the users together with suggestions to re-
move the inconsistencies.

name = Route
value = var3

Variable

setRoute(Route)
name = Route
value = var3

Variable

forbidden = var1

user

forbidden = var1

user
value = var3
means = var2

route

selects

Figure 3: An example of graph transformation rule

454

Note that the state graph of a web service does not rep-
resent the current concrete state of the web service but the
conceptual state of the web service as expected by the ap-
plication under development. If operations provided by a
web service are specified with GT rules, our framework can
automatically trace the conceptual state of web services and
automatically diagnose if a client application inconsistently
uses web services. If this information is not available, our
framework can automatically analyze the consistency of the
behavior of a client application, but cannot check if the client
application consistently uses web services.

When system messages are sent and received, GT rules are
used to update the system state. The rule that is applied
when a message is sent specifies the changes that need to be
applied on the state of the sender, e.g., an attribute value
can be increased to count the number of sent messages. The
rule that is applied when a message is received depends on
the nature of the message. If the message goes from the
application to a web service, the rule corresponds to the one
that specifies the requested operation. If the message goes
from the web service to the application, the rule consists of
transferring the return value generated by a web service to
the application. If the message goes from the application or
the user to the application, it consists of a computation that
is internal to the application. The behavior instilled into
the application under development is given by the message
sequences generated by LSCs that do not violate constraints
imposed by GTs.

4. INTEGRATED ANALYSIS
Specifications may be inconsistent. For instance, users can

specify that objects of a given type must always be initial-
ized before being used, and may define some scenarios where
these objects are used without being initialized. Inconsisten-
cies can be easily introduced into integrated specifications
because users are usually concentrated on the design of sin-
gle LSCs or GTs, without considering all possible interplays
with other GTs, LSCs and combinations of them.

Since GTs specify the semantics of single operations and
users organize these operations within LSCs, we can intu-
itively assume that the behavior that the user requires from
the system is given by executions described by means of
LSCs only. However, GTs further constrain the behavior
of the system. The gap between the behavior required by
users and the behavior exhibited by the system under devel-
opment is given by the set of executions that are accepted
by LSCs but violate some GT rules. Our analysis signals
these executions to the users to warn them about system
inconsistencies.

Analysis of Single LSCs. The Analysis of single LSCs
identifies executions generated by LSCs that do not belong
to the final system because of the constraints imposed by
GTs. We can identify two classes of problems: errors and
warnings.

An LSC is said to be erroneous if it never produces a fea-
sible behavior. For instance, an LSC that removes all user
admin from a system and then performs an action that re-
quires the admin access rights to be completed cannot ever
be successfully completed. An LSC is said to include warn-
ings if it includes sequences of operations that may generate
conflicts. For instance, consider an LSC that includes a
message that removes an object with a given identifier and

a message that modifies the same object. If the modify mes-
sage can be sent after the delete message, the system may
enter an inconsistent state. Both erroneous and warnings
in LSCs are presented to the users, who can decide if and
how to react. Since the analysis techniques are based on the
identification of the possible operation sequences generated
by LSCs and conflicts and dependencies between GT rules,
we first present support and then the analysis techniques.

Generation of Transformation Sequences Associated to
LSC. Given a LSC, we can derive a Control-Flow Graph
(CFG) that represents a (super-)set of the executions gen-
erated by the LSC. The translation of an LSC to a CFG
is straightforward and consists of removing conditions from
the LSC and suitably mapping constructs used in LSCs to
constructs of CFGs. Features that are straightforwardly
mapped from LSC to CFG are cold conditions, IfThenElse
constructs, subcharts, nonderministic choices and loops. The
set of executions described by a CFG may be larger than the
ones represented in the corresponding LSC because CFGs
abstract from conditions specified in LSCs and represent
only the possible control flows.

Since the set of executions specified by a CFG can be in-
finite, we extract a finite set of behaviors that are analyzed.
In particular, we define the unfolding of a CFG as the set of
all possible message sequences that traverse the same node
at most k times. Each message in the CFG is associated with
a pair of GT rules that specifies how the system state is up-
dated when the message is exchanged. Therefore, any path
from the initial state of the CFG to its final state represents
a different execution that can be mapped on the correspond-
ing sequence of GT rules that must be applied on the system
state.

Conflicts and Dependencies Between Rules. GT rules
cannot be always applied in any order. In some cases, the
application of a rule can be necessary to apply other rules,
while in other cases the execution of a rule can disable the
execution of other rules. For instance, removing a planned
route, disable the modification of that route. GTs can be
analyzed to identify two kinds of relations between rules:
conflicts and dependencies. We say that rule g1 may dis-
able rule g2 iff g1 may delete/add state entities that are re-
quired/forbidden by g2 (conflict). We say that rule g1 may
cause rule g2 iff g1 may delete/add state elements that are
forbidden/required by g2 (sequential dependency) [5].

Identification of Errors. An LSC is erroneous if no state
that enables its successful execution exists. Searching for
erroneous LSCs is limited by a parameter k which sets the
depth of the unfolding.

For each sequence of messages identified by the unfolding,
we try to compute the concurrent rule [6], which is a single
rule that is equivalent to the whole sequence. If it is not
possible to construct the concurrent rule for any of the se-
quences in the unfolding, the LSC is erroneous. Note that it
is necessary to compute the concurrent rule for all sequences
in the unfolding only if the considered LSC is erroneous; if
the LCS is not erroneous, the analysis terminates when the
first concurrent rule is determined. Since erroneous LSCs
seldom occur, the analysis for erroneous LCS is usually fast.

455

Identification of Warnings. In principle, to identify all the
possible inconsistencies, we should compute the concurrent
rules for all sequences. This strategy may be extremely ex-
pensive. To reduce the cost of the analysis, we exploited
characteristics of GT rules to restrict the computation of
the concurrent rule to suspicious sequences only. We elimi-
nate from the analysis those sequences that are likely non-
suspicious. A sequence of GT rules is non-suspicious if it
satisfies three conditions: (1) it does not contain any con-
flicting operations; (2) if a rule requires satisfaction of a pre-
condition, the previous rule in the sequence induces the sat-
isfaction of the pre-condition; (3) no rule deletes nodes (this
prevents inconsistent states). If a concurrent rule cannot be
derived for a suspicious sequence, users receive a warning.

The analysis can be further optimized by using shift equiv-
alence as described in [3]. Shift equivalence determines equiv-
alent classes of GT rule sequences. Two sequences are in a
same class if their application produces the same result and
one can be obtained from the other by iteratively switching
rules. This means that we can try to construct the concur-
rent rule for one sequence for each class, and avoid analysis
of sequences that can be obtained by switching rules.

Analysis of Multiple LSCs. Multiple LSCs are analyzed
by composing LSCs, that is considering the LSCs that can
be activated by another LSC, and then analyzing the com-
position with techniques for analyzing single LSCs. Unfortu-
nately, this approach may suffer from scalability problems.

In our case, we can benefit from working with reactive
systems, that is systems in which executions are triggered by
user interactions. This is an important information because
any execution can only be triggered by user inputs. In our
integrated model, user inputs correspond to the messages
from the user to the application. Therefore, we can limit
the analysis of multiple LSCs to composed executions that
start from an LSC with a pre-chart (which is the triggering
condition of an LSC) that exclusively includes user inputs,
and consider the LSCs that can be recursively activated,
instead of considering the composition of all LSCs. The
analysis of single LSCs can be applied to multiple LSCs by
extending the unfolding process to the activation of other
LSCs. According to our early experience reported in the
next section, this optimization makes the analysis feasible
without loss of information.

Correction Mechanisms. When either a warning or error
is identified, our technique automatically suggests possible
corrective actions to users. Candidate solutions are iden-
tified according to the position of the rules that prevent
construction of the concurrent rule. The technique auto-
matically generates new sequences by switching and delet-
ing rules that generate conflicts, or adding rules to remove
conflicts. Automatically generated solutions are verified by
first building the corresponding concurrent rule, and then
verifying the whole model.

5. EARLY VALIDATION
We gained early experience with our technique, by de-

signing and adapting a highly-customizable reactive service-
based application: The Personal Mobility Manager (PMM),
a reactive service-based application designed to satisfy re-
quirements related to individual user mobility [7]. PMM is

obtained as the integration of five web services which pro-
vide maps, temperature values, traffic information, weather
forecast news and authentication capabilities. We specified
functionalities of the target system and we evaluated the
quality of the collected feedbacks, the cost-effectiveness of
the analysis and the flexibility of the final result.

Since LSCs can specify several alternative scenarios, and
GT-rules are re-used across different LSCs, the specification
is compact and manageable. During system construction,
we continuously checked the specification to find inconsis-
tencies. Single LSCs are seldom inconsistent, because users
can easily manage scenarios of limited size. However, we
found several inconsistencies due to incremental modifica-
tions to single LSCs. On the contrary, when the size of the
system grows, multiple LSCs are often inconsistent.

We evaluated the cost-effectiveness of the analysis tech-
nique by measuring the amount of behaviors generated with
the unfolding process and the behaviors that needed to be
analyzed to identify problems. Combining the identifica-
tion of suspicious sequences and switch equivalence reduced
the number of sequences to be analyzed due to single LSCs
from 14 to 1, and the number of sequences to be analyzed
due to multiple LSCs from 84 to 2. The combination of the
two techniques is particularly efficient because the selection
of suspicious sequences is excellent in identifying executions
with no issues, while switch equivalence is excellent in iden-
tifying executions with equivalent issues. These techniques
largely balanced the extra behaviors generated by unfolding.

Finally, we can say that the use of a repository with the
many scenarios represented as the integration of LSCs and
GTs enables the modification of the system specification in a
short amount of time. Moreover, any updated configuration
can be immediately verified. On the contrary, the coded
version of the PMM requires extensive coding and design
effort to be adapted to new requirements.

Acknowledgments. This work has been supported by
MIUR under the project PRIN 2006-2007 “Mutant hard-
ware/software components for dynamically reconfigurable
distributed systems” (COMMUTA),

6. REFERENCES
[1] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. Process

modeling in web applications. ACM Transactions on Software
Engineering and Methodology, 15(4):360–409, 2006.

[2] W. Damm and D. Harel. Lscs: Breathing life into message
sequence charts. Formal Methods in System Design,
19(1):45–80, 2001.

[3] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1. World Scientific, 1999.

[4] D. Harel and R. Marelly. Come, Let’s Play - Scenario-Based
Programming Using LSCs and the Play-Engine. Springer, 2003.

[5] J. Hausmann, R. Heckel, and G. Taentzer. Detecting conflicting
functional requirements in a use case driven approach: a static
analysis technique based on graph transformation. In
International Conference on Software Engineering, 2002.

[6] L. Lambers, H. Ehrig, F. Orejas, and U. Prange. Adhesive
high-level replacement systems with negative application
conditions. In Workshop on Applied and Computational
Category Theory. Electronic Communications of the EASST,
2007.

[7] D. Lorenzoli, S. Mussino, M. Pezzè, D. Schilling, A. Sichel, and
D. Tosi. A soa-based self-adaptive personal mobility manager. In
IEEE Conference on Service Computing, 2006.

[8] T. N. Nguyen. Model-based version and configuration
management for a web engineering lifecycle. In 15th
international conference on World Wide Web, 2006.

456

