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Abstract. In this paper, we present an overview of algebraic graph
transformation in the double pushout approach. Basic results concern-
ing independence, parallelism, concurrency, embedding, critical pairs and
confluence are introduced. As a generalization, the categorical framework
of adhesive high-level replacement systems is introduced which allows
to instantiate the rich theory to several interesting classes of high-level
structures.

1 Introduction to Graph Transformation

Combining the important concepts of graphs, grammars and rewriting, the re-
search area of graph grammars or graph transformation is a discipline of com-
puter science which dates back to the 1970s. Methods, techniques, and results
from the area of graph transformation have already been studied and applied in
many fields of computer science, such as formal language theory, pattern recog-
nition and generation, compiler construction, software engineering, the model-
ing of concurrent and distributed systems, database design and theory, logical
and functional programming, artificial intelligence, and visual modeling. A de-
tailed presentation of various graph grammar approaches and application areas
of graph transformation is given in the handbooks [1, 2, 3].

This wide applicability is due to the fact that graphs are a very natural way
of explaining complex situations on an intuitive level. Hence, they are used in
computer science almost everywhere, for example for data and control flow dia-
grams, for entity relationship and UML diagrams, for Petri nets, for visualization
of software and hardware architectures, for evolution diagrams of nondetermin-
istic processes, for SADT diagrams, and for many more purposes.

The main idea of graph transformation is the rule-based modification of
graphs, as shown in Fig. 1. The core of a rule or production p is a pair of graphs
(L, R), called the left-hand side L and the right-hand side R. Applying the rule
p = (L, R) means finding a match of L in the source graph G and replacing
L by R, leading to the target graph H of the graph transformation. The main
technical problems are how to delete L from G and how to connect R with the
remaining context leading to the target graph H . In fact, there are several dif-
ferent solutions how to handle these problems, leading to several different graph
transformation approaches.
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p = (L, R)

Fig. 1. Rule-based modification of graphs

The algebraic graph transformation approach is based on pushout construc-
tions, where pushouts are used to model the gluing of two graphs along a common
subgraph. Intuitively, we use this common subgraph and add all other nodes and
edges from both graphs. In the algebraic approach, two gluing constructions are
used to model a graph transformation step. For this reason, this approach is also
known as the double-pushout (DPO) approach.

Roughly speaking, a production is given by p = (L, K, R), where L and R are
the left- and right-hand side graphs and K is the common interface of L and
R, i.e. their intersection. The left-hand side L represents the preconditions of
the rule, while the right-hand side R describes the postconditions. K describes
a graph part which has to exist to apply the rule, but which is not changed.
L\K describes the part which is to be deleted, and R\K describes the part to
be created.

A direct graph transformation with a production p is defined by first finding a
match m of the left-hand side L in the current host graph G and then construct-
ing the pushouts (1) and (2) in Fig. 2. For the construction of the first pushout,
however, a gluing condition has to be satisfied, which allows us to construct D
such that G is the gluing of L and D via K. The second pushout means that H
is the gluing of R and D via K. This means that a direct graph transformation
G ⇒ H in Fig. 2 consists of two gluing constructions, which are pushouts in the
category of graphs and graph morphisms.

L K Rl r

G D H

(1) (2)

Fig. 2. DPO graph transformation
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The algebraic approach to graph transformation is not restricted to (stan-
dard) graphs, but has been generalized to a large variety of different types of
graphs and other kinds of high-level structures, such as labeled graphs, typed
graphs, hypergraphs, attributed graphs, Petri nets, and algebraic specifications.
This extension from graphs to high-level structures – in contrast to strings and
trees, considered as low-level structures – was initiated in [4, 5] leading to the
theory of high-level replacement (HLR) systems. In [6, 7], the concept of high-
level replacement systems was joined to that of adhesive categories introduced
by Lack and Sobociński in [8], leading to the concept of adhesive HLR cate-
gories and systems. There are several interesting instantiations of adhesive HLR
systems, including not only graph and typed graph transformation systems, but
also hypergraph, Petri net, algebraic specification, and typed attributed graph
transformation systems.

In addition to pushouts, which correspond to the gluing of graphs, adhesive
HLR categories are based on pullbacks, corresponding to the intersection and
homomorphic preimages of graphs. The basic axioms of adhesive HLR cate-
gories require construction and basic compatibility properties for pushouts and
pullbacks. These properties (and a few additional ones) allow to prove several
interesting results concerning transformations.

In Section 2, we introduce algebraic graph transformation based on the double
pushout approach and present the main results for transformations together
with illustrating examples. The categorical framework of adhesive HLR systems
is introduced in Section 3. For a more detailed presentation including all the
proofs and further results we refer to our book [7].

2 Algebraic Graph Transformation – The Double
Pushout Approach

In this section, we introduce graph transformation in the double pushout ap-
proach and give an overview of important results. We present the main results
with illustrative examples, but give only an intuitive idea of some of the new
notions used in these results. A formal definition of these notions and also the
proofs of these results are given in [7].

2.1 Graph and Typed Graph Transformation

In this section, we introduce graph and typed graph transformation systems, or
(typed) graph transformation systems, for short. In the following, we always use
an abbreviated terminology of this kind to handle both cases simultaneously.

A graph has nodes, and edges, which link two nodes. We consider directed
graphs, i.e. every edge has a distinguished start node (its source) and end node
(its target). We allow parallel edges, as well as loops. Graphs are related by
(total) graph morphisms, which map the nodes and edges of a graph to those of
another one, preserving the source and target of each edge.
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Definition 1 (Graph). A graph G = (V, E, s, t) consists of a set V of nodes
(also called vertices), a set E of edges, and two functions s, t : E → V , the source
and target functions.

Given graphs G1, G2 with Gi = (Vi, Ei, si, ti) for
i = 1, 2, a graph morphism f : G1 → G2, f =
(fV , fE) consists of two functions fV : V1 → V2 and
fE : E1 → E2 that preserve the source and target
functions, i.e. fV ◦s1 = s2 ◦fE and fV ◦ t1 = t2 ◦fE.

If fV and fE are both injective (bijective) then f
is called an injective (isomorphic) graph morphism.

E1 V1

E2 V2

fE fV

s1

t1

s2

t2

=

Graphs and graph morphisms form the category Graphs of graphs.

A type graph defines a set of types, which can be used to assign a type to the
nodes and edges of a graph. The typing itself is done by a graph morphism
between the graph and the type graph.

Definition 2 (Typed graph). A type graph is a distinguished graph TG =
(VTG, ETG, sTG, tTG). VTG and ETG are called the vertex and the edge type
alphabets, respectively.

A tuple GT = (G, type) of a graph G together with a graph morphism type :
G → TG is then called a typed graph.

Given typed graphs GT
1 = (G1, type1) and

GT
2 = (G2, type2), a typed graph morphism f :

GT
1 → GT

2 is a graph morphism f : G1 → G2 such
that type2 ◦ f = type1.

Typed graphs and typed graph morphisms form

G1 G2

TG

f

type1 type2
=

the category GraphsTG of typed graphs over the type graph TG.

For simplicity, in the following we use the notation G for both graphs and typed
graphs.

Example 1. In the following, we model a variant of Dijkstra’s algorithm for mu-
tual exclusion (see [9]). Given two processes that compete for a resource used
by both of them, the aim of the algorithm is to ensure that once one process is
using the resource the other has to wait and cannot access it.

There is a global variable turn that assigns the resource to any of the processes
initially. Each process i has a flag f(i) with possible values 0, 1, 2, initially set
to 0, and a state that is initially non-active. If the process wants to access the
resource, its state changes to active and the flag value is set to 1. If the variable
turn has assigned the resource already to the requesting process, the flag can
be set to 2, which indicates that the process is accessing the resource. Then
the process uses the resource and is in its critical section. Meanwhile, no other
process can access the resource, because the turn variable cannot be changed in
this stage of the process. After the critical section has been exited, the flag is set
back to 0 and the state to non-active. Otherwise, if the resource is assigned to
a nonactive process, it can be reassigned and then accessed analogously by the
requesting process.
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The type graph TG is given in Fig. 3. Each process is typed by P , a resource
is typed by R, and T denotes the turn. If the flag of a process is set to 0, we
do not depict it in the graph. The flag values 1 and 2 are shown by nodes typed
with F1 or F2, respectively, with a link from the corresponding process to the
node and a link to the required resource.

P

T

F1

F2

R

start

crit

check

setTurn

active

non−active

TG :

Fig. 3. Example type graph

A typed graph S is given in Fig. 4, containing two nonactive processes that
can compete for one resource, where the graph morphism type : S → TG is
given by the labels of the nodes and edges. �

(Typed) graph transformation is based on (typed) graph productions, which
describe a general way how to transform (typed) graphs. The application of a
(typed) graph production to a (typed) graph is called a direct (typed) graph
transformation. This is based on the concept of pushouts which is motivated to
be a gluing construction in the introduction.

Definition 3 (Graph production and transformation). A (typed) graph
production p = (L l← K

r→ R) consists of (typed) graphs L, K, and R, called
the left-hand side, gluing graph, and the right-hand side respectively, and two
injective (typed) graph morphisms l and r.

Given p, a (typed) graph G, and a
(typed) graph morphism m : L → G,
called match, a direct (typed) graph
transformation G

p,m
=⇒ H from G to a

(typed) graph H is given by the pushouts
(1) and (2), where the (typed) graph
morphism n is called comatch.

L K R

G D H

l r

f g

m k n(1) (2)

A sequence G0 ⇒ G1 ⇒ . . . ⇒ Gn of direct (typed) graph transformations is
called a (typed) graph transformation and is denoted by G0

∗⇒ Gn. For n = 0, we
have the identical (typed) graph transformation G0

id⇒ G0. Moreover, for n = 0
we allow also graph isomorphisms G0

∼= G′
0, because pushouts and hence also

direct graph transformations are only unique up to isomorphism.
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PRP T

start

non−active

start

non−active

S :

Fig. 4. Example typed graph

Example 2. For our mutual exclusion example, we have five typed graph pro-
ductions shown in Fig. 5, where all morphisms are inclusions. The typed graph
production setF lag allows a nonactive process to indicate a request for the re-
source by setting its flag to 1. The typed graph production setTurn1 allows
the turn to be changed to an active process if the other process, which has the
turn, is nonactive. If the turn is already assigned to the active process, then the
turn remains in setTurn2. Thereafter, in the typed graph production enter, the
process enters its critical section. Finally, the process exits the critical section
with the typed graph production exit and another process may get the turn and
access the resource.

We can apply the typed graph production setF lag to the typed graph S given
in Fig. 4 with a match m, leading to the direct typed graph transformation
S

setF lag,m
=⇒ G1 shown in Fig. 6.

If we apply the typed graph productions setF lag, setTurn1, enter, setF lag,
and exit to S, then we obtain the typed graph transformation S

∗⇒ G shown in
Fig. 7. �

Now we analyze under what conditions a (typed) graph production p = (L ←
K → R) can be applied to a (typed) graph G via a match m. In general, the
existence of a context graph D that leads to a pushout (1) is required. This
allows us to construct a direct (typed) graph transformation G

p,m
=⇒ H , where, in

a second step, the (typed) graph H is constructed as the gluing of D and R via
K leading to a pushout (2). Note that the construction of D and H is unique
up to isomorphism.

Definition 4 (Gluing condition). A (typed) graph production p = (L l← K
r→

R) is applicable to a (typed) graph G via the match m if the following condition
holds:
p and m satisfy the gluing condition if
all identification points and all dangling
points are also gluing points, i.e. IP ∪
DP ⊆ GP , where

– the gluing points GP are those
nodes and edges in L that are not

L K R

G D H

l r

f g

m k n(1) (2)

deleted by p, i.e. GP = lV (VK) ∪ lE(EK) = l(K),
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P R P R P RF1

start

non−active

setTurn

active

setF lag

P

T

P

R

P

T

P

R

P

T

P

R

non−active

setTurn

non−active

check

setTurn1

P T R P T R P T R

setTurn check

setTurn2

P

T

F1

R P

T

R P

T

R

F2
check crit

enter

P F2 R P R P R

crit

active

start

non−active

exit

Fig. 5. Example typed graph productions

– the identification points IP are those nodes and edges in L that are iden-
tified by m, i.e. IP = {v ∈ VL | ∃w ∈ VL, w 
= v : mV (v) = mV (w)} ∪
{e ∈ EL | ∃f ∈ EL, f 
= e : mE(e) = mE(f)},

– the dangling points DP are those nodes in L whose images under m are the
source or target of an edge in G that does not belong to m(L), i.e. DP =
{v ∈ VL | ∃e ∈ EG\mE(EL) : sG(e) = mV (v) or tG(e) = mV (v)}.

Example 3. For the direct typed graph transformation in Fig. 6, we analyze the
gluing, identification, and dangling points:
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P R P R P RF1

P

P RT

P

P RT

P

P RT

F1

start

non−active

setTurn

active

start

non−active

start

non−active

start

non−active

start

non−active

setTurn

active

m

setF lag

S D G1

2

1

2

1

2

1

Fig. 6. Example direct typed graph transformation

– GP = l(K), which means that the gluing points in L are both nodes.
– IP = ∅, since m does not identify any nodes or edges.
– The resource node is the only dangling point: in S, there is an edge from the

turn node T (which has no preimage in L) to the resource node R, but there
is no edge from or to the upper process node P that is not already in L.

This means that IP ∪DP ⊆ GP , and the gluing condition is satisfied by m and
setF lag.

In contrast, the typed graph production deleteProcess given in the top row
of Fig. 8 is not applicable to S with the match m′. We have:

– GP = l(K), which means that there are no gluing points in L.
– IP = ∅, since m′ does not identify any nodes or edges.
– The process node in L is a dangling point: in S, there are two loops at this

node, which have no preimages in L.

This means that DP � GP , and the gluing condition is not satisfied by m′ and
deleteProcess. �

Now we shall define (typed) graph transformation systems and (typed) graph
grammars. The language of a (typed) graph grammar consists of those (typed)
graphs that can be derived from the start graph.

Definition 5 (Graph transformation system and graph grammar). A
graph transformation system GTS = (P ) consists of a set of graph productions P .
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PRP

T
start

non−active

start

non−active

S :

⇓setF lag

PRP

T

F1

setTurn

active

start

non−active

G1 :

⇓setTurn1

PRP

T

F1

check

active

start

non−active

G2 :

⇓enter

PRP

T

F2

crit

active

start

non−active

G3 :

⇓setF lag

PRP

T

F2

F1

crit

active

setTurn

active

G4 :

⇓exit

PRP TF1

start

non−active

setTurn

active

G :

Fig. 7. Example typed graph transformation
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P ∅ ∅

P

P RT

start

non−active

start

non−active

m′

deleteProcess

S D

2

1

Fig. 8. Example of non-applicability

A typed graph transformation system GTS = (TG, P ) consists of a type graph
TG and a set of typed graph productions P .

A (typed) graph grammar GG = (GTS, S) consists of a (typed) graph trans-
formation system GTS and a (typed) start graph S.

The (typed) graph language L of a (typed) graph grammar GG is defined by

L = {G | ∃ (typed) graph transformation S
∗⇒ G}.

Example 4. Combining the type graph in Fig. 3, the typed graph productions
in Fig. 5 and the start graph S in Fig. 4 we have the typed graph grammar
MutualExclusion = (TG, P, S) with P = {setF lag, setTurn1, setTurn2, enter,
exit}.

To show that this typed graph grammar indeed ensures mutual exclusion,
the whole derivation graph is depicted in Fig. 9. The nodes – which stand for
the graphs in the typed graph language – show, in an abbreviated notation,
the state of the processes. On the left-hand side of each node, the state of the
first process is shown, and also its flag value and if the turn is assigned to that
process. Analogously, this information for the second process is depicted on the
right-hand side. The marked nodes are those nodes where the resource is actually
accessed by a process – and only one process can access it at any one time. �

2.2 Overview of Results for (Typed) Graph Transformations

In the following, we present important results for (typed) graph transformations,
namely the
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process 1 process 2
active active
setTurn crit
flag=1 flag=2

turn

process 1 process 2
active active
crit setTurn
flag=2 flag=1
turn

process 1 process 2
active active
setTurn check
flag=1 flag=1

turn

process 1 process 2
active active
check setTurn
flag=1 flag=1
turn

process 1 process 2
active non−act.
crit start
flag=2 flag=0
turn

process 1 process 2
non−act. active
start crit
flag=0 flag=2

turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1
turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1

turn

process 1 process 2
non−act. active
start check
flag=0 flag=1

turn

process 1 process 2
active non−act.
check start
flag=1 flag=0
turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0

turn

process 1 process 2
non−act. active
start setTurn
flag=0 flag=1
turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0
turn

process 1 process 2
non−act. active
start setTurn
flag=0 flag=1

turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0
turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0

turn

setF lag setF lag

setF lag setF lag

setTurn2 setTurn2

setF lag setF lag

setF lag setF lag

setF lag setF lag

setTurn2 setTurn2

enter enter

enter enter

setF lag setF lag

exit

exit

exit exit

setTurn1 setTurn1

S :

Fig. 9. Example language

– Local Church–Rosser and Parallelism Theorem,
– Concurrency Theorem,
– Embedding and Extension Theorem,
– Critical Pairs and Local Confluence Theorem,
– Graph Constraints and Application Conditions.
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Local Church–Rosser and Parallelism Theorem

The first theorem is concerned with parallel and sequential independence of
direct (typed) graph transformations. We study under what conditions two di-
rect (typed) graph transformations applied to the same (typed) graph can be
applied in arbitrary order, leading to the same result. This leads to the Lo-
cal Church–Rosser Theorem. Moreover, the corresponding (typed) graph pro-
ductions can be applied in parallel in this case, leading to the Parallelism
Theorem.

Two direct (typed) graph transformations G
p1,m1=⇒ H1 and G

p2,m2=⇒ H2 are
parallel independent, if p1 does not delete anything p2 uses, and vice versa. This
means that all nodes and edges in the intersection of the two matches are gluing
items with respect to both transformations, i.e.

m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2)).

Analogously, two direct (typed) graph transformations G
p1,m1=⇒ H1

p2,m′
2=⇒ G′ are

sequentially independent, if p1 does not create something p2 uses, and p2 does
not delete something p1 uses or creates. This means that all nodes and edges
in the intersection of the comatch n1 : R1 → H1 and the match m2 are gluing
items with respect to both transformations, i.e.

n1(R1) ∩ m2(L2) ⊆ n1(r1(K1)) ∩ m2(l2(K2)).

With this notion of independence, we are able to formulate the Local Church–
Rosser and Parallelism Theorem.

Theorem 1 (Local Church–Rosser and Parallelism Theorem). Given
two parallel independent direct (typed) graph transformations G

p1,m1=⇒ H1 and
G

p2,m2=⇒ H2, there is a (typed) graph G′ together with direct (typed) graph trans-

formations H1
p2,m′

2=⇒ G′ and H2
p1,m′

1=⇒ G′ such that G
p1,m1=⇒ H1

p2,m′
2=⇒ G′ and

G
p2,m2=⇒ H2

p1,m′
1=⇒ G′ are sequentially independent.

Given two sequentially independent direct (typed) graph transformations

G
p1,m1=⇒ H1

p2,m′
2=⇒ G′, there are a (typed) graph H2 and direct (typed) graph

transformations G
p2,m2=⇒ H2

p1,m′
1=⇒ G′ such that G

p1,m1=⇒ H1 and G
p2,m2=⇒ H2 are

parallel independent.
In any case of independence, there is a

parallel (typed) graph transformation G ⇒
G′ via the parallel (typed) graph production
p1 + p2, which is the disjoint union of the
(typed) graph productions p1 and p2. Vice
versa, the parallel (typed) graph transforma-
tion G ⇒ G′ can be sequentialized both ways.

H1 H2

G

G′

p1,m1

p1+p2,m

p2,m2

p2,m′
2 p1,m′

1

Example 5. We apply the typed graph production setF lag twice to the start
graph S, first with the match m, and the second time with a different match m′
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PRP

T
start

non−active

start

non−active

PRP

T

F1

setTurn

active

start

non−active

PRP

T

F1

start

non−active

setTurn

active

PRP

T

F1

F1

setTurn

active

setTurn

active

setF lag,m1

setF lag,m2

setF lag,m′
2

setF lag,m′
1

setF lag+setF lag,m

Fig. 10. Example Local Church-Rosser and Parallelism Theorem

that maps the process node in L to the other process node in S. These two direct
typed graph transformations are parallel independent: in the intersection of the
matches, there is only the resource node, which is a gluing point with respect
to both transformations. Applying the Local Church–Rosser and Parallelism
Theorem, we can apply setF lag again switching the matches leading to the
same typed graph, as well as it is possible to apply setF lag + setF lag directly
to S with the same result as shown in Fig. 10. �



From Algebraic Graph Transformation to Adhesive HLR Categories 135

Concurrency Theorem

In contrast to the Local Church–Rosser Theorem, the Concurrency Theorem is
concerned with the execution of (typed) graph transformations which may be
sequentially dependent. This means that, in general, we cannot commute sub-
sequent direct (typed) graph transformations, as done for independent trans-
formations in the Local Church–Rosser Theorem, nor are we able to apply
the corresponding productions in parallel, as done in the Parallelism Theorem.
Nevertheless, it is possible to apply both transformations concurrently using
a so-called E-concurrent (typed) graph production p1 ∗E p2. Given an arbi-
trary sequence G

p1,m1=⇒ H
p2,m2=⇒ G′ of direct (typed) graph transformations,

it is possible to construct an E-concurrent (typed) graph production p1 ∗E p2.
The “epimorphic overlap graph” E can be constructed as a subgraph of H from
E = n1(R1) ∪ m2(L2), where n1 and m2 are the first comatch and the second
match, and R1 and L2 are the right- and the left-hand side of p1 and p2, re-
spectively. Note that the restrictions e1 : R1 → E of n1 and e2 : L2 → E of
m2 are jointly surjective. The E-concurrent (typed) graph production p1 ∗E p2

allows one to construct a direct (typed) graph transformation G
p1∗Ep2=⇒ G′

from G to G′ via p1 ∗E p2. Vice versa, each direct (typed) graph transfor-
mation G

p1∗Ep2=⇒ G′ via the E-concurrent (typed) graph production p1 ∗E p2
can be sequentialized, leading to an E-related (typed) graph transformation
sequence G

p1,m1=⇒ H
p2,m2=⇒ G′ of direct (typed) graph transformations via p1

and p2, where “E-related” means that n1 and m2 overlap in H as required
by E.

Theorem 2 (Concurrency Theorem). Given two (typed) graph productions
p1 and p2, and an E-concurrent (typed) graph production p1 ∗E p2, we have:

– Given an E-related (typed) graph transformation sequence G ⇒ H ⇒ G′ via
p1 and p2, then there is a synthesis construction leading to a direct (typed)
graph transformation G ⇒ G′ via p1 ∗E p2.

– Given a direct (typed) graph transforma-
tion G ⇒ G′ via p1 ∗E p2, then there is
an analysis construction leading to an
E-related (typed) graph transformation
sequence G ⇒ H ⇒ G′ via p1 and p2.

H2

G G′p1∗Ep2,m

p1,m1 p2,m2

Example 6. The first two steps S ⇒ G1 ⇒ G2 of the typed graph transforma-
tions in Fig. 7 are sequentially dependent, because the setTurn-loop needed to
apply the typed graph production setTurn1 to G1 is created by setF lag. The
E-concurrent production for this transformation sequence is shown in the top
row of Fig. 11, leading to the depicted E-related typed graph transformation. �
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Fig. 11. Example Concurrency Theorem

Embedding and Extension Theorem

For the Embedding and Extension Theorem, we analyze under what conditions
a (typed) graph transformation t : G0

∗⇒ Gn can be extended to a (typed)

graph transformation t′ : G′
0

∗⇒ G′
n via an extension

morphism k0 : G0 → G′
0. The idea is to obtain an ex-

tension diagram (1), where the same (typed) graph
productions p1, . . . , pn are applied in the same order
in t and t′.

Unfortunately, this is not always possible, but we

G0 Gn

G′
0 G′

n

t ∗

t′ ∗
k0 kn(1)

are able to give a necessary and sufficient consistency condition to allow such an
extension. This result is important for all kinds of applications where we have
a large (typed) graph G′

0, but only small subparts of G′
0 have to be changed by

the (typed) graph productions p1, . . . , pn. In this case we choose a suitably small
subgraph G0 of G′

0 and construct a (typed) graph transformation t : G0
∗⇒ Gn

via p1, . . . , pn first. In a second step, we extend t : G0
∗⇒ Gn via the inclusion

k0 : G0 → G′
0 to a (typed) graph transformation t′ : G′

0
∗⇒ G′

n via the same
(typed) graph productions p1, . . . , pn.
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Now we are going to formulate the consistency condition which allows us to
extend t : G0

∗⇒ Gn to t′ : G′
0

∗⇒ G′
n via k0 : G0 → G′

0, leading to the extension
diagram (1) above. The idea is to first construct
a boundary graph B and a context graph C for
k0 : G0 → G′

0, such that G′
0 is the gluing of G0

and C along B, i.e. G′
0 = G0 +B C. In fact, this

boundary graph B is the smallest subgraph of G0
which contains the identification points IP and the

B G0

C G′
0

k0(1)

dangling points DP of k0 : G0 → G′
0, considered as a match morphism. Now the

(typed) graph morphism k0 : G0 → G′
0 is said to be consistent with t : G0

∗⇒ Gn

if the boundary graph B is preserved by t. This means that none of the (typed)
graph production p1, . . . , pn deletes any item of B.

Theorem 3 (Embedding and Extension Theorem). Given a (typed) graph
transformation t : G0

∗⇒ Gn and a (typed) graph morphism k0 : G0 → G′
0 which

is consistent with respect to t, then there is an extension diagram over t and k0.
Given a (typed) graph transformation t : G0

∗⇒ Gn with an extension diagram
(1), and the boundary B and the context graph C of k0 : G0 → G′

0, then we
have:

1. k0 is consistent with respect to t : G0
∗⇒ Gn.

2. There is a (typed) graph production der(t) = (G0
d0← Dn

dn→ Gn), called the
derived span of t : G0

∗⇒ Gn, leading to a direct (typed) graph transformation
G′

0 ⇒ G′
n via der(t).

3. G′
n is the gluing of C and Gn along B, i.e. G′

n = Gn +B C.

Example 7. We embed the start graph S, with the typed graph morphism k0, into
a larger context graph H , where an additional resource is available that is also as-
signed to the first process. The boundary B and context graph C for k0 are shown
in the left-hand side of Fig. 12. Since, in the boundary graph, there is only the first
process node, which is preserved by every step of the typed graph transformation
t : S

∗⇒ G, we can extend t over k0 to H and obtain a typed graph transformation
t′ : H

∗⇒ H ′ shown in Fig. 12. Note that H ′ is the gluing of C and G along B. �

Critical Pairs and Local Confluence Theorem

A (typed) graph transformation system is called confluent if, for all (typed) graph
transformations G

∗⇒ H1 and G
∗⇒ H2, there is a (typed) graph X together with

H1 H2

G

X

∗ ∗

∗ ∗
H1 H2

G

X

p1,m1 p2,m2

∗ ∗
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(typed) graph transformations H1
∗⇒ X and H2

∗⇒ X . Local confluence means
that this property holds for all pairs of direct (typed) graph transformations
G ⇒ H1 and G ⇒ H2.

Confluence is an important property of a (typed) graph transformation sys-
tem, because, in spite of local nondeterminism concerning the application of
a (typed) graph production, we have global determinism for confluent (typed)
graph transformation systems. Global determinism means that, for each pair of
terminating (typed) graph transformations G

∗⇒ H and G
∗⇒ H ′ with the same

source graph, the target graphs H and H ′ are equal or isomorphic. A (typed)
graph transformation G

∗⇒ H is called terminating if no (typed) graph produc-
tion in the (typed) graph transformation system is applicable to H anymore.

The Local Church–Rosser Theorem shows that, for two parallel independent
direct (typed) graph transformations G

p1,m1=⇒ H1 and G
p2,m2=⇒ H2, there is a

(typed) graph G′ together with direct (typed) graph transformations H1
p2,m′

2=⇒ G′

and H2
p1,m′

1=⇒ G′. This means that we can apply the (typed) graph productions
p1 and p2 with given matches in an arbitrary order. If each pair of productions
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is parallel independent for all possible matches, then it can be shown that the
corresponding (typed) graph transformation system is confluent.

In the following, we discuss local confluence for the general case in which
G ⇒ H1 and G ⇒ H2 are not necessarily parallel independent. According to a
general result for rewriting systems, it is sufficient to consider local confluence,
provided that the (typed) graph transformation system is terminating.

The main idea is to study critical pairs. A pair P1
p1,o1⇐= K

p2,o2=⇒ P2 of direct
(typed) graph transformations is called a critical pair if it is parallel dependent,
and minimal in the sense that the pair (o1, o2) of matches o1 : L1 → K and
o2 : L2 → K is jointly surjective. This means that each item in K has a preimage
in L1 or L2. In other words, K can be considered as a suitable gluing of L1 and
L2. It can be shown that every pair of parallel dependent direct (typed) graph
transformations is an extension of a critical pair.

In order to show local confluence, it is sufficient to show strict confluence
of all its critical pairs. As discussed above, confluence of a critical pair P1 ⇐
K ⇒ P2 means the existence of a (typed) graph K ′ together with (typed) graph
transformations P1

∗⇒ K ′ and P2
∗⇒ K ′.

Strictness is a technical condition which means, intuitively, that the largest
subgraph N of K which is preserved by the critical pair P1 ⇐ K ⇒ P2 is also
preserved by P1

∗⇒ K ′ and P2
∗⇒ K ′. In [10], it has been shown that confluence

of critical pairs without strictness is not sufficient to show local confluence.

Theorem 4 (Local Confluence Theorem). A (typed) graph transformation
system is locally confluent if all its critical pairs are strictly confluent.

Example 8. We analyze our typed graph grammar MutualExclusion and take a
closer look at the typed graph productions setF lag and setTurn1. For a typed
graph K that may lead to a critical pair, we have to consider overlappings
of the left-hand sides L1 of setF lag and L2 of setTurn1. The typed graph
transformations K

setF lag
=⇒ P1 and K

setTurn1=⇒ P2 are parallel dependent if the
loop in L2 typed non-active is deleted by setF lag. This leads to the two critical
overlappings K and K ′, and we have the critical pairs P1

setF lag⇐= K
setTurn1=⇒ P2

and P ′
1

setF lag⇐= K ′ setTurn1=⇒ P ′
2 shown in Fig. 13.

There are many more critical pairs for other pairs of typed graph transforma-
tions in our grammar. All these critical pairs are strictly confluent. Therefore the
typed graph transformation system is locally confluent. However, as we can see in
the derivation graph, the typed graph grammar is not terminating; nevertheless,
it is confluent. �

Graph Constraints and Application Conditions

(Typed) graph constraints allow us to formulate properties for (typed) graphs.
In particular, we are able to formulate the condition that a (typed) graph G must
(or must not) contain a certain subgraph G′. Beyond that, we can require that
G contains C (conclusion) if it contains P (premise). Application conditions,
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similarly to the gluing condition, allow us to restrict the application of (typed)
graph productions. Both concepts are important for increasing the expressive
power of (typed) graph transformation systems.

Definition 6 (Graph constraint). An atomic (typed) graph constraint is of
the form PC(a), where a : P → C is a (typed) graph morphism.

A (typed) graph constraint is a Boolean formula
over atomic (typed) graph constraints. This means
that true and every atomic (typed) graph constraint
are (typed) graph constraints, and, for (typed) graph
constraints c and ci with i ∈ I for some index set I,
¬c, ∧i∈Ici, and ∨i∈Ici are (typed) graph constraints.

p

P C

G

a

p q
=

A (typed) graph G satisfies a (typed) graph constraint c, written G |= c, if

– c = true;
– c = PC(a) and, for every injective (typed) graph morphism p : P → G, there

exists an injective (typed) graph morphism q : C → G such that q ◦ a = p;
– c = ¬c′ and G does not satisfy c′;
– c = ∧i∈Ici and G satisfies all ci with i ∈ I;
– c = ∨i∈Ici and G satisfies some ci with i ∈ I.

Now we introduce application conditions for a match m : L → G, where L is
the left-hand side of a (typed) graph production p. The idea is that the (typed)
graph production cannot be applied at m if m violates the application condition.

P RT
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setTurn

setTurn
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start
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start
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setF lag setTurn1
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2

Fig. 13. Example critical pairs
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Definition 7 (Application condition). An atomic application condition over
a (typed) graph L is of the form P (x, ∨i∈Ixi), where x : L → X and xi : X → Ci

with i ∈ I for some index set I are (typed) graph morphisms.

An application condition over L is a
Boolean formula over atomic application
conditions over L. This means that true
and every atomic application condition
are application conditions, and, for ap-
plication conditions acc and acci with

L X Ci

G

x ci

m p qi

= =

i ∈ I, ¬acc, ∧i∈Iacci, and ∨i∈Iacci are application conditions.
A (typed) graph morphism m : L → G satisfies an application condition acc,

written m |= acc, if

– acc = true;
– acc = P (x, ∨i∈Ixi) and, for all injective (typed) graph morphisms p : X → G

with p◦x = m, there exists an i ∈ I and an injective (typed) graph morphism
qi : Ci → G with qi ◦ xi = p;

– acc = ¬acc′ and m does not satisfy acc′;
– acc = ∧i∈Iacci and m satisfies all acci with i ∈ I;
– acc = ∨i∈Iacci and m satisfies some acci with i ∈ I.

Given a (typed) graph production p = (L l← K
r→ R), an application condition

A(p) = (AL, AR) for p consists of a left application condition AL over L and a
right application condition AR over R. A direct (typed) graph transformation
G

p,m⇒ H with a comatch n : R → H satisfies the application condition A(p) =
(AL, AR) if m |= AL and n |= AR. Otherwise, p cannot be applied to G via m.

A widely used variant of application conditions are negative application condi-
tions. A negative application condition is of the form NAC(x), where x : L → X
is a (typed) graph morphism. A (typed) graph morphism m : L → G satisfies
NAC(x) if there does not exist an injective (typed) graph morphism p : X → G
with p ◦ x = m. A negative application condition NAC(x) is equivalent to an
application condition of the form P (x, ∨i∈Ixi) with an empty index set I.

Example 9. We consider the typed graph constraint PC(a : P → C) in Fig. 14
for the typed graphs of the graph grammar MutualExclusion. A typed graph G
satisfies this constraint if, for each resource node R, there is a turn variable that
connects it to a process. The start graph S obviously satisfies this constraint –
there is only one resource, which is connected to the first process node.

For an example of an application condition, we add a new production
addResource to our typed graph grammar MutualExclusion, as shown in
Fig. 15. This production inserts a new resource node and a new turn node,
connected to a given process. For the application of this production, we de-
fine the left negative application condition NAC(x) as depicted. With NAC(x),
we forbid the possibility that the process that the turn will be connected to is
already active. �
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R P RT
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P C

Fig. 14. Example typed graph constraint

It is possible to construct for each (typed) graph constraint an equivalent right
application condition and for each right application condition an equivalent left
application condition. This allows us to make sure that a derived (typed) graph
H satisfies a given (typed) graph constraint PC(a), provided that the match
m : L → G of the direct (typed) graph transformation G

p,m
=⇒ H satisfies the

corresponding left application condition acc.

3 Transformations in Adhesive HLR Systems

In this section, we generalize the basic concepts of the algebraic approach from
graphs in Section 2 to high-level structures. The concept of weak adhesive high-
level replacement (HLR) categories is introduced as a suitable categorical frame-
work for graph transformation in this more general sense.

In addition to pushouts we also need pullbacks.
The intuitive idea of a pullback G0 of injective mor-
phisms f1 : G1 → G3 and f1 : G2 → G3 is that
G0 is the intersection of G1 and G2 with injective
morphisms g1 : G0 → G1 and g2 : G0 → G2 leading
to the commutative diagram (1).

If f1 is an inclusion and f2 an arbitrary morphism

G0 G1

G2 G3

g1

f2

g2 f1(1)

then G0 can be considered as the preimage f−1
2 (G1).

The intuitive idea of weak adhesive HLR categories is that of categories with
suitable pushouts and pullbacks which are compatible with each other. More
precisely, the definition is based on van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is sta-
ble under pullbacks, and, vice versa, that pullbacks are stable under combined
pushouts and pullbacks.

Definition 8 (Van Kampen square). A pushout (1) is a van Kampen square
if, for any commutative cube (2) with (1) in the bottom and where the back faces
are pullbacks, the following statement holds: the top face is a pushout iff the front
faces are pullbacks.

It might be expected that, at least in the category Sets, every pushout is a
van Kampen square. Unfortunately, this is not true. However, at least pushouts
along injective functions or monomorphisms are VK squares in Sets and several
other categories.
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Definition 9 (Weak adhesive HLR category). A category C with a mor-
phism class M is called a weak adhesive HLR category if:

1. M is a class of monomorphisms closed under isomorphisms, composition
(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M), and decomposition
(g ◦ f ∈ M, g ∈ M ⇒ f ∈ M).

2. C has pushouts and pullbacks along M-morphisms, and M-morphisms are
closed under pushouts and pullbacks.

3. Pushouts in C along M-morphisms are weak VK squares, i.e. the VK square
property holds for all commutative cubes with m ∈ M and (f ∈ M or
b, c, d ∈ M).

For historical reasons, these categories are called weak adhesive HLR categories.
In [11] and related work, adhesive categories are used as the categorical frame-
work for deriving process congruences from reaction rules. The step from adhe-
sive to adhesive HLR categories is justified by the fact that there are some
important examples – such as algebraic specifications and typed attributed
graphs – which are not adhesive categories. However, they are adhesive HLR
categories for a suitable subclass M of all monomorphisms. Thus, the main dif-
ference between adhesive HLR categories and adhesive categories is that a distin-
guished class M of monomorphisms is considered instead of all monomorphisms,
so that only pushouts along M-morphisms have to be VK squares. Another im-
portant example – the category PTNets of place/transition nets with the class
M of injective morphisms – fails to be an adhesive HLR category, but is a weak
adhesive HLR category. This justifies the step to weak adhesive HLR categories.
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Weak adhesive HLR categories are closed under product, slice, coslice, functor,
and comma category constructions. This means that we can construct new weak
adhesive HLR categories from given ones.

Theorem 5 (Construction Theorem). If (C, M1) and (D, M2) are weak
adhesive HLR categories, then the following categories are weak adhesive HLR
categories:

1. the product category (C × D, M1 × M2),
2. the slice category (C\X, M1 ∩ C\X),
3. the coslice category (X\C, M1 ∩ X\C),
4. the functor category ([X,C], M − functor transformations),
5. the comma category (ComCat(F, G; I), (M1 × M2) ∩ MorComCat), where

F : C → X preserves pushouts along M1-morphisms and G : D → X
preserves pullbacks (along M2-morphisms).

Examples for weak adhesive HLR categories are the categories Sets of sets,
Graphs of graphs, GraphsTG of typed graphs, Hypergraphs of hypergraphs,
ElemNets of elementary Petri nets, PTNets of place/transition nets and
AHLNets of algebraic high-level nets, all together with the class M of in-
jective morphisms, as well as the category Spec of algebraic specifications with
the class Mstrict of strict injective specification morphisms and the category
AGraphsATG of typed attributed graph with the class MD−iso of injective
graph morphisms with isomorphic data part. After proving that Sets is a weak
adhesive HLR category, the proofs for most of these categories can be done using
the Construction Theorem.

Analogously to the (typed) graph case, we can define productions, transfor-
mations, and adhesive HLR systems and grammars, where we replace injective
morphisms by M-morphisms.

Definition 10 (Adhesive HLR system and grammar). A production p =
(L l← K

r→ R) consists of objects L, K, and R, and two morphisms l and r with
l, r ∈ M.

Given a production p, an object G,
and a morphism m : L → G, called
match, a direct transformation G

p,m
=⇒ H

from G to an object H is given by the
pushouts (1) and (2).

L K R

G D H

l r

f g

m k n(1) (2)

An adhesive HLR system AS = (C, M, P ) consists of a weak adhesive HLR
category (C, M) and a set of productions P .

An adhesive HLR grammar AG = (AS, S) consists of an adhesive HLR system
AS and a start object S.

The language L of an adhesive HLR grammar AG is defined by

L = {G | ∃ transformation S
∗⇒ G}.
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Under a few additional conditions, it has been shown in [7] that all the results
for (typed) graph transformations given in Subsection 2.2 are valid in adhesive
HLR systems. Hence they can be applied to all the examples of weak adhesive
HLR categories discussed above.

4 Conclusion

In this paper, we have given an overview of several concepts and results of
algebraic graph transformation based on gluing constructions and the double
pushout approach. Basic results concerning independence, parallelism, concur-
rency, embedding, critical pairs and confluence have been introduced and ex-
plained by examples.

As a generalization, we have defined the categorical framework of adhesive
high-level replacement systems for unified constructions and proofs, which allows
to instantiate the rich theory not only to graphs and typed graphs, but also
to many different high-level structures. As a consequence we obtain a rigorous
approach to various transformation systems providing as fundamental results the
Local Church-Rosser and Parallelism, Concurrency, Embedding and Extension,
and the Local Confluence Theorems.

For a detailed presentation of all the concepts, results and proofs we refer to
our book [7].
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