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Abstract

The intention of this paper is to extend the generic component framework presented at FASE 2002 [EOB+02]
to allow component verification based on export-import implications. In the generic component framework
components with explicit import, export interfaces and a body specification connected by embeddings
and transformations provide hierarchical composition of components with a compositional transformation
semantics.
We introduce implications that relate sentences of the import stating what the component requires to
sentences of the export stating what the component guarantees. The main result of this paper is that these
import-export implications are compatible with the hierarchical composition as given in [EOB+02].
The second part illustrates how this abstract concept can be instantiated to Petri net systems.
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1 Introduction

In [EOB+02] a generic component framework for system modeling was introduced
for a large class of semi-formal and formal modeling techniques. According to this
concept a component consists of a body, an import, and an export interface, and
connections between import and body as well as export and body. We only re-
quire having suitable notions of embeddings and transformations (e.g. refinements)
between specifications. This component technique is generic as it can be instan-
tiated with different specification formalisms. Moreover, the connections can be
considered generic as they also allow a great variety of instantiations. The basic
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idea for the generic component concept stems from data type specification, precisely
the algebraic module specifications [EM90]. It was used for various related alge-
braic specification techniques as e.g. in [CBEO99,JO99]. The transfer to process
description techniques was started in [Sim99] where modules for graph transfor-
mation systems and local action systems were investigated. In [Pad02] Petri net
modules were introduced independently of the generic framework, but were shown
to be compatible in [PE05]. In [EOB+02] algebraic high-level nets and in [Pad05]
deterministic automata were demonstrated to be instantiations.
In this paper we extend the component concept with import-export implications of
components that are formulas given in an adequate logic. In the export interface
the export statement is guaranteed independently of the component’s environment
provided the import requirement is met. Based on ideas presented at EKA 2006
[Pad06b] we present an approach to component verification that helps to guarantee
specific properties. These properties are formalized in terms of a suitable logic over
the basic properties of a specification. The underlying idea is that components guar-
antee specific export statements provided that the import assumptions are satisfied.
So, components are equipped with an additional import-export implication. For the
hierarchical composition of a requiring component and a providing component the
export statement of the providing component has to imply the require assumptions
of the requiring component’s import. Then the result of the composition is a com-
ponent that guarantees the original exports statements of the requiring component
if the import assumptions of the providing component are met.
This paper is organized as follows. First we present in Section 2 the basic concepts
and results at the abstract level of the generic component concept. In Section 3
we present the instantiation to place/transition net systems and temporal logic.
We conclude with a discussion of related work and the practical impact of this
approach.

2 Component Verification for Generic Components

As the approaches in [EOB+02,EPB+04,EBK+05] this work employs generic speci-
fications, embeddings and transformations to form components. Since not all classes
of embeddings and transformations are suitable for this purpose we have to state
some general requirements first. In the concrete specification technique the validity
of these requirements needs to be proved when instantiating the generic concept.

2.1 General Assumptions of the Transformation based Approach

Our generic technique requires a defined class of specifications together with trans-
formations and embeddings. The transformations define a class of refinements for
the specifications, so they are used for the connection between export interface and
the component body. Since there exist so many notions of refinement, even for a
single specification technique, this assumption should not be further formalized at
the abstract level. Nevertheless, it has to be spelled out for the instantiation of the
concept.
We require an identity of specifications and a composition operation for transfor-
mations and embeddings.
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Definition 2.1 (Extension Property)
A transformation framework T consists of a class of transformations that includes
identical transformations, is closed under composition, and satisfies the following
extension property :
For each transformation trafo : SPEC1 =⇒ SPEC2 and each em-
bedding i1 : SPEC1 → SPEC ′

1 there is a selected transformation
trafo′ : SPEC ′

1 =⇒ SPEC ′
2 with embedding i2 : SPEC2 → SPEC ′

2,
called the extension of trafo with respect to i1,
leading to the adjacent extension diagram (1). In-
tuitively, each refinement from SPEC1 to SPEC2

via trafo can be extended to a refinement from
SPEC ′

1 to SPEC ′
2 via trafo′.

SPEC1

trafo

��
(1)

i1 // SPEC ′
1

trafo′

��
SPEC2

i2 // SPEC ′
2

Moreover, we need the possibility to compose vertically and to decompose horizon-
tally extension diagrams as stated subsequently.

Definition 2.2 (Vertical composition of extension diagrams)
Given the diagram below and let the squares (1) and (2) be extension diagrams,
then the composed square (1 + 2) is an extension diagram as well.

SPEC1
i1 //

trafo1

��
(1)

SPEC ′
1

trafo′
1

��
SPEC2

i2 //

trafo2

��
(2)

SPEC ′
2

trafo′
2

��
SPEC3

i3 // SPEC ′
3

Definition 2.3 (Horizontal decomposition of extension diagrams)
Given the diagram below and let the outer square (1 + 2) be an extension diagram
with i1 = i′′1 ◦ i′1, then there exists trafo′′ : SPEC ′′

1 =⇒ SPEC ′′
2 yielding the two

extension diagrams (1) and (2) below.

SPEC1
i′1 //

trafo

��

i1

))

(1)

SPEC ′′
1

i′′1 //

trafo′′

��
(2)

SPEC ′
1

trafo′

��
SPEC2 i′2

//

i2

55SPEC ′′
2 i′′2

// SPEC ′
2

2.2 Components and Composition

Based on the requirements explained above, we are now able to define component
specifications and the corresponding hierarchical composition operation.
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Definition 2.4 (Component)
A component specification Comp = (IMP, EXP, BOD, imp, exp) consists of a

body specification BOD, an import specification IMP with
an embedding IMP

imp−→ BOD and an export specification
EXP with a transformation EXP

exp
=⇒ BOD.

EXP

exp

��
IMP

imp // BOD

2.3 Import-Export Implications

Components are self-contained units with a well-defined syntax and semantics. In
[EOB+02] semantics of components are defined by considering each possible en-
vironment expressed by each possible transformation of the component’s import.
According to the transformation-based semantics the notion of import-export im-
plications characterize the component with respect to its environment. Based on an
adequate logic calculus that allows the formulation of formulas and their translation
along transformations, import-export implications can be defined for components.
To define a logic over a specification we need to relate the vocabulary of the logic to
the specification SPEC, so we need some signature Σ for SPEC. Then SPEC ∈ Σ
the set of all specifications with signature Σ.

Definition 2.5 (Underlying logic)
The underlying logic (Sen(Σ), |=) over the signature Σ consists of the set of formulas
over that signature Sen(Σ) and a relation |=Σ⊆ Σ × Sen(Σ) where Σ denotes the
set of all specifications with signature Σ.

Definition 2.6 (Translation of the underlying logic)
Given the underlying logic (Sen(Σ), |=) then for each transformation trafo :
SPEC1 =⇒ SPEC2 there has to be a translation of sentences Ttrafo : Sen(Σ1)→
Sen(Σ2) with SPECi ∈ Σi for 1 ≤ i ≤ 2.
The translation has to be compatible with the morphism composition, i.e. for trans-
formations trafoi : SPECi =⇒ SPECi+1 with i ≤ i ≤ 2 there is the translation
Ttrafo1◦trafo2 = Ttrafo1 ◦ Ttrafo2 : Sen(Σ1)→ Sen(Σ3) for SPECi ∈ Σi.
The translation along an identity has to yield an identical translation, i.e.Tid = ID.

Note that SPEC |= ϕ then SPEC ′ |= Ttrafo(ϕ) is not demanded as it is too strong
for most process specification. E.g. liveness considered as a temporal logic formula
over some process specification is usually not preserved by morphisms.

Definition 2.7 (Import-export implication for components)
Given a component Comp = (IMP,EXP,BOD, imp, exp) then an import-export
implication ρ⇒⇒⇒ γ consists of ρ ∈ Sen(IMP ) and γ ∈ Sen(EXP ).

The import-export implication provides information on the component’s body at its
interfaces. This information concerns the assumptions and guarantees of a compo-
nent in an arbitrary environment. So, satisfaction of the import-export implications
is formulated with respect to an arbitrary environment, formalized by an arbitrary
transformation of the import interface. Then we require that if this environment
satisfies the translated import assumption, then the corresponding extension will
satisfy the translated export statement.
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Definition 2.8 (Satisfaction of an import-export implication)
Given a component Comp = (IMP,EXP,BOD, imp, exp) then the import-export
implication ρ⇒⇒⇒ γ with ρ ∈ Sen(IMP ) and γ ∈ Sen(EXP ) is satisfied if we have
SPEC |= Ttrafo(ρ)⇒⇒⇒ SPEC ′ |= Ttrafo′◦exp(γ) for all extension diagrams:

EXP

exp

��
IMP

imp //

trafo

��

BOD

trafo′

��
SPEC

imp′
// SPEC ′

A component with guarantees is a component that ensures the export statement
for any possible environment provided the import assumptions are met.

Definition 2.9 (Component with guarantees)
A component with guarantees Comp = (IMP,EXP,BOD, imp, exp, ρ, γ) consists
of a component (IMP,EXP,BOD, imp, exp) together with the import-export im-
plication ρ⇒⇒⇒ γ that has to be satisfied.

Then hierarchical composition allows the propagation of the export statements,
provided the export statement of the imported component implies the import re-
quirement of the importing component. This is defined by the connecting condition.

Definition 2.10 (Connecting condition)
Given components Compi = (IMPi, EXPi, BODi, impi, expi, γi, ρi) for i ∈ {1, 2}
and a connection transformation con : IMP1 =⇒ EXP2 then the connecting con-
dition is satisfied if we have for all transformations trafo : EXP2 =⇒ SPEC:

SPEC |= Ttrafo(γ2)⇒⇒⇒ SPEC |= Ttrafo◦con(ρ1)

Definition 2.11 (Hierarchical Composition)
Given components Compi = (IMPi, EXPi, BODi, impi, expi, γi, ρi) for i ∈ {1, 2}
and a connection transformation con : IMP1 =⇒ EXP2 then the hierarchical
composition Comp3 of Comp1 and Comp2 via con : IMP1 =⇒ EXP2 is defined
by Comp3 := Comp1 ◦con Comp2 = (IMP3, EXP3, BOD3, imp3, exp3, γ1, ρ2) with
imp3 := imp′1◦imp2 and exp3 := h◦exp1 as depicted below where (1) is an extension
diagram :

EXP3 = EXP1

exp1

��

exp3

~�

IMP1
imp1 //

con

��
(1)

BOD1

h

��

EXP2

exp2

��
IMP3 = IMP2

imp2 //

imp3

44BOD2
imp′

1 // BOD3
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In order to have a compositional approach to component verification we now need
to ensure that the hierarchical composition preserves the components guarantees in
a suitable way.

Fact 2.12 (Hierarchical composition propagates guarantees)

Given components Comp1 and Comp2 with guarantees and a connection con :
IMP1 =⇒ EXP2 satisfying the connecting condition, then the result of the hi-
erarchical composition Comp3 = Comp1 ◦con Comp2 is again a component with
guarantees.

So, we have to show that the hierarchical composition Comp3 = Comp1 ◦con Comp2

satisfies the import-export implication ρ2⇒⇒⇒ γ1.

Proof. We need to show that SPEC |= Ttrafo(ρ2) ⇒⇒⇒ SPEC ′ |= Ttrafo′◦exp3(γ1)
for any extension (1) in the diagram below:

EXP3 = EXP1

exp1

��
IMP1

imp1 //

con

��

BOD1

h

��

EXP2

exp2

��
IMP3 = IMP2

imp2 //

trafo

��
(1)

BOD2
imp′

1 // BOD3

trafo′

��
SPEC i

// SPEC ′

Due to extension decomposition (Def. 2.3) we have the three extension diagrams
(2), (3) and (4) with i = i1 ◦ i2:

EXP3 = EXP1

exp1

��
IMP1

imp1 //

con

��
(2)

BOD1

h

��

EXP2

exp2

��
IMP3 = IMP2

imp2 //

trafo

��
(3)

BOD2
imp′

1 //

trafo′′

��
(4)

BOD3

trafo′

��
SPEC

i2 //

i

44SPEC ′′ i1 // SPEC ′
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So, we have:
SPEC |= Ttrafo(ρ2)⇒⇒⇒ SPEC ′′ |= Ttrafo′′◦exp2(γ2)

as Comp2 has guarantees,
SPEC ′′ |= Ttrafo′′◦exp2(γ2)⇒⇒⇒ SPEC ′′ |= Ttrafo′′◦exp2◦con(ρ1)

due to the connecting condition, and
SPEC ′′ |= Ttrafo′′◦exp2◦con(ρ1)⇒⇒⇒ SPEC ′ |= Ttrafo′◦h◦exp1(γ1)

as Comp1 has guarantees and due to vertical composition in Def. 2.2

So, we directly conclude:

SPEC |= Ttrafo(ρ2)⇒⇒⇒ SPEC ′ |= Ttrafo′◦h′◦exp1(γ1)

2

3 Basic Concepts for Verification using Petri Net Com-
ponents

In this section we give an instantiation of the generic framework and illustrate the
basic concepts in terms of place/transition systems and temporal logic. To obtain
the results of the previous section we have to ensure that the modeling technique
has specific properties, namely the extension property, the composition and decom-
position of extension diagrams. And the underlying logic, in this instantiation a
linear time logic, needs to be provided with a suitable translation of formulas along
the morphisms.
In [Pad02] Petri net components have been first introduced. The import interface
specifies resources which are used in the construction of the body, while the export
interface specifies the functionality available from the Petri net component to the
outside world. The body implements the functionality specified in the export inter-
face using the imported functionality. Here, we need to treat the markings explicitly
as we want to verify behavior properties of the components.

3.1 Components of Petri Net Systems

First we give a short intuition of the underlying formalism. We use the algebraic
notion of Petri nets as introduced in [MM90]. Hence, a place/transition (PT) net
is given by the set of transitions and the set of places and the pre and post domain
function; N = (T

pre //
post

// P⊕) where P⊕ is the free commutative monoid over P–

or the set of finite multisets over P . So, an element w ∈ P⊕ can be presented as
a linear sum w = Σp∈P λpp and we can extend the usual operations and relations
as ⊕, 	, ≤, and so on. The initial marking (and markings in general) can be
understood both as a linear sum, i.e. m̂ ∈ P⊕ as well as a finitely based mapping,
i.e. m̂ : P → N.
We use much simpler morphisms than in [Pad02] that do not preserve any specific
properties as safety or liveness. The import morphism imp is a plain, injective
morphism and describes where the resources of the import are used in the body.
The export morphism exp is a t-partial, injective morphism. So, we have a very
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loose interpretation of refinement: those transition that are not mapped represent
some not explicitly specified subnet of the target net.

Definition 3.1 (PT net systems and morphisms)
A PT net system PS = (N, m̂) is given by a PT net N = (P, T, pre, post) where
pre, post : T → P⊕ represent the pre and post domain of a transition, and m̂ : P →
N is the initial marking.

• A t-partial morphisms h : PS1 → PS2 is a mapping where hP : P1 → P2 is a total
function and hT : T1 → T2 is a partial function such that h is arc preserving; for
all t ∈ dom(fT ) we have: h⊕P ◦ pre1 = pre2 ◦ hT (t) and h⊕P ◦ post1 = post2 ◦ fT (t).

• Morphisms are plain if hT : T1 → T2 is a total function as well. The class of
injective plain morphisms is denoted by I.

• Morphisms are marking strict if m̂1(p) = m̂2(h(p)) for all p ∈ P1. The class of
marking strict t-partial, injective morphisms is denoted by E .

• PT net systems and t-partial morphism comprise the category PStp.

Note that the initial marking does not play a role in this category as the morphisms
do not take it into account. So, all PT systems that consist of the same net, but
have different initial markings are isomorphic in PStp. However, we have a unique
marking for extension diagrams in Fact 3.4.
The classes I and E are closed under composition and both include identities, but
note that I is closed under composition with isomorphisms, whereas E is not.

Fact 3.2 (Pushouts in the category PStp)

Given PT systems PSi for 0 ≤ i ≤ 2 and morphisms PS1
h1←− PS0

g1−→ PS2 in the
category PStp then here is a pushout PS1

h2−→ PS3
g2←− PS2 that can be constructed

component-wise for places and transitions and with an arbitrary initial marking for
PS3.

The proof (for details see [Pad06a]) uses the standard construction of pushouts in
the category of sets Set and in the category of partial sets parSet.

Petri net components consist of three PT systems: the import PT system
(IMP, m̂I), the export PT system (EXP, m̂E), and the body PT system
(BOD, m̂B). Note that there is no marking compatibility required for imp ∈ I.
This allows the deletion of parts of the initial marking during the hierarchical com-
position, and is needed to remove ”pseudo-initial” tokens that will be provided by
the environment (see Subsect. 3.3).

Definition 3.3 (PT system component)
A PT system component PC = ((IMP, m̂I), (EXP, m̂E), (BOD, m̂B), imp, exp)
consists of the import PT system (IMP, m̂I), the export PT system (EXP, m̂E),

the body PT system (BOD, m̂B), and of two morphisms (IMP, m̂I)
imp∈I−→

BOD, m̂B)
exp∈E←− (EXP, m̂E).

Extension diagrams are pushouts where one morphism is marking strict and injective
and the other is injective and plain. We need to prove that these can be constructed
component-wise for any pair of I- and E-morphisms.
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Fact 3.4 (Extension diagrams of I- and E-morphisms)

Given PT nets Ni = (Pi, Ti, prei, posti) and PT systems PSi = (Ni, m̂i) for 0 ≤ i ≤
2 and the morphisms PS1

h1←− PS0
g1−→ PS2 where h1 ∈ I and g1 ∈ E then there is

a pushout PS1
h2−→ PS3

g2←− PS2 with

m̂3(p) =

 m̂2(p2) ; g2(p2) = p /∈ h2(P1)

m̂1(p1) ; h2(p1) = p

that is an extension diagram with g2 ∈ I and h2 ∈ E.

Proof.
PS3 = (N3, m̂3) is pushout by construction. PS0

g1

��

h1 //

(1)

PS1

h2

��
PS2 g2

// PS3

Plain morphisms are preserved as total morphisms are
pushout stable in parSet. Injective morphisms are
preserved as injective morphisms are pushout stable
in Set as well as in parSet. The construction of m̂3

directly yields that h2 is marking strict. So, g2 ∈ I and h2 ∈ E . Moreover, the
initial marking m̂3 is uniquely determined by the requirement h2 ∈ E . 2

Remark 3.5 (Pushout construction)
It is interesting to note that the construction of the PT net N3 coincides with the
corresponding construction in [PE05] where we have used substitution morphisms
instead of t-partial morphisms. In fact, the transitions T3 of N3 can be constructed
as T3 = (T1− h1T (T0) ) + T2 with inclusion g2T and partial function h2T . These are
jointly surjective, s.t. pre3(t) – and similar post3 – is uniquely defined by pre2(t)
for t ∈ T2 and by pre1(t) otherwise (for details see [Pad06a]).

Fact 3.4 yields the extension property in Def. 2.1. Together with the composition
and decomposition of pushouts it also yields the vertical composition in Def. 2.2
and horizontal decomposition in Def. 2.3 of extension diagrams.

Fact 3.6 (Vertical composition of extension diagrams)

Given the diagram below and let the squares (1) and (2) be extension diagrams, then
the composed square (1 + 2) is an extension diagram as well.

PS1
h1 //

g1

��
(1)

SPEC ′
1

h2

��
SPEC2

g2 //

g3

��
(2)

SPEC ′
2

h3

��
SPEC3

g4 // SPEC ′
3

Proof. The composition of pushouts yields the pushout (1 + 2). Since marking-
strict, injective, and t-partial morphisms are closed under composition respectively,
we have g3 ◦ g1 ∈ E as well as h3 ◦ h2 ∈ E and h1, g4 ∈ I by assumption. Hence,
(1 + 2) is an extension diagram. 2
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Fact 3.7 (Horizontal decomposition of extension diagrams)

Given the diagram below and let the outer square (1 + 2) be an extension diagram
with h1 = h′′1 ◦ h′1, then there exists h′2 : PS′

1 =⇒ PS′
2 yielding the two extension

diagrams (1) and (2) below.

PS0
h′
1 //

g1

��

h1

((

(1)

PS′
1

h′′
1 //

h′
2

��
(2)

PS1

h2

��
PS2 g′

2

//

g2

66PS′
2 g′′

2

// PS3

Proof. For the decomposition we construct (1) as an extension diagram, so it is
pushout and h′2 ∈ E . As (1 + 2) and (1) are pushouts, and (2) with g′′2 as the
induced pushout morphism commutes, we use the pushout decomposition property
to conclude that (2) is pushout as well. As plain, injective morphisms are pushout
stable we have that (1) and (2) are extension diagrams. 2

3.2 Temporal Logic

We use a notation closely related to standard linear time logics (LTL) as e.g. in
[MP95] or [GV03]. For each net we assume a set of atomic propositions AP over
the markings of the net. For a marking m ∈ P⊕ the satisfaction of a atomic
proposition is given if the proposition p is true for m.

A LTL formula is an element of the language

f := p |¬ f | f ∧ f |X f | f U f

constructed out of atomic propositions p to which boolean connections ¬ (negation)
and ∧ (conjunction), as well as the temporal operators ”until” U and ”next” X
are applied.
Since a LTL requires runs of a system we now define runs of a PT system (N, m̂)
as an infinite sequence of markings δ := m0 · m1 · m2 · ... where m0 = m̂ is the
initial marking. Either we have some t ∈ T for each i ≥ 0 so that mi[t > mi+1 or
we repeat the last marking, i.e. if there is no t ∈ T such that mi[t > mi+1 then
mj = mi for all j > i.

We assume a set of atomic propositions AP on markings, so that for each marking π :
P⊕ → 2AP assigns truth values to the propositions. Thereby we have π(m)(p ) =
true for p ∈ AP and m ∈ P⊕ is denoted by p ∈ π(m).
Then we define inductively for formulas f :

• for an atomic proposition (δ, j) |= p iff p ∈ π(mj) for p ∈ AP

• for the boolean operators (δ, j) |= ¬ f ∈ AP iff not (δ, j) |= f
(δ, j) |= f1 ∧ f2 ∈ AP iff (δ, j) |= f1 and (δ, j) |= f2

10
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• for the until operator (δ, j) |= f1 U f2 iff
there is some k ≥ j with (δ, k) |= f2
and for all j ≤ i ≤ k holds (δ, i) |= f1

• for the next operator (δ, j) |= X f iff (δ, j + 1) |= f

We abbreviate formulas using the usual boolean operators as they can be defined
using the negation and the conjunction. Analogously we can define further
temporal operators as ”eventually” or ”future” F by F f := trueU f and the
operator ”always” or ”globally” G f := ¬F¬ f . The set of all LTL formulas with
respect to the set of atomic propositions AP is denoted by F.

A net system (N, m̂) |= f satisfies an LTL formula f ∈ F if for all runs δ of (N, m̂)
we have (δ, 0) |= f .

Definition 3.8 (Underlying logic for PT system components)
The underlying temporal logic (F, |=) over the net N consist of the formulas F over
the net N and the relation |=N⊆ N×F where N = {(N, m̂)|m̂ ∈ P⊕} the set of all
PT systems consisting of the net N and some initial marking m̂ ∈ P⊕.

Next we define the translation of LTL formulas based on a mapping of the atomic
propositions that is compatible with the mapping of the places and show then to
be compatible with the composition of morphisms as required in Def. 2.6.

Definition 3.9 (Translation of a formula)
Given PT systems (Ni, m̂i) with atomic propositions APi and πi : P⊕

i → APi for
1 ≤ i ≤ 2, a morphism h : PS1 → PS2, and a mapping of the atomic propositions
hAP : AP1 → AP2 that is compatible with the mapping of the places, i.e. π2 ◦h⊕P =
hAP ◦ π1, then we define Th : FAP1 → FAP2 inductively:

• for atomic propositions Th(p ) := hAP (p )
• for the boolean operators Th(¬ f ) := ¬Th( f )

Th( f1 ∧ f2 ) := Th( f1 ) ∧ Th( f2 )
• for the until operator Th( f1 U f2 ) := Th( f1 )UTh( f2 )
• for the next operator Th(X f ) := XTh( f )
• for the eventually operator Th(F f ) := FTh( f )
• for the always operator Th(G f ) := GTh( f )

Fact 3.10 (Composition of Translation)

Given mappings of atomic propositions hAP : AP1 → AP2 and gAP : AP2 → AP3

compatible with h : PS1 → PS2 and g : PS2 → PS3, then we have Tg ◦ Th = Tg◦h.

Proof. We have compatibility of g ◦ h : PS1 → PS3 with π1 and π3 due to π3 ◦
(gP ◦ hP )⊕ = gAP ◦ π2 ◦ h⊕P = gAP ◦ hAP ◦ π1. Moreover (g ◦ h)AP = gAP ◦ hAP , so
we can prove inductively the composition of the translations. 2

Results 3.11 (Component-based Verification) We now have

• PT system components with guarantees (see Def. 2.9), and
• hierarchical composition propagating guarantees (see Def. 2.12).
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Due to the fact that PT systems are an instantiation of the generic component
framework in Sect. 2.

3.3 Example

In this section we give an example to illustrate our approach. The example is
merely a structural example without a specific meaning. For the practical impact
of this approach see the discussion in Section 4 or [PK07].

In our example the set AP of of atomic propositions on markings of a PT system
(N, m̂) with places P is given by AP = N × P and for each marking m : P → N
we have π(m) = {(m(p), p)|p ∈ P}. This means (n, p) ∈ AP is true under marking
m if n = m(p). This allows the definition of the mapping hAP : AP1 → AP2 with
hAP (n, p) = (n, hP (p)). This mapping is well-defined as translations are given for
E-morphisms only, so hP is injective.
In Fig. 2 we consider a component Comp1 = (IMP1, EXP1, BOD1, ρ1, γ1) where
the export statement γ1 := (G F p5) ensures that the marking with one token on
place p5 is always reachable in any extension of BOD1, provided that the corre-
sponding extension of the import behaves like the transition t2, i.e. once there is
a token on the pre-place eventually there will be a token on the post-place and it
will stay there. This is denoted by the import requirement ρ1 := (p3⇒⇒⇒ F G p4).
This excludes refinements of the import where for example a transition removes the
token from place p4, or where a transition puts more than one token to place p4.
In the subsequent figures morphisms are indicated by identical names of places and
transitions. Those nodes that are not in the codomain of a morphism remain without
a name. So, the morphisms are all inclusions and the translations of formulas are
identities and hence omitted in this example.
Fig. 3 depicts the component Comp2 = (IMP2, EXP2, BOD2, ρ2, γ2) where ρ2 :=
(p1 ⇒⇒⇒ F G p2) expresses that if there is one token on place p1 then eventually
there will be one token on place p2 and it will stay there. The export statement
γ2 := (p3⇒⇒⇒ F G p4) states the same for the places p3 and p4.

Fig. 1. Arbitrary extension of BOD1

Both components Comp1 and
Comp2 are components with guar-
antees, that is the import-export
implications hold for arbitrary
extensions. The body of Comp1 still
satisfies γ1 if the import is extended
by an arbitrary PT system PTS

in such a way that if a token is on
place p3 then there will be a token
on place p4 and it will stay there. This is quite obvious and the argument is
given here informally: by construction of the extension diagram the PT system
PTS will be glued into the PT system BOD1 as sketched in Fig. 1 and this PT
system will still satisfy the temporal logic formula γ1 := (G F p5) provided the PT
system PTS satisfies ρ1 := (p3⇒⇒⇒ F G p4). The argument that component Comp2

satisfies its import-export implication is similar.
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Fig. 2. Comp1 Fig. 3. Comp2

Fig. 4. Comp3

The composition of
the two components
Comp1 ◦con Comp2 = Comp3 =
(IMP2, EXP1, BOD3, ρ2, γ1)
is depicted in Fig. 4. It is
achieved by gluing the bodies
BOD1 and BOD2 along IMP1

resulting in BOD3. The con-
necting transformation maps
the system (IMP1, m̂I1) to the
system (EXP2, m̂E2) regardless
of the markings.
The component Comp3 now
guarantees that a marking with
a token on place p5 can be al-
ways reached again, provided the
extension of the import satisfies
the import requirement that a to-
ken on place p1 implies that there
is eventually a token on place p2
and it will stay there. Note that
a token in the initial marking of
the body needs not be represented in the export as well. In that case it is indepen-
dent of the environment and has to be preserved. The marked place in the middle
of BOD2 in component Comp2 (in Fig. 3) is preserved by the composition and is

13
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still marked in BOD3 in component Comp3. If a token in the initial marking of the
body is represented in the export as well, then it may be dependent on the importing
component, and hence needs to be deleted by the composition. So, a token in the
initial marking of the export can be either one that is required by the component
importing it or it is provided by the firing of the importing component. This is for
the imported component indistinguishable. Either the token is represented in the
initial marking of the import of the importing component then it is preserved, or it
is not represented in the import then it is deleted. So, ”pseudo-initial” tokens are
eliminated by the construction of the extension diagram. The token on place p3 in
BOD2 and EXP2 is an example therefore.

3.4 Open Questions

As this paper is a first step towards component verification in the generic component
framework open questions are still left, e.g.:

• Translation of formulas
In this approach here we use a translation that is defined place-wise. It is a
straightforward approach that it easy to follow. But it has the drawback that the
initial markings are not necessarily mapped onto each other. So, for example the
formula γ1 := (G F p5) states that the system (EXP1, m̂E1) is reversible. But
for the system (BOD3, m̂B3) this formula does not state reversibility.

• Quantifiers
In order to translate formulas with quantifiers the scope of the formula needs to be
extended according to the target system. Then it would be possible to translate
formulas that deal with all reachable markings or all transitions, as needed for
example for liveness.

• Satisfaction of import-export implications
Since the import-export implications have to hold for arbitrary extensions the
techniques for model checking cannot be applied. In the examples this has not
yet been a problem. But for larger applications some proof technique would be
very desirable.

4 Conclusion

Summarizing, we have an assume-guarantee approach to component-based veri-
fication that is independent of the underlying specification technique. Formally,
a component is given by three specifications, the body specification, the import
and the export interface. To express properties of components, an appropriate
logic formalism has to be required that allows expressing the desired properties. A
component is then equipped with two additional logic formulas that represent the
import-export implication. The import assumptions describe in an abstract way the
properties the underlying component needs to have to ensure the desired behavior.
Then the export guarantees some property denoted by the export statement. Hi-
erarchical composition allows concluding the import-export implication where the
providing component’s import assumption implies the requiring component’s export
statement.

14
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4.1 Related work

In model checking the typical approach to verification of components is to check
the properties for all possible environments. But there are various approaches,
e.g. [IWY00,dAH01,GPB02] that share the underlying hypothesis that the required
property can be achieved only in specific environments. In [GPB02] a framework
for assume-guarantee paradigm is introduced that uses labeled transition systems
to model the behavior of communicating components in a concurrent system. In
[dAH01] the interfaces are modeled using input/output automata. The parallel
composition of the interfaces is given and criteria for the compatibility are presented,
but this approach merely concerns the interfaces. In [IWY00] certain properties,
as deadlock freedom are checked based on assumptions that the component makes
about the expected interaction behavior of other components.
In [BM07] concurrent automata are introduced that describe the concurrent behav-
ior of input and output ports in terms of their operations. Considering the automata
as the components body and the input ans output ports as the import and export in-
terfaces, respectively, maybe allows fitting this approach into the general framework
presented in this paper.

4.2 Practical Impact

The area of controls for discrete event based systems needs an approach of model-
ing and structuring systems as well as the verification of the systems properties. In
[PK07] we propose to model and verify system properties of discrete event based
systems using Petri nets components. Based on import-export implications of Petri
net components the temporal logic formula given in the export interface is guaran-
teed independently of the component’s environment. We investigate the approach’s
feasibility for controlling a technical system and describe parts of a model plant for
a packing process using Petri net components. The verification of basic properties
makes use of the hierarchical composition and the propagation of the import-export
implications.
The Petri net based sequence controller is modeled using the tool Netlab [Net07]
which is a modeling, analysis and simulation environment that also supports the de-
sign and synthesis of discrete event - or hybrid systems under Matlab/Simulink. Net-
lab is a graphic P/T net editor, that allows loading and saving in PNML [OKA06].
We intend to add structuring and verification means to Netlab based on Petri net
components as introduced in this paper.
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