
Generating Domain-Specific Model Editors with
Complex Editing Commands

Gabriele Taentzer1, André Crema2, René Schmutzler2, and Claudia Ermel2

1 Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany
{crema, reneschm, lieske}@cs.tu-berlin.de

Abstract. Domain specific modeling languages are of increasing impor-
tance for the development of software and other systems. Meta tools are
needed to support rapid development of domain-specific solutions. Using
the Eclipse Graphical Modeling Framework (GMF), modeling languages
are defined by providing a meta model using the MOF/EMF approach.
Up to now, GMF provides basic editing commands only. It does not sup-
port the definition of complex editing commands which would allow e.g.
to insert a complex structure into a diagram in one step. As practical
tool support for the design and generation of visual editors with complex
editing operations based on graph transformation, an extended version
of GMF has been developed and is presented in this paper.

1 Introduction

In software system development, domain-specific visual notations are increas-
ingly used and need a tool environment consisting of visual editors, simulators,
model transformers, etc. Several Eclipse projects head for a meta technology to
define domain-specific modeling languages. The Eclipse Modeling Framework
(EMF) [5] can be used to define the underlying models of visual editors. Given
an EMF model, a set of Java classes for manipulating the model and a basic,
tree based editor for model instances are generated. The generated classes pro-
vide CRUD functionality for model elements. To realize a graphical editor, the
editor code may be hand-coded on the basis of GEF, the Eclipse Graphical Ed-
itor Framework [3], which offers basic and advanced editor functionalities.As an-
other alternative, a visual editor may be generated using the Graphical Modeling
Framework (GMF) [4] which started recently as Eclipse technology subproject
aiming at providing an infrastructure for generating visual editors in Eclipse.
In essence, GMF forms a bridge between EMF and GEF, whereby a diagram
definition is linked to a domain model which serves as input to the generation
of a visual editor.

GMF-generated editors offer basic editing commands to create, edit, move
and delete single model elements (basic editing). Graph transformation-based
editors (see e.g. Tiger [7]) show that the generation of editors with complex



editing commands is also possible. Editing e.g. control flow graphs, there might
be editing commands available which insert or delete a complete decision struc-
ture in one step.

In the following, we present how meta model-based editor design and gen-
eration performed by GMF, can be extended by graph transformation concepts
to define and generate complex editing commands to be used in GMF-generated
visual editors.

2 Examples for Complex Editing Commands

Activity diagrams are used to describe the control flow within a system, based
on activities. In the following, we consider the editor generation process for a
simple variant of activity diagrams consisting of start, end, decision and simple
activities.

The visual editor generated by pure GMF (without the extension for complex
editing commands) is shown in Fig. 4 (a). It contains an example for an activity
diagram with different kinds of activities mentioned above. We used the usual
design process for visual editors offered by GMF. Considering the palette on the
right of the generated editor, we notice that creation commands for each of the
model elements are offered. Moreover, the context menus contain commands for
editing and deleting model elements. Up to now, there is no way to design and
generate more complex editing commands.

Complex editing commands for activity diagrams can help to easily edit the
diagrams in mind. For example, a well-formed activity diagram contains at least
one start and one end activity. Moreover, well-formed activity diagrams contain
decision branches which are explicitly merged by a decision activity, only. An
example for a well-formed activity diagram is shown in Fig. 4.

Fig. 1. Specification of complex editing commands

Fig. 1 shows the before and after patterns for sample complex editing com-
mands. We define one editing command CreateStartGraph to generate the start
diagram which consists of exactly one start and one end activity, connected by a
next-relation. This command is executable in the empty editor panel only. Edit-
ing command AddSimple inserts a simple activity after another activity, where

is a symbol for an abstract figure which stands for one of the following



concrete figures (start activity) or (simple activity). The name of
the new activity is given by input parameter n. Please note that the source ac-
tivity of next-relation 2 changes after insertion. Editing command AddDecision
replaces a simple activity by a decision activity with two branches. Each branch
contains one simple activity. The branches are merged afterwards by another
decision activity. The AddDecision command has four input parameters: two
arc inscriptions x and y, and two names n and m for the new simple activities
in both branches.

3 Extending GMF by Complex Editing Commands

In this section, we discuss how GMF-based editor generation can be extended
by graph transformation concepts supporting the specification of complex editor
commands.

3.1 Extension of the GMF Development Environment

A language model is described in GMF by defining an EMF model, the so-called
domain model, while the layout is specified in the graphical definition model. Now,
an additional visual editor for defining complex editing commands is provided,
where EMF transformation rules for complex editing commands can be defined
as transformation rules based on the domain model. This step is optional. The
tooling definition model is used to define the commands for the editor palette.
After having defined all these models separately, the mapping model establishes
a connection between them and is the input for the generation process. Fig. 2
shows an overview of the design workflow in the extended GMF using a dash-
board, where the original GMF workflow is extended by the specification of a
Transformation Rule Model.

Fig. 2. GMF dashboard extended by transformation rule model for editing commands



Before discussing the specification of concrete editing commands, we present
the EMF model transformation approach [1] used to manipulate the underlying
EMF models. The transformation concept is closely related to algebraic graph
transformation. The main reason for this design decision is the basic opportunity
to validate EMF model transformations on the basis of graph transformation.
Basically, an EMF transformation is a rule-based modification of an EMF source
model resulting in an EMF target model. Both, the EMF source and target
models are typed over an EMF core model. All modifications are made in-place,
i.e. the source model is not copied before modification. For efficient execution of
model transformations, the rules can be translated to Java code to be integrated
into generated EMF classes. Fig. 3 shows a designer for EMF transformations
where the underlying meta model is depicted at the bottom and one of the
transformation rules, i.e. a rule for inserting a start diagram, is shown at the
top. A negative application condition ensures that this rule is applied only to
the empty activity diagram. After having defined all editing commands needed
analogously, all those which should show up in the palette have to be identified
in the GMF tooling model, and the GMF mapping model is extended by the
definition of the transformation model.

Fig. 3. Tool environment for EMF transformation

3.2 Extension of the GMF Runtime Environment

The editor generation process in the extended GMF version results in an editor
as shown in Fig. 4 (b) where default editing operations as well as specifically



designed ones are provided by the palette. Please note that the editor designer
selects those commands to be included in the palette.

Fig. 4. Generated editors for activity diagrams without (a) and with (b) complex
editing commands

We describe the usage of the generated editor in the extended GMF version
along our running example. A sequence of steps to create our sample activity
diagram are shown in Fig. 5. In step 1, we start with an empty editor panel
and select command CreateStartGraph from the palette. Immediately, the start
activity diagram appears in the editor panel. Step 2 selects command AddSimple
to add a simple activity node. This node is added after the start activity, because
the negative application condition of the rule forbids to insert an activity node
after a final node. Since we have only one non-final activity node, the location
to apply this command is unique in the current situation. In Step 3, we select
command AddSimple again, but this time it can be applied at two locations: the
new activity node can be inserted either after the start activity, again, or after the
new simple activity node named “First”. Thus, instead of applying the rule, the
editor now highlights the two possible locations. In step 4, one of the highlighted
nodes is selected per mouse click, and the command is applied accordingly. Step
5 combines two atomic steps: command InsDecision is selected, and the activity
nodes “First” and “Second” are clicked on to specify between which two activity
nodes the complete decision structure is to be inserted. Afterwards, in step 5,
command DeleteSimple is selected in the palette. This leads to two activity nodes
being highlighted, which may be deleted by the rule.



Fig. 5. Editing steps using complex editing operations in extended GMF

4 Conclusion

In this paper, we presented an approach generating visual editors by GMF ex-
tended by complex editing commands. Thus, using pure GMF, a visual editor
can be generated which offers basic editor commands for each model element
only. For the generation of complex editor commands an additional model is
needed. We use EMF transformation rules to formulate commands based on the
given domain model. To the best of our knowledge, no other meta CASE tool
based on meta models offers the possibility to define complex editing commands.

Besides pure editing commands, also model optimizations such as model
refactorings, may be realized with the proposed approach. Moreover, simulation
of behaviour models can be defined by this approach. Thus, this work can be
considered as a starting point for the generation of powerful and flexible domain-
specific visual editors in Eclipse.

References

1. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. In:
Model Driven Engineering Languages and Systems, 9th International Conference,
MoDELS 2006. LNCS, Springer, 2006. http://tfs.cs.tu-berlin.de/emftrans

2. Eclipse Consortium, Eclipse, 2006, available at http://www.eclipse.org.
3. Eclipse Consortium, Eclipse Graphical Editing Framework (GEF), 2006, available

at http://www.eclipse.org/gef.
4. Eclipse Consortium, Eclipse Graphical Modeling Framework (GMF), 2006, avail-

able at http://www.eclipse.org/gmf.
5. Eclipse Consortium, Eclipse Modeling Framework (EMF), 2006, available at http:

//www.eclipse.org/emf.
6. Ehrig, K. and Ermel, C. and Hänsgen, S. and Taentzer, G., Generation of Visual

Editors as Eclipse-Plugins. Automated Software Engineering’05, IEEE Computer
Society, 2005, http://tfs.cs.tu-berlin.de/~tigerprj.


