
Semantical Correctness and Completeness

of Model Transformations
Using Graph and Rule Transformation

Hartmut Ehrig and Claudia Ermel

Department of Theoretical Computer Science and Software Technology
Technische Universität Berlin

ehrig@cs.tu-berlin.de, claudia.ermel@tu-berlin.de

Abstract. An important requirement of model transformations is the
preservation of the behavior of the original model. A model transforma-
tion is semantically correct if for each simulation run of the source system
we find a corresponding simulation run in the target system. Analogously,
we have semantical completeness, if for each simulation run of the target
system we find a corresponding simulation run in the source system.

In our framework of graph transformation, models are given by graphs,
and graph transformation rules are used to define the operational behav-
ior of visual models (called simulation rules). In order to compare the
semantics of source and target models, we assume that in both cases op-
erational behavior can be defined by simulation rules. The model trans-
formation from source to target models is given by another set of graph
transformation rules. These rules are also applied to the simulation rules
of the source model. The main result in this paper states the condi-
tions for model and rule transformations to be semantically correct and
complete. The result is applied to analyze the behavior of a model trans-
formation from a domain-specific visual language for production systems
to Petri nets.

1 Introduction

In recent years, visual models represented by graphs have become very popular
in model-based software development. The shift of paradigm from pure program-
ming to visual modeling and model-driven development (MDD) led to a variety
of domain-specific modeling languages (DSMLs) on the one hand, but also to
a wide-spread use of general diagrammatic modeling languages such as UML
and Petri nets. DSMLs provide an intuitive, yet precise way in order to express
and reason about concepts at their natural level of abstraction. Starting with
a domain-specific model, model transformation is the key technology of MDD
and serves a variety of purposes, including the refinements of models, their map-
ping to implementations and/or semantic domains, consistency management and
model evolution. For example, a complete design and analysis process involves
designing the system using the design language, transforming it into the analysis
language, and performing the verification and analysis on the analysis model.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 194–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Semantical Correctness and Completeness of Model Transformations 195

In such a scenario, it is very important that the transformation preserves the
semantics of the design model.

In this paper we study semantical correctness and completeness of model
transformations provided that the source and the target languages have already
a formal semantics. Approaches exist where semantic equivalence between one
source model and its transformed target model is shown using bisimulation. In
the approach of Karsai et al. [1] the particular transformation resulted in an
output model that preserves the semantics of the input model with respect to
a particular property. However, analogously to syntactical correctness proofs, it
is desirable to have a more general concept for showing semantical correctness
and completeness of a model transformation, independent of concrete source
models.

This paper discusses an approach to verify semantical correctness of model
transformations on the level of model transformation rules. Basically, semantical
correctness of a model transformation means that for each simulation sequence
of the source system we find a corresponding simulation sequence in the tar-
get system. Vice versa, we have semantical completeness, if for each simulation
sequence in the target system there is a corresponding sequence simulating the
source model. In order to compare the semantics of the source and target models,
we assume that in both cases operational behavior can be defined by simulation
graph rules. We then apply the model transformation to the simulation rules of
the source model, leading to a so-called rule transformation. The resulting rules
are compared to the given simulation rules of the target language.

The main result in this paper states the conditions for model and rule transfor-
mations to be semantically correct and complete. The paper generalizes and ex-
tends results from simulation-to-animation model and rule transformation (S2A
transformation), which realizes a consistent mapping from simulation steps in
a behavioral modeling language to animation steps in a more suitable domain-
specific visualization [2,3,4]. The result is applied to analyze the behavior of a
model and rule transformation from a domain-specific language for production
systems to Petri nets.

The structure of the paper is as follows: In Section 2, our running example, a
domain-specific visual language for production systems, is introduced. Section 3
reviews the basic concepts of model and rule transformation based on graph
transformation. In Section 4, the notions semantical correctness and semantical
completeness of model transformations are formally defined, and conditions are
elaborated for correct and complete model transformations defined by graph
rules. The main result is applied to our running example, showing that the model
and rule transformation from production systems to Petri nets is semantically
correct and complete. The result of the rule transformation is compared with the
given simulation rules of the target language of Petri nets. Section 5 discusses
related work, and Section 6 concludes the paper. Please note that the long version
of this paper, the technical report [5], contains the complete case study as well
as all definitions and full proofs of the theorems presented in this paper.

196 H. Ehrig and C. Ermel

2 Example: Simulation of Production Systems

In this section we provide a description of a DSML for production systems and
its operational semantics using graph transformation rules (a slightly simplified
version of the DSML presented in [6]). Note that the rules are shown in con-
crete syntax, thus making the expression of operational semantics intuitive and
domain-specific. Fig. 1 shows in the upper part a type graph for the production
system language. The language contains different kinds of machines, which can
be connected through conveyors. Human operators are needed to operate the ma-
chines, which consume and produce different types of pieces from/to conveyors.
Conveyors can also be connected. The lower part of Fig. 1 shows a production
system model (a graph typed over the type graph above) using a visual concrete
syntax. The model contains six machines (one of each type), two operators, six
conveyors and four pieces. Machines are represented as boxes, except generators,
which are depicted as semi-circles with the kind of piece they generate written
inside. Operators are shown as circles, conveyors as lattice boxes, and each kind
of piece has its own shape. Two operators are currently operating a generator of
cylindrical pieces and a packaging machine respectively.

Fig. 1. Type Graph for Producer Systems and Instance Graph

Fig. 2 shows some of the graph transformation rules that describe the opera-
tional semantics for production systems. Rule assemble specifies the behaviour of
an assembler machine, which converts one cylinder and a bar into an assembled
piece. The rule can be applied if every specified element (except those marked
as {new}) can be found in the model. When such an occurrence is found, then
the elements marked as {del} are deleted, and the elements marked as {new}
are created. Note that even if we depict rules using this compact notation, we
use the DPO formalization in our graph transformation rules. In practice, this
means that a rule cannot be applied if it deletes a node but not all its adjacent
edges. In addition, we consider only injective matches. Rule genCylinder models

Semantical Correctness and Completeness of Model Transformations 197

Fig. 2. Some Simulation Rules for Production Systems

the generation of a piece of kind cylinder which requires that the cylinder gen-
erator machine is attended by an operator and connected to a conveyor. Rule
move cyl describes the movement of cylinder pieces through conveyors. Finally,
rule change models the movement of an operator from one machine (of any kind)
to another one. Note that we may use abstract objects in rules (e.g., Machine
is an abstract node type). In this case, the abstract objects in a rule are instan-
tiated to objects of any concrete subclass [7]. Additional rules (not depicted)
model the behaviour of the other machine types.

3 Basic Concepts of Model and Rule Transformation

In this section, we define model transformation by graph and rule transformation
based on visual language specifications as typed graph transformation systems.

3.1 Visual Languages and Simulation

We use typed algebraic graph transformation systems (TGTS) in the double-
pushout-approach (DPO) [8] which have proven to be an adequate formalism
for visual language (VL) modeling. A VL is modeled by a type graph capturing
the underlying visual alphabet, i.e. the symbols and relations which are available.
Sentences or diagrams of the VL are given by graphs typed over the type graph.
We distinguish abstract and concrete syntax in alphabets and models, where the
concrete syntax includes the abstract symbols and relations, and additionally
defines graphics for their visualization. Formally, a VL can be considered as a
subclass of graphs typed over a type graph TG in the category GraphsTG.

For behavioral diagrams, an operational semantics can be given by a set of
simulation rules PS , using the abstract syntax of the modeling VL, defined by
simulation type graph TGS. A simulation rule p = (L← K → R) ∈ PS is a TGS-
typed graph transformation rule, consisting of a left-hand side L, an interface K,
a right-hand side R, and two injective morphisms. In the case L = K, the rule
is called non-deleting. Applying rule p to a graph G means to find a match of
L

m−→ G and to replace the occurrence m(L) of L in G by R leading to the target

graph G′. Such a graph transformation step is denoted by G
(p,m)
=⇒ G′, or simply

by G⇒ G′. In the DPO approach, the deletion of m(L) and the addition of R are
described by two pushouts (a DPO) in the category GraphsTG of typed graphs.
A rule p may be extended by a set of negative application conditions (NACs)
[8], describing situations in which the rule should not be applied to G. Formally,

198 H. Ehrig and C. Ermel

match L
m−→ G satisfies NAC L

n−→ N if there does not exist an injective graph
morphism N

x−→ G with x ◦ n = m. A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of
graph transformation steps is called transformation and denoted as G0

∗⇒ Gn. A
transformation G0

∗⇒ Gn, where rules from P are applied as long as possible, (i.e.
as long as matches can be found satisfying the NACs), is denoted by G0

P !=⇒ Gn.
We regard a model’s simulation language V LS, typed over simulation alphabet
TGS, as a sublanguage of the modeling language V L, so that all diagrams GS ∈
V LS represent different states of the same model during simulation. Based on
V LS, the operational semantics of a model is given by a simulation specification.

Definition 1 (Simulation Specification). Given a visual language VLS

typed over TGS, i.e. VLS ⊆ GraphsTGS , a simulation specification SimSpecVLS

= (VLS , PS) over VLS is given by a typed graph transformation system (TGS , PS)
so that VLS is closed under simulation steps, i.e. GS ∈ VLS and GS ⇒ HS via
pS ∈ PS implies HS ∈ VLS . The rules pS ∈ PS are called simulation rules.

Example 1. The simulation specification SimSpecV LS = (VLS , PS) for the pro-
duction system consists of the visual language VLS typed over TGS, where TGS

is the type graph shown in the upper part of Fig. 1, PS is the set of simulation
rules partly shown in Fig. 2, and VLS consists of all graphs that can occur in
any production system simulation scenario, e.g. the instance graph shown in the
lower part of Fig. 1 is one element of V LS .

We divide a model and rule transformation from a source to a target simula-
tion specification into two phases: in the first phase (called S2I transformation
phase), non-deleting graph transformation rules are applied to the source model
and to the source language simulation rules and add elements from the target
language to the source model and rule graphs. The result is an integrated simula-
tion specification, i.e. the resulting integrated model and simulation rules contain
both source and target model elements. The second phase (called I2T transfor-
mation phase) restricts the integrated model and the integrated simulation rules
to the type graph of the target language.

3.2 S2I Model and Rule Transformation

In order to transform a source simulation specification SimSpecV LS to an inte-
grated source-target simulation specification SimSpecV LI where V LI contains
at least V LS and V LT , we define an S2I transformation S2I = (S2IM ,S2IR)
consisting of a model transformation S2IM , and a corresponding rule transfor-
mation S2IR. The S2IM transformation applies model transformation rules from
a rule set Q to each GS ∈ V LS as long as possible (denoted by GS

Q !
=⇒ GI).

The applications of the model transformation rules add symbols from the target
language to the model state graphs. The resulting set of graphs GI comprises
the source-and-target integration language V LI .

Definition 2 (Model Transformation S2IM). Given a simulation specifica-
tion SimSpecV LS = (V LS , PS) with VLS typed over TGS and a type graph TGI,

Semantical Correctness and Completeness of Model Transformations 199

Fig. 3. Type Graph TGI for the ProdSystem2PetriNet Model Transformation

called integration type graph, with TGS ⊆ TGI, then a model transformation
S2IM : V LS → V LI is given by S2IM = (VLS , TGI , Q) where (TGI , Q) is a
typed graph transformation system with non-deleting rules q ∈ Q, and S2IM -
transformations GS

Q !
=⇒ GI with GS ∈ VLS . The integrated language VLI is

defined by VLI = {GI | ∃ GS ∈ VLS ∧ GS
Q !
=⇒ GI}. This means, GS

Q !
=⇒ GI

implies GS ∈ VLS and GI ∈ VLI .

Example 2. The integrated visual language V LI for the model transformation
from production systems to Petri nets is defined by the integrated type graph
TGI in Fig. 3. The subtypes of Machine and Piece are not depicted since they
are not needed in our model transformation rules. Machines and conveyors are
mapped to places; pieces and operators are elements moving from one place-like
element to another and hence mapped to tokens. Connections between conveyors
or between machines and conveyors which indicate the way token-like elements
are transported, are mapped to transitions.

The model transformation rules Q are shown in Fig. 4.
Rules mach2place and conv2place generate places for machines and convey-

ors. A conveyor is transformed to four different places, realizing a flattening from
our model with distinct piece types to a P/T net with indistinguishable tokens.

Fig. 4. ProdSystem2PetriNet Model Transformation Rules

200 H. Ehrig and C. Ermel

Distinguishing the pieces is realized in the P/T net by placing them in distinct
places. Rules op2tk and piece2tk generate tokens for operators and pieces on
the places associated to their respective machines or conveyors. Transitions are
generated for each connection between two conveyors (rule transport2tr) or be-
tween a machine and a conveyor (rules in2tr and out2tr). Two more rules (not
depicted) exist which are applicable only if a machine is already connected to
a transition and which just add an arc connecting the existing transition to an
additional conveyor place. A machine’s transition is always connected by a dou-
ble arc to the machine’s place to ensure that a machine is working only if an
operator is present.

The result of an S2IM -transformation is illustrated in Fig. 5, where a part from
the model in Fig. 1 has been transformed, applying the model transformation
rules in Fig. 4 as long as possible, but at most once at the same match. Our
aim in this paper is not only to transform model states but to obtain a complete
integrated simulation specification, including simulation rules, from the source
simulation specification. In [5] we review a construction from [3,2], allowing us to
apply the S2I transformation rules from Q also to the simulation rules, resulting
in a set of integrated simulation rules. Basically, the model transformation rules
are applied to each graph of a simulation rule pS = (LS ← KS → RS) as long
as possible, resulting in an integrated simulation rule pI = (LI ← KI → RI).
In [5] we define rule transformation for the case without NACs. An extension
to NACs is given in [3,2]. Based on this definition of rule transformation, we
now define an S2IR transformation of rules, leading to an S2I transformation
S2I = (S2IM ,S2IR) from the source simulation specification SimSpecV LS to the
integrated simulation specification SimSpecV LI .

Definition 3 (Rule Transformation S2IR). Given a simulation specification
SimSpecV LS = (VLS , PS) and an S2IM -transformation S2IM = (VLS , TGI , Q),
then a rule transformation S2IR : PS → PI is given by S2IR = (PS , TGI , Q)

and S2IR transformation sequence pS
Q !��� pI with pS ∈ PS, where rule trans-

formation steps p1
q ��� p2 with q ∈ Q (see [5]) are applied as long as pos-

sible. The integrated simulation rules PI are defined by PI = {pI | ∃ pS ∈
PS ∧ pS

Q !��� pI }. This means pS
Q !� �� pI implies pS ∈ PS and pI ∈ PI .

Fig. 5. ProdSystem2PetriNet: S2IM Model Transformation Result

Semantical Correctness and Completeness of Model Transformations 201

Definition 4 (S2I Transformation, Integrated Simulation Specifica-
tion). Given SimSpecV LS = (VLS , PS), an S2IM transformation S2IM : VLS

→ VLI and an S2IR transformation S2IR : PS → PI , then

1. S2I : SimSpecV LS → SimuSpecV LI , defined by S2I = (S2IM ,S2IR) is
called S2I transformation.

2. SimSpecV LI = (VLI , PI) is called integrated simulation specification, and
each transformation step GI

pI=⇒ HI with GI , HI ∈ VLI and pI ∈ PI is
called integrated simulation step.

Example 3. Fig.6 shows three integrated simulation rules, the result of S2IR
transformation, i.e. of applying the model transformation rules from Fig. 4 to
the source simulation rules genCylinder, move cyl and change from Fig. 2.

3.3 I2T Transformation

In the I2T transformationphase, we start with the integrated simulation specifica-
tionSimuSpecV LI andgenerate the target simulation specificationSimuSpecV LT

by restricting the integrated model graph and the integrated simulation rules to
the type graph of the target language.

Definition 5 (I2T Transformation and Target Simulation Specifica-
tion). Given an S2I transformation S2I : SimSpecV LS → SimSpecV LI , then

1. I2T : SimSpecV LI → SimSpecV LT , called I2T transformation, is defined
by I2T = (I2TM : V LI → V LT , I2TR : PI → PT) with
– I2TM (GI) = GI |TGT (called I2TM transformation), and
– I2TR(pI) = pI |TGT (called I2TR transformation).

2. SimSpecV LT = (VLT , PT) with V LT = {GI |TGT | GI ∈ V LI} and PT =
{pI |TGT | pI ∈ PI} is called target simulation specification, and each trans-
formation step GT

pT=⇒ HT with GT , HT ∈ VLT and pT ∈ PT is called
target simulation step.

Example 4. Fig.7 shows the target simulation rules, the result of I2TR transfor-
mation, i.e. of restricting the integrated simulation rules from Fig. 6 to the type
graph of TGT of the target language from Fig. 3 (i.e. the Petri net type graph).

Fig. 6. Some Integrated Simulation Rules resulting from S2IR Transformation

202 H. Ehrig and C. Ermel

Fig. 7. Some Target Simulation Rules resulting from I2TR Transformation

We now can define the complete S2T model and rule transformation by com-
bining the two transformation phases S2I and I2T .

Definition 6 (S2T Transformation). Given an S2I transformation S2I :
SimSpecV LS → SimSpecV LI , and an I2T transformation I2T : SimSpecV LI →
SimSpecV LT , then S2T : SimSpecV LS → SimSpecV LT , called S2T transforma-
tion, is defined by S2T = (S2TM : V LS → V LT ,S2TR : PS → PT) with

– S2TM = I2TM ◦ S2IM (called S2TM transformation), and
– S2TR = I2TR ◦ S2IR (called S2TR transformation).

4 Semantical Correctness and Completeness of Model
and Rule Transformations

4.1 Semantical Correctness of S2I Transformations

In our case, semantical correctness of an S2I transformation means that for each
simulation step GS

pS=⇒ HS there is a corresponding simulation step GI
pI=⇒ HI

where GI (resp. HI) are obtained by model transformation from GS (resp. HS),
and pI by rule transformation from pS . Note that instead of a single step GI

pI=⇒
HI we can also handle more general sequences GI

∗=⇒ HI using concurrent rules
and transformations. In [3], it is shown that the following properties have to be
fulfilled by an S2I -transformation in order to be semantically correct:

Definition 7 (Termination of S2IM and Rule Compatibility of S2I)
An S2IM transformation S2IM : VLS → VLI is terminating if each transfor-
mation GS

Q ∗
=⇒ Gn can be extended to GS

Q ∗
=⇒ Gn

Q ∗
=⇒ Gm such that no q ∈ Q

is applicable to Gm anymore. An S2I -transformation S2I = (S2IM : VLS →
VLI ,S2IR : PS → PA) with S2IM = (VLS , TGI , Q) is called rule compatible,
if for all pI ∈ PI and q ∈ Q we have that pI and q are parallel and sequential
independent. More precisely, for each G

pI=⇒ H with GS
Q ∗
=⇒ G and HS

Q ∗
=⇒ H

for some GS , HS ∈ VLS and each G
q

=⇒ G′ (resp. H
q

=⇒ H ′) we have parallel
(resp. sequential) independence of G

pI=⇒ H and G
q

=⇒ G′ (resp. H
q

=⇒ H ′).

Theorem 1 (Semantical Correctness of S2I)
Given an S2I -transformation S2I : SimSpecV LS → SimSpecV LI with S2I =
(S2IM : VLS → VLI ,S2IR : PS → PI) which is rule compatible, and S2IM

Semantical Correctness and Completeness of Model Transformations 203

is terminating. Then, S2I is semantically correct in the sense that we have for

each simulation step GS
pS=⇒ HS with GS ∈ VLS and each

S2IR-transformation sequence pS
Q !��� pI (see Def. 3):

1. S2IM -transformation sequences
GS

Q !
=⇒ GI and HS

Q !
=⇒ HI , and

2. an integrated simulation step GI
pI=⇒ HI

GS
Q ! ��

pS

��

GI

pI

��

Q ! ���

HS
Q ! �� HI

Proof. (See [5], similar to the proof of Semantical Correctness of S2A in [3]).

Example 5. Our ProdSystem2PetriNet model transformation is terminating,
provided that all model transformation rules are applied at most once at each
possible match. (For automatic model transformations, this can be ensured by
using adequate NACs). Moreover, S2IR is rule compatible since all pI ∈ PI

are parallel and sequentially independent from the model transformation rules
q ∈ Q. This is shown by considering all overlapping matches from a rule pair
(q, pI) into an integrated model GI : Lq

h−→ GI
m←− LI . Each overlap either

is preserved by both rules, or h(Lq) is completely included in m(LI). The first
case is uncritical. In the second case, rule q is not applicable since it has been
applied before at the same match. Hence this overlap cannot lead to a parallel
dependency.

4.2 Semantical Correctness of I2T Transformations

We now consider the semantical correctness of the I2T transformation phase,
which was defined in Def. 5 as the restriction of the integrated model graph and
the integrated simulation rules to the type graph TGT of the target VL.

Theorem 2 (Semantical Correctness of I2T Transformations). Given
an S2I transformation S2I = (S2IM : V LS → V LI ,S2IR : PS → PI) :
SimSpecV LS → SimSpecV LI , and an I2T transformation I2T :SimSpecV LI →
SimSpecV LT defined by I2T = (I2TM , I2TR) according to Def. 5. Then, I2T is
semantically correct in the sense that we have for each
integrated simulation step GI

pI=⇒ HI with GI ∈ VLI and
each I2TR-transformation I2TR(pI) = pI |TGT = pT :

1. I2TM (GI) = GT and I2TM (HI) = HT , and
2. a target simulation step GT

pT=⇒ HT

Proof. See [5].

GI

pI

��

I2TM �� GT

pT

��

I2TR ��

HI
I2TM �� HT

4.3 Semantical Completeness of S2I Transformations

In this section we consider the relation between an integrated simulation speci-
fication SimSpecV LI and the corresponding source simulation specification Sim-
SpecV LS . Similar to the construction of the target simulation specification

204 H. Ehrig and C. Ermel

SimSpecV LT by restriction of SimSpecV LI to TGT , the source simulation spec-
ification SimSpecV LS can be re-constructed by restricting the integrated model
graph and simulation rules to the type graph TGS of the source language.

Definition 8 (I2S Backward Transformation). Given an S2I transforma-
tion S2I : SimSpecV LS→ SimSpecV LI , then I2S : SimSpecV LI→ SimSpecV LS,

called I2S backward transformation, is defined by I2S = (I2SM : V LI →
V LS, I2SR : PI → PS) with

– I2SM (GI) = GI |TGS (called I2SM backward transformation), and
– I2SR(pI) = pI |TGS (called I2SR backward transformation).

The S2I transformation is called faithful if S2IM (GS) = GI implies I2SM (GI) =
GS and S2IR(pS) = pI implies I2SM (pI) = pS .

Remark 1. We call a rule L
q−→ R faithful if the restriction q|TGS is the identity.

It is straightforward (see [5]) to show that the S2I transformation is faithful if
all rules q ∈ Q are faithful.

Theorem 3 (Semantical Completeness of S2I Transformations). Given
a faithful S2I transformation S2I =(S2IM ,S2IR) : SimSpecV LS → SimSpecV LI

and its backward transformation I2S = (I2SM , I2SR) : V LI → V LS , with I2SM :
V LI → V LS and I2SR : PI → PS. Then, S2I is semantically complete in the
sense that we have for each integrated simulation step GI

pI=⇒ HI
with GI , HI ∈ V LI and pI ∈ PI :

1. I2SM (GI) = GS and I2SM (HI) = HS with
S2IM (GS) = GI , S2IM (HS) = HI , and

2. a source simulation step GS
pS=⇒ HS with

I2SR(pI) = pI |TGS = pS and S2IR(pS) = pI .

Proof. See [5].

GI
I2SM ��

pI

��

GS

pS

��

I2SR ��

HI
I2SM �� HS

Example 6. Our ProdSystem2PetriNet model transformation is faithful since all
model transformation rules (see Fig. 4) add only language elements typed over
TGI \ TGS. Hence, the rules are faithful, and the ProdSystem2PetriNet S2I
transformation is semantically complete according to Thm. 3.

4.4 Semantical Completeness of I2T Transformations

Semantical completeness of I2T transformations means that for each simulation
step in the target simulation specification we get a corresponding simulation step
in the integrated simulation specification. We require the following property to
be fulfilled for an I2T transformation in order to be semantically complete. (This
property is discussed for our case study in Example 7.)

Definition 9 (I2T Completeness Condition)
Given a target simulation rule pT ∈ PT , then due to the construction ofSimSpecV LT

by restriction, there exists an integrated simulation rule pI ∈ PI such that pT =

Semantical Correctness and Completeness of Model Transformations 205

pI |TGT . Then, for each target transformation GT

pT=⇒ HT with GT ∈ V LT and context graph DT

and morphism KT → DT we require that there
exists a context graph DI typed over TGI and
morphism KI → DI such that

1. KT → DT is the restriction of KI → DI to
TGT , i.e. that we have two pullbacks in the
diagonal squares in the diagram to the right.

2. For the pushout objects GI and HI in the
front squares we have GI , HI ∈ V LI .

LT

����
�

��

KT
��

��

����
�

�� RT

��

����
�

LI

��

KI
��

��

�� RI

��

GT DT
��

����
�

��

��

HT

GI DI

��

�� �� HI

TGT

����
�

TGI

Theorem 4 (Semantical Completeness of I2T). Each I2T transforma-
tion I2T = (I2TM , I2TR) which satisfies the I2T completeness condition (see
Def. 9) is semantically complete in the sense that for each target transformation
GT

pT=⇒ HT with GT ∈ V LT via simulation rule pT ∈ PT with pT = pI |TGT for
some pI ∈ PI there is an integrated transformation
GI

pI=⇒ HI such that

– GI , HI ∈ V LI

– GT = GI |TGT and HT = HI |TGT ∈ V LT

Proof. See [5].

GI
I2TM

��

pI

��

GT

pT

��

I2TR ��

HI
I2TM �� HT

Example 7. We show that our ProdSystem2PetriNet I2T transformation does
not fulfill the completeness condition and discuss an adaption of the model trans-
formation rules in order to achieve satisfaction of the completeness condition.

Based on the set PT of target rules resulting from the ProdSystem2PetriNet
I2T transformation, we may apply more than one pT ∈ PT to the same GT .
Consider for example the three target rules in Fig. 7. All of them are applicable to
a target graph GT if there exists a match from the “biggest” rule move cyltarget

to GT . Thus, when applying any pT from this set of applicable rules to GT , we
always get the same transformation span GT ← DT → HT , but the applied rule
pT might be the restriction of an integrated rule pI ∈ PI such that the first
part of the completeness condition is fulfilled, but not the second one: i.e., there
exists a context graph DI and morphism KI → DI such that the pushout objects
GI and HI are not in V LI . This might happen since our model transformation
“forgets” information, i.e. given a target rule (typed over the Petri net language),
we do not know from which integrated rule this target rule was constructed.

In order to avoid this situation, we propose a slight extension of the target type
graph TGT (Fig. 3) and the model transformation rules (Fig. 4). We introduce
a suitable annotation of Petri net elements (transitions or places) by attributes
keeping the information about the original role of the element. For example,
we annotate each place originating from a machine by the machine type (e.g.
Assembler or GenCyl), and each place originating from a conveyor by the piece
type a token on this place would represent (e.g. cyl or bar). The annotation

206 H. Ehrig and C. Ermel

should establish a 1:1 correspondence between the integrated rules in PI and
the target rules in PT , and between integrated models GI ∈ V LI and their
target models GT ∈ V LT . Hence, a target rule pT ∈ PT which is a restriction
of an integrated rule pI ∈ PI now is applicable to a target model GT ∈ V LT

only if there exists GI ∈ V LI to which pI is applicable. Thus, the context
graph DI and the morphism KI → DI are unique and lead to pushouts in the
front squares such that GI and HI are in V LI , i.e. also the second part of the
completeness condition is now satisfied. Note that the annotation does not affect
the semantical correctness and completeness of S2I (shown in Examples 5 and
6) since S2I is still terminating, rule compatible and faithful.

4.5 Semantical Correctness and Completeness of S2T
Transformations

Putting all steps together, we find that a source-to-target model transformation
S2T : SimSpecV LS → SimSpecV LT with S2T = I2T ◦ S2I is semantically
correct and complete if I2T and S2I are semantically correct and complete. In
this case, we get for each source simulation step in SimSpecV LS a corresponding
target simulation step in SimSpecV LT , and vice versa.

Theorem 5 (Semantical Correctness and Completeness of S2T). Each
S2T transformation S2T = (S2TM , S2TR) : SimSpecV LS → SimSpecV LT with
S2T = I2T ◦ S2I , where S2I : SimSpecV LS → SimSpecV LI with S2I rule com-
patible, S2IM terminating (Def. 7) and S2I faithful, and I2T : SimSpecV LI →
SimSpecV LT , with I2T satisfying the completeness condition (Def. 9), is se-
mantically correct and complete in the following sense:
1. Semantical Correctness: For each source simulation step GS

pS=⇒ HS with

GS ∈ V LS and S2TR-transformation sequence pS
Q !
=⇒ pI

|TGT−→ pT we have

1. S2TM -trafo S2TM (GS) = GT : GS
Q!

=⇒ GI

|TGT−→ GT ,

S2TM -trafo S2TM (HS) = HT : HS
Q!

=⇒ HI

|TGT−→ HT , and
2. a target simulation step GT

pT=⇒ HT via target simulation rule pT ∈ PT

2. Semantical Completeness: For
each target transformation step GT

pT=⇒
HT with GT ∈ V LT and pT ∈ PT there
is a source simulation step GS

pS=⇒ HS

with

– pT = S2TR(pS),
– GT = S2TM (GS) and

HT = S2TM (HS) ∈ V LT .

GS
S2IM ��

pS

��

S2TM

		
GI

pI

��

I2TM �� GT

pT

��

S2IR ���

S2TR

I2TR ��

HS
S2IM ��

S2TM

		
HI

I2TM �� HT

This means especially that the transformation step GT
pT=⇒ HT becomes a simu-

lation step in SimSpecV LT , generated from the simulation step GS
pS=⇒ HS.

Semantical Correctness and Completeness of Model Transformations 207

Proof. By semantical correctness of S2I and I2T (Theorems 1 and 2), we get
directly the semantical correctness of S2T = I2T ◦ S2I . By semantical com-
pleteness of S2I and I2T (Theorems 3 and 4), we get directly the semantical
completeness of S2T = I2T ◦ S2I .

4.6 Relationship of SimSpecV LT and Target Language Semantics

In the case that the target language has already an operational semantics given
by simulation rules PT̄ (like in our running example, where the target language is
the language of Petri nets), we may require for our model transformation S2T to
be behavior-preserving in the sense that for each model in V LT the simulations
via rules in PT correspond to simulations via rules in PT̄ and vice versa.

Example 8. As classical semantics of a P/T net (with fixed arc weight 1) we
generate for each transition with i input places and o output places in a given
Petri net model a corresponding firing rule [9]. Such firing
rules belong to the rule schema depicted to the right. For
a transition with i input places and o output places there
is the graph rule pT̄ ∈ PT̄ where the transition with its
environment is preserved by the rule, all (and only the)
input places are marked each by one token in the left-hand
side, and all (and only the) output places are marked each
by one token in the right-hand side.

Furthermore, the rules must not be applied to transitions with larger environ-
ment which can be ensured by suitable NACs (called environment-preserving).
Considering the target simulation rules PT which resulted from our extended
ProdSystem2Petri S2T transformation (i.e. the rules in Fig. 7, extended by an-
notations as described in Example 7), we notice two differences to PT̄ :

1. The target rules in PT have no environment-preserving NACs,
2. The Petri net elements in the target rules in PT are annotated,
3. The target rules in PT in general contain context in addition to the environ-

ment of a single transition.

In case 1, we add environment-preserving NACs to each target rule without
changing their applicability, since the annotations ensure that each target rule
can be applied to a transition with fixed environment, anyway.

In case 2, we omit the annotations in the target rules and argue that the
rules without annotations (but with environment-preserving NACs) lead to the
same transformations as before. We find that all target rules without annotations
which are applicable to GT at matches overlapping in the enabled transition and
its environment have the same transformation span GT ← DT → HT (they are
semantically equivalent) (like e.g. the target rules in Fig. 7 which are semanti-
cally equivalent for a match from the ”biggest” rule move cyltarget to GT). It
can be checked easily that we have a similar situation for all other target rules.
The NACs prevent that target rules without annotations are applied to transi-
tions with a larger environment. All semantically equivalent target rules without

208 H. Ehrig and C. Ermel

annotations which are applicable at matches containing the same enabled tran-
sition, correspond to exactly one application of an annotated target rule at this
match. Thus, we can omit the annotations in the target rules without causing
changes of the possible target transformation steps.

In case 3, the behavior is preserved only if the additional context in each rule
pT ∈ PT can always be found for each match into any model in SimSpecV LT ,
and if this context is not changed by the rule. We have additional context for
instance in the rules genCylindertarget and move cyltarget (see Fig. 7). Here, the
context was generated due to the flattening of conveyors to sets of four places.
Since this flattening was also performed for each conveyor in the source model
GS , we know that each match at which the rule genCylindertarget without the
three additional context places is applicable, corresponds to a match of the rule
with context. This is true in our example for all firing rules containing con-
text in addition to the active transition’s environment. Hence, we can conclude
that the ProdSystem2Petriannotated model transformation is not only seman-
tically correct and complete, but also behavior-preserving w.r.t. the Petri net
semantics.

5 Related Work

Results concerning the correctness of model transformations have been published
so far mainly on formally showing the syntactical correctness [10].

To ensure the semantical correctness of model transformations, Varró et al.
[11] use graph transformation to specify the dynamic behavior of systems and
generate a transition system for each model. A model checker verifies certain dy-
namic consistency properties by checking the source and target models. In [1], a
method is presented to verify semantical equivalence for particular model trans-
formations. It is shown by finding bisimulations that a target model preserves
the semantics of the source model w.r.t. a particular property. This technique
does not prove the correctness of the model transformation rules in general.

In [2,3,4], we consider S2A transformation, realizing a consistent mapping
from simulation steps in a behavioral modeling language to animation steps
in a more suitable domain-specific visualization. The animation specification A
in [2,3,4] corresponds to an integrated simulation specification in this paper.
However, there is no I2T transformation considered in [2,3,4]. This paper gener-
alizes and extends the results from [2,3,4] to the more general case of S2T model
transformations.

6 Conclusion and Ongoing Work

We have considered the semantical correctness and completeness of model trans-
formations based on simulation specifications (typed graph transformation
systems). The main results show under which conditions an S2T model trans-
formation is semantically correct and complete. The theory has been presented

Semantical Correctness and Completeness of Model Transformations 209

in the DPO-approach for typed graphs, but it can also be extended to typed
attributed graphs, where injective graph morphisms are replaced by suitable
classes M and M ′ of typed attributed graph morphisms for rules and NACs,
respectively [8]. The results have been used to analyze an S2T transformation
of a production system (a domain-specific visual model) to Petri nets. We also
discuss the requirement of a model transformation S2T to be behavior-preserving
in the sense that for each target model in V LT the simulations via rules in PT

correspond to simulations via rules in the target semantics, given by PT̄ (e.g.
the Petri net firing rules) and vice versa. Work is in progress to establish formal
criteria for semantically correct and complete S2T model transformations to be
also behavior-preserving w.r.t. a given target language semantics.

Future work is planned to analyze in more detail our I2T completeness con-
dition, to automatize our approach (e.g. check the correctness and completeness
conditions automatically by a tool) and to apply the approach to triple graph
grammars [12], nowadays widely used for model transformation specification.

References

1. Narayanan, A., Karsai, G.: Using Semantic Anchoring to Verify Behavior Preser-
vation in Graph Transformations. In: Proc. Workshop on Graph and Model Trans-
formation (GraMoT 2006). EC-EASST, EASST, vol. 4 (2006)

2. Ermel, C.: Simulation and Animation of Visual Languages based on Typed Al-
gebraic Graph Transformation. PhD thesis, Technische Universität Berlin,fak, IV,
Books on Demand, Norderstedt (2006)

3. Ermel, C., Ehrig, H., Ehrig, K.: Semantical Correctness of Simulation-to-Animation
Model and Rule Transformation. In: Proc. Workshop on Graph and Model Trans-
formation (GraMoT 2006). EC-EASST, vol. 4, EASST (2006)

4. Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule
transformation. In: Proc. Workshop on Graph Transformation for Verification and
Concurrency (GT-VC 2007). ENTCS, vol. 213(1), pp. 55–74. Elsevier Science, Am-
sterdam (2008)

5. Ehrig, H., Ermel, C.: Semantical Correctness and Completeness of Model Trans-
formations using Graph and Rule Transformation: Long Version. Technical Report
2008-13, TU Berlin (2008),
http://iv.tu-berlin.de/TechnBerichte/2008/2008-13.pdf

6. de Lara, J., Vangheluwe, H.: Translating Model Simulators to Analysis Models.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 77–92.
Springer, Heidelberg (2008)

7. Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed
Graph Transformation with Node Type Inheritance. Theoretical Computer Sci-
ence 376(3), 139–163 (2007)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, Heidel-
berg (2006)

9. Kreowski, H.-J.: A Comparison between Petri Nets and Graph Grammars. In: Nolte-
meier, H. (ed.) WG 1980. LNCS, vol. 100, pp. 1–19. Springer, Heidelberg (1981)

http://iv.tu-berlin.de/TechnBerichte/2008/2008-13.pdf

210 H. Ehrig and C. Ermel

10. Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations
based on Typed Attributed Graph Transformation. In: Proc. Workshop on Graph
and Model Transformation (GraMoT 2005). ENTCS, vol. 152. Elsevier, Amster-
dam (2005)

11. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Software and System Modeling 3(2), 85–113 (2004)

12. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

	Introduction
	Example: Simulation of Production Systems
	Basic Concepts of Model and Rule Transformation
	Visual Languages and Simulation
	S2I Model and Rule Transformation
	I2T Transformation

	Semantical Correctness and Completeness of Model and Rule Transformations
	Semantical Correctness of S2I Transformations
	Semantical Correctness of I2T Transformations
	Semantical Completeness of S2I Transformations
	Semantical Completeness of I2T Transformations
	Semantical Correctness and Completeness of S2T Transformations
	Relationship of SimSpecVLT and Target Language Semantics

	Related Work
	Conclusion and Ongoing Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

