
On the Relationship of Model Transformations Based on
Triple and Plain Graph Grammars ∗

Hartmut Ehrig, Claudia Ermel and Frank Hermann
Department of Theoretical Computer Science and Software Technology

Technische Universität Berlin
ehrig[at]cs.tu-berlin.de, claudia.ermel[at]tu-berlin.de, frank[at]cs.tu-berlin.de

ABSTRACT
Triple graph grammars have been applied and implemented
as a formal basis for model transformations in a variety of
application areas. They convince by special abilities in au-
tomatic derivation of forward, backward and several other
transformations out of just one specified set of rules for the
integrated model defined by a triple of graphs. While many
case studies and all implementations, which state that they
are using triple graph grammars, do not use triples of graphs,
this paper presents the justification for many of them. It
shows a one to one correspondence between triple graph
grammars and suitable plain graph grammars, thus results
and benefits of the triple case can be transferred to the plain
case.

Main results show the relationship between both graph
transformation approaches, syntactical correctness of model
transformations based on triple graph grammars and a
sound and complete condition for functional behaviour.
Theoretical results are elaborated on an intuitive case study
for a model transformation from class diagrams to database
models.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Theory, Design

Keywords
Triple Graph Grammars, Graph Transformation, Model
Transformation

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Model transformations are the heart of the model-driven

software development approach. Ideally, a model transfor-
mation approach supports a visual specification of the trans-
formation with an underlying formal foundation. Addition-
ally, the approach should allow synchronizing different mod-
els and keeping them consistent.

Triple Graph Grammars (TGGs) [16] have been defined
to consistently co-develop two related structures modeled by
graphs. These are connected using a correspondence graph
together with its embeddings into the two graphs. TGG
rules (triples of non-deleting graph rules) generate the lan-
guage of triple graphs, i.e. they describe the parallel exten-
sion of all three graphs. Based on TGGs, triple rules can be
decomposed e.g. into source and forward rules.

In recent years, TGGs have shown to be an adequate ba-
sis to specify visual, formal and bidirectional model trans-
formations between different domain-specific modeling lan-
guages [10, 6, 8]. Under certain conditions (source consis-
tency, see [6]), important properties of model transforma-
tions based on forward rules can be shown, e.g. the bijective
correspondence of composition and decomposition of triple
graph transformation sequences and information preserva-
tion of a triple graph transformation sequence[6]. Moreover,
the relation of model transformation and model integration
based on integration rules derived from triple rules has been
shown in [8].

Sample applications for model transformations using
TGGs are a conversion between the two different computer
graphics file formats [2], and an approach for view consis-
tency management in the context of multi-view visual lan-
guages [4], where views are related to an integrated model
by correspondence graphs. Tools developed for typed at-
tributed graph transformation have been used frequently
to implement model transformations based on TGGs (such
as Fujaba [18], AToM3[5], and AGG [1]). Therefore, the
structure of (typed) triple graphs have been represented as
plain graphs (ordinary typed attributed graphs): the three
graphs are modeled as a single integrated graph, where the
embedding of the correspondence graph is represented by ad-
ditional edges. Analogously, a single integrated type graph
models the original triple type graph.

Up to now, it has not been shown formally that the results
which hold for TGGs (e.g. the canonical decomposition of
triple graph transformation sequences into source and for-
ward sequences, and their composition [6]) still hold for their
representation as plain graph grammars.

In this paper, we define a flattening functor mapping triple

graphs to plain graphs. We extend this functor to the trans-
lation of triple graph grammars and transformations. Based
on the properties of this functor, we can show that impor-
tant results for triple graph grammars and transformations
can be transferred to plain graph grammars and transfor-
mations. In particular, we show that TGG properties based
on source consistency of triple graph transformations can
now be analyzed using the corresponding plain graph trans-
formations. Our first main theorem states that the trans-
lation leads to a bijective correspondence between a model
transformation based on forward rules in TGGs and the cor-
responding translated plain model transformation. Hence,
results proven for TGGs like composition and decomposi-
tion of triple graph transformation sequences, or informa-
tion preservation under the condition of source consistency,
can be transferred to the corresponding plain model trans-
formation sequences. The second main theorem in this pa-
per is concerned with correctness properties of the trans-
lated model transformation sequences in plain graphs, such
as syntactical correctness and confluence (leading to func-
tional behavior of model transformations).

Our main theorems are illustrated by a model transfor-
mation CD2RDBM from UML class diagrams [14] to rela-
tional database models, a quasi-standard example which is
elaborated in [15, 3].

The paper is structured as follows: In Section 2 we start
with a review of plain graphs and graph transformation ac-
cording to the double-pushout (DPO) approach [9] on the
one hand, and triple graphs and triple graph grammars ac-
cording to [16] on the other hand. Section 3 reviews the
derivation of source, target, forward and backward rules
from TGG rules and states the source consistency condition
for model transformations based on forward rules, which en-
sures that all parts of a source model are translated com-
pletely and not twice. The functor translating triple graph
transformations to plain graph transformations is defined in
Section 4. In Section 5 we relate properties of model trans-
formations based on forward rules from TGGs to their cor-
responding model transformations in plain graphs. In par-
ticular, we show that our translation functor preserves syn-
tactical correctness and functional behavior of model trans-
formations. We conclude the paper in Section 6, discussing
open problems and directions for future research.

2. REVIEW OF DPO- AND TRIPLE GRAPH
GRAMMARS

Graphs and graph transformations are used in a variety
of types for specifying, analyzing and optimizing systems.
Here, we focus on graphs with explicit source and target
functions for edges. We recall first the main definitions of
plain graphs and their transformation, which are necessary
for further constructions. For details and extensions such as
attribution or type graphs with inheritance, we refer to [9].
Note that these extensions can be applied directly and the
results will not be affected.

Definition 1. Graphs and Graph Morphisms: A
graph G = (GV , GE , sG, tG) consists of a set GV of nodes,
a set GE of edges, and two functions sG, tG : GE → GV ,
the source and the target function.

Given graphs G, H a graph morphism f : G → H, f =
(fV , fE) consists of two functions fV : GV → HV and
fE : GE → HE that preserve the source and the target

function, i.e. fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE .
Graphs and graph morphisms define the category Graphs.
A graph morphism f is injective if both functions fV , fE

are injective.

Definition 2. Typing: Given a distinguished graph TG,
called type graph, a typed graph G = (G, typeG) consists
of a graph G = (V, E, s, t) together with a type morphism
typeG : G → TG from G to its type graph TG. A type
graph is a distinguished graph TG. A tuple (G, typeG) of a
graph G together with a graph morphism typeG : G→ TG
is called a typed graph. Given typed graphs G = (G, typeG)
and H = (H, typeH), a typed graph morphism f is a graph
morphism f : G→ H, such that typeH ◦ f = typeG.

Figure 1: Type graph for class diagrams

Example 1. Typing: The structure of class diagrams in
the CD2RDBM example is given by the type graph in Fig. 1
containing the types“Class”,“Attribute”,“PrimitiveDataType”
and “Association” and instances of these node types have to
be linked according to the edge types between the node types
as well as attributed according to node type attributes.

Graph transformation rules specify local operations. A
graph grammar specifies a graph language as set of all those
graphs that can be created by applying transformation rules
starting with a given start graph.

Definition 3. Typed Graph Grammar: A typed graph

rule p = L
l← K

r→ R consists of typed graphs L, K, and R,
called the left-hand side, gluing graph, and the right-hand
side respectively, and two injective typed graph morphisms
l and r. A typed graph grammar GG = (TG, S, R) consists
of a type graph TG, a start graph S and graph rules R.
If a rule p is applicable to a
graph G via a morphism m :
L→ G, called match, the trans-
formation G =

p⇒ H is defined by
two pushouts (DPO diagram):

L

m
��

K
loo r //

k
��

R

m∗
��

G D
l∗

oo
r∗

// H

The typed graph language L of GG is defined by L =
{G | ∃ typed graph transformation S =⇒∗ G}.

Figure 2: Graph rule insertAssociation() in complete
and compact notation

Example 2. Graph Grammar: One rule of a generating
graph grammar for class diagrams is given in Fig. 2. It
inserts an association between two existing classes. The rule

is presented both in complete form and compact form. The
left part of Fig. 2 for complete notation contains the rule
components L, K and R as distinct graphs and numbers
indicating the morphisms l : K → L, r : K → R. The right
part shows the compact form, where elements to be created
are labeled with “{new}”. If there are elements in a rule
that shall be deleted, they are labeled with “{del}” in the
compact form.

In the following definitions, the concepts of graph trans-
formation are lifted to the case of triple graphs, an extension
of plain graphs dividing elements into source, target and cor-
respondence sections. Since triple graph transformations are
considered to be used for model transformation they are re-
stricted to non-deleting rules, which can still be seen as a
special case of general DPO graph rules.

Definition 4. Triple Graph and Triple Graph Mor-
phism: Three graphs SG, CG, and TG, called source, con-
nection, and target graph, together with two graph mor-
phisms sG : CG → SG and tG : CG → TG form a triple

graph G = (SG
sG← CG

tG→ TG). G is called empty, if SG,
CG, and TG are empty graphs.

A triple graph morphism m = (s, c, t) : G → H be-

tween two triple graphs G = (SG
sG← CG

tG→ TG) and

H = (SH
sH← CH

tH→ TH) consists of three graph morphisms
s : SG → SH, c : CG → CH and t : TG → TH such that
s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective, if mor-
phisms s, c and t are injective. Triple graphs and triple
graph morphisms form the category TripleGraphs.

3:Table

name=“Company“

10:FKey

7:fkeys

2:ClassTableRel

24:AttrColRel

15:ClassTableRel

9:AssocFKeyRel

19:ClassTableRel

20:cols

6:src

11:dest

16:parent

21:pkey

8:Association

name = “employee“

1:Class

name=“Company“

14:Class

name=“Person“

18:Class

name=“Customer“

27:PrimitiveDataType

name = “int“

23:Attribute

is_primary = true

name=“cust_id“

25:Column

type = “int“

name = “cust_id“

22:attrs

26:type

17:Table

name=“Person“

5:Column

type = “int“

name =

“employee_cust_id“

4:cols

12:fcols
13:references

Figure 3: Triple graph for an integrated CD2RDBM
model

Example 3. Triple graph: The graph in Fig. 3 shows a
triple graph containing a class diagram together with con-
necting reference nodes in the connection component visual-
ized by circles pointing to the database model of the target
language. References between source and target model de-
note translation correspondences and exist between classes
and tables, associations and foreign keys as well as between
attributes and columns. Inheritance information in class di-
agrams are flattened in corresponding database models.

Definition 5. Triple Graph Grammar:

A triple rule tr = L
tr→ R

consists of triple graphs
L and R and an injective
triple graph morphisms
tr.

L = (SL

tr
��

s
��

CL
sLoo

c

��

tL // TL)

t
��

R = (SR CRsR

oo
tR

// TR)

A triple graph grammar TGG = (TG, S,TR) consists of a
triple type graph TG, a triple start graph S and triple rules
TR typed over TG.
Given a triple rule tr = (s, c, t) : L→ R, a triple graph G
and a triple graph morphism m = (sm, cm, tm) : L→ G,
called triple match m, a triple graph transformation step

(TGT-step)G =
tr,m
==⇒ H from G to a triple graph H is given

by three objects SH, CH and TH in category Graph with
induced morphisms sH : CH → SH and tH : CH → TH.
Morphism n = (sn, cn, tn) is called comatch.

SL

��

smuukkkk
k CLoo //

��

cmxxpppp
TL

��

tmwwpppp
G = (SG

tr

�� s′ ��

CGoo //

c′ ��

TG)

t′ ��
SR

snuu
CRoo //

cnxx
TR

tnwwppp

H = (SH CHsH

oo
tH

// TH)

The triple graph language L of TGG is defined by L =
{G | ∃ triple graph transformation S =⇒∗ G}.

Remark 1. Triple transformation steps are constructed by
one pushout in category TripleGraphs, since we consider
non-deleting rules only.

Figure 4: Triple rules for CD2RDBM model trans-
formation

Example 4. Triple rules: Rules in Fig. 4 are part of
a triple graph grammar that synchronously generates class
diagrams and corresponding database models, where the
first rule “Class2Table” may create a class and its corre-
sponding table at any time. The second rule “Primary-
Attribute2Column” inserts a primary attribute for a given
class, thus creating a corresponding primary key column in
the connected table of the database model. Finally, “Sub-
class2Table”adds a class which inherits from an existing one,
thus it is connected to the same corresponding table as the
parent class. The rules “Attribute2Column” and “Associa-
tion2ForeignKey” given in [6] are not shown here.

3. MODEL TRANSFORMATION BASED
ON TRIPLE GRAPH GRAMMARS

The triple rules TR are defining the language VL =
{G | ∅ ⇒∗ G via TR} of triple graphs. Source language
V LS and target language are derived by projection to the
triple components, i.e. V LS = projS(V L) and V LT =
projT (V L), where projX is a projection defined by restric-
tion to one of the triple components, i. e. X ∈ {S, C, T}.

Definition 6. Derived Triple Rules: From each triple
rule tr = L→ R we have the following source, forward, tar-
get and backward rules:

(SL

s ��

∅oo

��

// ∅)

��
(SR ∅oo // ∅)

source rule trS

(∅

��

∅oo

��

// TL)

t ��
(∅ ∅oo // TR)

target rule trT

(SR

id ��

CL
s◦sLoo

c ��

tL // TL)

t��
(SR CR

sRoo tR // TR)

forward rule trF

(SL

s ��

CL
sLoo

c ��

t◦tL // TR)

id ��
(SR CR

sRoo tR // TR)

backward rule trB

Source rules allow to create all elements of V LS as
restriction of VL, but they contain less restrictions for
matches during transformation in comparison to their cor-
responding complete triple rules. Thus, they possibly al-
low to generate more elements than V LS contains. It
is an open problem in which cases the inclusion V LS ⊆
V LS0 = {GS | ∅ =⇒∗ GS via TRS} resp. V LT ⊆ V LT0 =
{GT | ∅ =⇒∗ GT via TRT } is an equality.

Model transformations from elements of the source lan-
guage VLS0 to elements of the target language VLT0 can
be defined on the basis of forward rules. Vice versa us-
ing backward rules - which are dual to forward rules - it is
also possible to define backward transformations from target
to source graphs and altogether bidirectional model trans-
formations. In [6] we have shown that there is an equiv-
alence between corresponding forward and backward TGT
sequences. This equivalence is based on the canonical de-
composition and composition result (see Theorem 1 below),
which is also the basis for main results of this paper and it
uses the following notion of match consistency.

Definition 7. Match and Source Consistency: Let
tr∗S and tr∗F be sequences of source rules triS and forward
rules triF , which are derived from the same triple rules tri

for i = 1, . . . , n. Let further G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn be a
TGT-sequence with (miS , niS) being match and comatch of
triS (respectively (mi, ni) for triF) then match consistency

of G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn means that the S-component of
the match mi is uniquely determined by the comatch niS
(i = 1, . . . , n).

A TGT-sequence Gn0 =
tr∗F==⇒ Gnn is source consistent, if

there is a match consistent sequence ∅ =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn.
Note that by source consistency the application of the for-
ward rules is controlled by the source sequence, which gen-
erates the given source model.

Theorem 1. Canonical Decomposition and Com-
position Result

1. Decomposition: For each TGT-sequence

(1) G0 =
tr∗
=⇒ Gn there is a canonical match consistent

TGT-sequence

(2) G0 = G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn = Gn using corre-
sponding source rules tr∗S and forward rules tr∗F .

2. Composition: For each match consistent transfor-
mation sequence (2) there is a canonical transforma-
tion sequence (1).

3. Bijective Correspondence: Composition and De-
composition are inverse to each other.

The proof is given in [6].

Definition 8. Model Transformation based on For-
ward Rules: A model transformation sequence (GS ,

G1 =
tr∗F==⇒ Gn, GT) consists of a source graph GS , a target

graph GT , and a source consistent forward TGT-sequence

G1 =
tr∗F==⇒ Gn with GS = projS(G1) and GT = projT (Gn).

A model transformation MT : VLS0 V VLT0 is defined

by model transformation sequences (GS , G1 =
tr∗F==⇒ Gn, GT)

with GS ∈ VLS0 and GT ∈ VLT0.

Example 5. Model Transformation: Using the for-
ward rules of the triple rules in Example 4 we obtain a model

transformation sequence (GS , G1 =
tr∗F==⇒ Gn, GT), where G

is the triple graph in Fig. 3 and GS = projS(G), GT =
projT (G) are given by left and right parts of Fig. 3, respec-
tively (see [6] for an explicit construction).

For each model transformation MT : VLS0 V VLT0 based
on forward rules we can ensure that it starts at models in
VLS only and also ends at models in VLT , thus it corre-
sponds directly to the generating sequence of original triple
rules, which synchronously generates elements in all three
triple components.

Fact 1. Scope of Model Transformation: For each

model transformation sequence (GS , G1 =
tr∗F==⇒ Gn, GT) of

MT : VLS0 V VLT0 with GS ∈ VLS0 and GT ∈ VLT0

we have that G1 is typed over (TGS ← ∅ → ∅) with
projS(G1) = GS ∈ VLS and projT (Gn) = GT ∈ VLT ,
i.e. MT : VLS V VLT .

Proof. Since G1 =
tr∗F==⇒ Gn is source consistent, we have

∅ =
tr∗S==⇒ G1 =

tr∗F==⇒ Gn match consistent and hence, by Theo-

rem 1 above with G0 = ∅ we have ∅ =
tr∗
=⇒ Gn. This implies

Gn ∈ VL, projS(Gn) ∈ VLS , projT (Gn) ∈ VLT by defini-
tion of VL,VLS and VLT . Now we have GS = projS(G1) =

projS(Gn) ∈ VLS and GT = projT (Gn) ∈ VLT and ∅ =
tr∗S==⇒

G1 implies that G1 is typed over (TGS ← ∅ → ∅).

Note that we can check whether a forward transformation

sequence G1 =
tr∗F==⇒ Gn is source consistent (see [17]), thus we

can check whether it defines a model transformation. If the
check is successful, it constructs the corresponding source

rule sequence ∅ =
tr∗S==⇒ G1. Otherwise G1 =

tr∗F==⇒ Gn is not
source consistent.

4. TRANSLATION OF TRIPLE GRAPH
GRAMMARS AND TRANSFORMATIONS

Most case studies and all implementations for triple graph
grammars, which we are aware of, use plain graphs as an
encoding of triple graphs. But there may arise problems
since there are graphs and graph transformations not cor-
responding to a triple graph transformation, whenever the
correspondence component is linked with zero or multiple
edges to one of the other component. The following defini-
tion of a flattening corresponds to the intuitive translation
used in tools and we show that results of the theory can be
transferred to the plain case, whenever the graphs and rules
are a proper encoding of triple graphs.

Definition 9. Flattening Construction: Given a triple

graph G = (SG
sG← CG

tG→ TG) the flattening F(G) of G is
a plain graph defined by the disjoint union F(G) = SG +
CG + TG + LinkS(G) + LinkT (G) with links (additional
edges) defined by
LinkS(G) = {(x, y) |x ∈ CGV , y ∈ SGV , sG(x) = y},
LinkT (G) = {(x, y) |x ∈ CGV , y ∈ TGV , tG(x) = y} with
sF(G)((x, y)) = x and tF(G)((x, y)) = y, (x, y) ∈ LinkS ∪
LinkT .

Given a triple graph morphism f = (fS , fC , fT) : G→ G′

the flattening F(f) : F(G) → F(G′) is defined by F(f) =
fS +fC +fT +fLS +fLT with fLS : LinkS(G)→ LinkS(G′),
fLT : LinkT (G) → LinkT (G′) defined by fLS((x, y)) =
(fC(x), fS(y)) and fLT ((x, y)) = (fC(x), fT (y)).

Remark 2. The mapping of edges in CGE is disregarded,
but in the following we assume CGE = ∅ anyhow.

Example 6. Flattening Construction: Consider Fig. 3

showing the triple graph G = (SG
sG← CG

tG→ TG) for our
integrated CD2RDBM model. The graph F(G), resulting
from applying the flattening functor to G, consists of

• the subgraphs SG, CG and TG,

• edges LinkS(G) corresponding to the morphism

SG
sG← CG, defined by LinkS(G) = {(2, 1), (9, 8),

(15, 14), 19, 18), (24, 23)} (where the numbers refer to
the numbered nodes in Fig. 3), with sF(G)((2, 1)) =
2, tF(G)((2, 1)) = 1 (analogously for all other edges in
LinkS(G)),

• and edges LinkT (G) corresponding to the morphism

CG
tG→ TG), defined by LinkT (G) = {(2, 3), (9, 10),

(15, 17), (19, 17), (24, 25)}.

The following Fact 2 ensures several important properties
of the flattening construction, which are used later.

Fact 2. Properties of Flattening Construction:

1. The flattening construction defines a functor F :
TripleGraphs→ Graphs, which preserves pushouts.

2. Given a triple type graph TG = (STG ← CTG →
TTG) with CTGE = ∅ and flattening F(TG).
Then the typed flattening construction is the functor
FTG : TripleGraphsTG → GraphsF(TG) defined by
FTG(G, t) = (F(G),F(t)) and FTG(f) = F(f). We
sometimes write FTG = F for short.

3. The typed flattening FTG is injective on objects and
creates morphisms, i.e. for all m′ : FTG(L)→ FTG(G)
in GraphsF(TG) there is a unique m : L → G with
FTG(m) = m′. Especially we have FTG(A) ∼= FTG(B)
iff A ∼= B, and FTG is injective on morphisms.

4. FTG preserves and reflects pushouts, i.e. (1)
pushout in TripleGraphsTG iff (2) is pushout in
GraphsF(TG), and FTG creates pushouts,

L
(1)

r //

m ��

R
n��

G
f

// G′

FTG(L)

(2)

FTG (r)//

FTG (m)

��

FTG(R)

FTG (n)

��
FTG(G)

FTG (f)
// FTG(G′)

FTG(L)

(3)

FTG (r)//

FTG (m)

��

FTG(R)

n′

��
FTG(G)

f ′
// H

i.e. given r : L→ R, m : L→ G in TripleGraphsTG

and pushout (3) with H, n′, f ′ in GraphsF(TG) then
there are unique G′, n, f in TripleGraphsTG, s.t. (1)
is pushout in TripleGraphsTG with FTG(G′) = H,
FTG(n) = n′, and FTG(f) = f ′.

5. FTG preserves, reflects and creates pullbacks.

Proof. See [17].

Remark 3. The typed flattening construction F :
TripleGraphsTG → GraphsF(TG) is in general not sur-
jective and hence defines no isomorphism or equivalence of
categories TripleGraphsTG and GraphsF(TG). There are
graphs (H, typeH) in GraphsF(TG) which are not functional
in the sense that for TG = (STG ← CTG → TTG) one
node in CH = type−1

H (CTG) is connected in H with zero or
more than one node in SH = type−1

H (STG) respectively in
TH = type−1

H (TTG). In this case we do not obtain graph
morphisms sH : CH → SH respectively tH : CH → TH
and hence no triple graph (SH ← CG → TH). Triple graph
applications exist in literature where plain graphs are used
which have multiple edges connecting the same correspon-
dence node to various elements of the source and target lan-
guage [11, 13]. This approach does not correspond to pure
morphism-based triple graphs and hence is not covered by
our translation construction.

Using Fact 2 above, the flattening functor can be extended
to translate triple graph grammars.

Definition 10. Translation of Triple Graph Gram-
mars: Given a triple graph grammar TGG = (TG, S,TR)
with triple type graph TG as above, start graph S and
triple rules tr : L → R in TripleGraphsTG , then
the translation F(TGG) of TGG is the graph gram-
mar F(TGG) = (F(TG),F(S),F(TR)) with type graph
F(TG), start graph F(S), and rules F(TR) = {F(tr) :
F(L)→ F(R) | (tr : L→ R) ∈ TR}.

Theorem 2. Translation and Creation of Triple
Graph Transformations: Given a triple graph gram-
mar TGG = (TG, S,TR) with translation F(TGG) =
(F(TG),F(S),F(TR)) then

1. Each triple graph transformation trafo :

S =
tr1,m1====⇒ G1 =⇒ . . . =

trn,mn
====⇒ Gn in TGG can be

translated into a flattened graph transformation

F(trafo) : F(S) =
F(tr1),F(m1)
========⇒ F(G1) =⇒ . . .

=
F(trn),F(mn)
=========⇒ F(Gn) in F(TGG).

2. Vice versa, each graph transformation trafo′ :

F(S) =
F(tr1),m′

1======⇒ G′
1 =⇒ . . . =

F(trn),m′
n=======⇒ G′

n in
F(TGG) creates a unique (up to isomorphism) triple

graph transformation trafo : S =
tr1,m1====⇒ G1 =⇒

. . . =
trn,mn
====⇒ Gn in TGG with F(trafo) = trafo′, i.e.

F(mi) = m′
i and F(Gi) = G′

i for i = 1 . . . n.

Proof. Follows from Fact 2.4.

5. RELATIONSHIP OF MODEL TRANS-
FORMATION CONCEPTS

After defining a translation from model transformations
using triple graphs to those using plain graphs and showing
properties of the translation, we now elaborate properties
of model transformations from a more general point of view
and again the results of previous sections can be applied to
this more abstract setting.

Typed model transformations usually work on integrated
models in the translation phase and finally restrict the model
to elements of the target language. Thus, the integrated
type graph (TGS → TGST ← TGT) consists of all ele-
ments of the source and target language and possibly further
correspondence structure elements. By t>

S (G) we denote a
retyping of a source model G typed over TGS to a model
typed over the integrated type graph TGST given by the
embedding TGS → TGST . Furthermore, t<

T (G) specifies
a restriction of G typed over TGST to a model G′ typed
over TGT only, which can be constructed as pullback of
G → TGST ← TGT . In the following general concept
graph transformation systems may be equipped with a con-
trol condition restricting the possible transformations. Such
conditions will be explained exemplarily thereafter.

Definition 11. General Concept of Model Trans-
formations based on graph transformation: Let
GRAPHS be plain graphs Graphs or triple graphs
TripleGraphs.

1. Given visual languages VLS ⊆ GRAPHSTGS and
VLT ⊆ GRAPHSTGT a model transformation MT :
VLS V VLT from VLS to VLT is given by MT =
(VLS ,VLT ,TGST , tS , tT ,GTS) where TGST is an in-
tegrated type graph with injective type graph mor-

phisms (TGS
tS→ TGST

tT← TGT), and GTS a
graph transformation system with non-deleting rules
R typed over TGST and a control condition for GTS -
transformations.

2. A model transformation sequence via MT , short MT -
sequence, is given by (GS , G1 =⇒∗ Gn, GT), where
GS ∈ VLS , GT ∈ VLT and G1 =⇒∗ Gn is a GTS -
transformation satisfying the control condition of GTS
with G1 = t>

S (GS) and GT = t<
T (Gn), defined above.

3. The model transformation relation MTR ⊆ VLS×VLT

defined by MT is given by: (GS , GT) ∈ MTR ⇔
∃ MT − sequence (GS , G1 =⇒∗ Gn, GT).

4. MT : VLS V VLT is called

(a) syntactically correct, if for all GTS -transformations
G1 =⇒∗ Gn satisfying the control condition with
G1 = t>

S (GS) and GS ∈ VLS we have GT =
t<
T (Gn) ∈ VLT

(b) functional, if MTR is right unique

(c) total, if MTR is left total

(d) surjective, if MTR is right total

Most examples of model transformations based on plain
graph transformation considered in the literature fit into this
general concept. A typical example is the model transforma-
tion SC2PN from state charts to Petri nets (see Chapter 14

of [9] with restriction construction instead of deleting rules):
The control condition is given by layers, where the rules with
negative application conditions are applied as long as possi-
ble in one layer, and suitable termination criteria have to be
satisfied, before switching to the next layer. But also model
transformations based on triple rules fit into this concept as
shown for forward rules in the next example. Of course this
can be done in a similar way for backward rules.

Example 7. Model Transformation based on For-
ward Rules: Given triple rules TR with source rules TRS

and forward rules TRF defining the triple graph language
VLS and VLT . Let TR be typed over TG = (TGS ←
TGC → TGT) with tS : (TGS ← ∅ → ∅) → TG and
tT : (∅ ← ∅ → TGT) → TG type graph embeddings
and GTS = TRF with “source consistency” as control con-

dition, i.e. G1 =
tr∗F==⇒ Gn satisfies the control condition,

if it is source consistent. Then the model transformation
MT : VLS V VLT based on forward rules is given by
MT = (VLS ,VLT ,TG, tS , tT ,TRF)

As pointed out before, by source consistency the applica-
tion of the forward rules is controlled by the source sequence,
which generates the given source model. Model transforma-
tions based on forward rules are source consistent, which
additionally ensures syntactical correctness as well as to-
tality and surjectivity stated below. Moreover, functional
behaviour can be characterized.

Theorem 3. Correctness Properties of Model
Transformation based on Forward Rules: Let MT :
VLS V VLT with MT = (VLS ,VLT ,TGST , tS , tT ,TRF) be
a model transformation based on forward rules TRF then

• each model transformation sequence (GS , G1 =
tr∗F==⇒ Gn,

GT) in the sense of Def. 8 is a model transformation
sequence in the sense of Def. 11 and vice versa.

• Moreover, MT is syntactically correct, total and sur-
jective.

• MT is functional if and only if the language VL of
(∅,TR) has the S-T projection property, i.e. for
all G, G′ ∈ VL we have projS(G) = projS(G′) ⇒
projT (G) = projT (G′).

Proof. By Fact 1 each model transformation sequence in
the sense of Def. 8 is also one in the sense of Def. 11 and vice
versa, because G1 = t>

S (GS) is equivalent to G1 typed over
(TGS ← ∅ → ∅) and projS(G1) = GS and GT = t<

T (Gn) is
equivalent to projT (Gn) = GT .

MT is syntactically correct, because we have for each

source consistent G1 =
tr∗F==⇒ Gn with G1 = t>

S (GS) and GS ∈
VLS already GT = t<

T (Gn) ∈ VLT by Fact 1 and the equiv-
alences above.

MT is total, because for each GS ∈ VLS we have by
definition G ∈ VL with projS(G) = GS . G ∈ VL implies

∅ =
tr∗
=⇒ G and hence, by Thm. 1 a match consistent sequence

∅ =
tr∗S==⇒ G1 =

tr∗F==⇒ G. This implies a model transformation se-

quence (GS , G1 =
tr∗F==⇒ G, GT) with projS(G1) = projS(G) =

GS and hence, (GS , GT) ∈ MTR which implies that MT is
total. Similarly we find for each GT ∈ VLT , triple graphs
G ∈ VL and GS = projS(G) with (GS , GT) ∈ MTR showing
that MT is surjective.

Assume now that we have the S-T projection prop-

erty and MT -sequences (GS , G1 =
tr∗F==⇒ Gn, GT) and (GS ,

G1 =
tr′∗F==⇒ G′

m, G′
T) we have to show GT = G′

T . By source

consistency we have match consistent sequences ∅ =
tr∗S==⇒

G1 =
tr∗F==⇒ Gn with projS(Gn) = projS(G1) = GS and

∅ =
tr′∗S==⇒ G′

1 =
tr′∗F==⇒ G′

m with projS(G′
m) = GS . By Thm.

1 we have ∅ =
tr∗
=⇒ Gn, ∅ =

tr′∗
==⇒ G′

m and hence Gn, G′
m ∈ VL

with projS(Gn) = GS = projS(G′
m). This implies GT =

projT (Gn) = projT (G′
m) = G′

T by S-T projection property.
Similar we can show that MT being functional implies the
S-T projection property.

Example 8. Non-functional Model Transformation
Consider a triple transformation sequence based on the
triple rules in Fig. 4. First, rule Class2Table is applied,
generating a Class connected to a Table. Afterwards, rule
Subclass2Table is applied, inserting a subclass of the ex-
isting Class node and connecting the new Class with the
existing Table node. Then, an additional Class node is
created as subclass of the existing one and connected to the
Table node. This 3-step triple transformation can be divided
into three target steps, where the Table node is created in
the first step, and nothing happens in the second and third
step, and three backward transformation steps based on the
backward rules in Fig. 5, which are generated from the triple
rules Class2Table and Subclass2Table according to Def. 6.

Figure 5: Backward rules generated from the triple
rules Class2Table and Subclass2Table

The first backward transformation step creates a Class
node and connects it to the existing Table node. The sec-
ond backward step creates a Class node as subclass of the
first one and connects it to the Table node. For the third
backward step, there exist two matches (see Fig. 6) leading
to different graphs G and G′.

Figure 6: Non-functional (backward) model trans-
formation

Both transformation sequences are match-consistent and
target-consistent (the dual property to source-consistent),

but they are not functional since different results are pos-
sible when applying the same rule. In particular, the T-
S projection property (corresponding to the S-T projection
property in Thm. 3) is violated because we have projT (G) =
projT (G′) but projS(G) 6= projS(G′).

Finally, we present the translation of model transforma-
tion MT based on forward rules into plain model transfor-
mation F(MT) and show that the correctness properties of
MT are preserved for F(MT).

Definition 12. Translation of Model Transforma-
tion based on Forward Rules: Given MT =
(VLS ,VLT ,TG, tS , tT ,TRF) as in Example 7 then the
translated model transformation F(MT) is a plain
model transformation defined by F(MT) = (F(VLS),
F(VLT),F(TG), F(tS),F(tT),F(TRF)) where F :
TripleGraphsTG → GraphF(TG) is the typed flattening
functor (see Def. 10) and a graph transformation sequence

trafo′ : G′
0 =

F(tr1,F),m′
1

========⇒ G′
1 =⇒ . . . =

F(trn,F),m′
n

========⇒ G′
n satisfies

the plain control condition, if G′
0 = F(G0) and the uniquely

created triple graph transformation trafo : G0 =
tr1,F ,m1
=====⇒

G1 =⇒ . . . =
trn,F ,mn
======⇒ Gn (by Thm. 2) is source consistent.

Theorem 4. Properties of Translation Given a
model transformation MT = (VLS ,VLT ,TGST , tS , tT ,TRF)
based on forward rules TRF of TR and F(MT) the trans-
lated plain model transformation then

1. there is a bijective correspondence between MT- and
F(MT)-model transformation sequences,

2. F(MT) is syntactically correct, total and surjective
and

3. F(MT) being functional is equivalent to MT being
functional.

Proof. Given an MT -model transformation sequence

(GS , G1 =
tr∗F==⇒ G, GT) we obtain by Def. 12 the F(MT)-

model transformation sequence (F(GS),F(G1) =
F(tr∗F)
====⇒

F(Gn),F(GT)), because F(tr∗F) satisfies the plain control
condition and t<

S (GS) = G1 implies F(tS)>(F(GS)) =
F(G1) and t<

T (Gn) = GT implies F(tT)<(F(GT)) = F(Gn)
because F preserves pullbacks by Fact 2. Vice versa, each
F(MT)-model transformation sequence creates a unique
MT -model transformation sequence using again Def. 12 and
the fact that F creates pushouts and pullbacks by Fact 2.
Injectivity of F by Fact 2 implies that we have a bijective
correspondence between MT - and F(MT)-model transfor-
mation sequences. This implies by Thm. 3 that F(MT) is
syntactically correct, total and surjective and F(MT) func-
tional is equivalent to MT functional.

6. DISCUSSION
In this paper we address the problem that frequently

TGGs and model transformations based on forward rules
are implemented using plain graphs and transformations. In
order to clarify how the results from the theory of TGGs do
relate to corresponding plain graph representations, a formal
translation from triple graphs and transformations accord-
ing to [16] to plain graphs and transformations according
to [9] is presented. Based on this translation functor, we

relate properties of model transformations by forward rules
to corresponding model transformations in plain graphs and
show in particular that the functor preserves syntactical cor-
rectness and functional behavior of model transformations.

Our main results show that for each model transformation
based on triple rules there is an equivalent model transfor-
mation based on plain rules, defined by the translation func-
tor. Analogously, an equivalence exists for model transfor-
mation based on (target-consistent) backward rules. Hence,
model transformations based on triple rules are bidirectional
but not necessarily functional in one or both directions.

There are model transformations based on plain rules
which are unidirectional and cannot be represented by equiv-
alent model transformations based on triple rules.

The control criterion for forward rules is source consis-
tency which is different from usual control criteria for plain
rules, like layered graph transformation with termination
criteria for rules with/without negative application condi-
tions (NACs) [12] or graph constraints [7]. Note that NACs
are not necessary for termination of forward transformations
in our setting, since by source consistency the source se-
quence, which generates the given source model, controls
the application of the forward rules.

Correctness properties are mainly given for triple case in
Thm. 3 which are inherited by translated plain model trans-
formations, but there remain the following open questions:

1. What are suitable syntactical criteria for functionality
of model transformations?

2. Extending the approach to triple rules with NACs –
what is the relationship between the source consistency
control condition for forward rules on the one hand and
NAC-consistency together with termination of model
transformations on the other hand?

Furthermore, practical applications sometimes use plain
graphs, which do not correspond to triple graphs according
to [16], because morphisms between triple components can-
not be defined accordingly. For instance edges and attributes
occur in the component graph but have no connection to
source and target model elements, thus morphisms of the
triple graph cannot be total. These constructions are used
to store information about the history and dependencies of
executed integration steps, and thus they do not directly be-
long to the integrated model and can be stored separately.
In other examples one node of the correspondence compo-
nent may be connected to multiple nodes of the source resp.
target component, which again does not correspond to triple
graphs (e.g. [11, 13]). It remains unclear whether the theo-
retical results including those of [6] and [8] for triple graph
transformations can be transferred to plain graph grammars,
which do not directly correspond to TGGs.

7. REFERENCES
[1] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[2] N. Aschenbrenner and L. Geiger. Transforming scene
graphs using Triple Graph Grammars - A practice
report. In Proc. Symposium on Applications of Graph
Transformation with Industrial Relevance, 2007.

[3] J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model
transformations in practice workshop. In Proc.
MoDELS Satellite Events, volume 3844 of LNCS,
pages 120–127. Springer, 2005.

[4] J. de Lara and E. Guerra. Model View Management
with Triple Graph Grammars. In Proc. Conf. on
Graph Transformation (ICGT’06), volume 4178 of
LNCS, pages 351 –366. Springer, 2006.

[5] J. de Lara, H. Vangheluwe and M. Alfonseca.
Meta-Modelling and Graph Grammars for
Multi-Paradigm Modelling in AToM3, Software and
System Modeling, 3(3), pages 194–209. Springer, 2004.
http://atom3.cs.mcgill.ca/.

[6] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and
G. Taentzer. Information preserving bidirectional
model transformations. In Proc. Fundamental
Approaches to Software Engineering (FASE’07),
volume 4422 of LNCS, pages 72–86. Springer, 2007.

[7] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann.
Theory of Constraints and Application Conditions:
From Graphs to High-Level Structures. Fundamenta
Informaticae, 74(1):135–166, 2006.

[8] H. Ehrig, K. Ehrig, and F. Hermann. From Model
Transformation to Model Integration based on the
Algebraic Approach to Triple Graph Grammars. In
Proc. Workshop on Graph Transformation and Visual
Modelling Techniques. EC-EASST, 2008.

[9] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fundamentals of Algebraic Graph Transformation.
EATCS Monographs. Springer Verlag, 2006.

[10] H. Giese and R. Wagner. Incremental Model
Synchronization and Transformation with Triple
Graph Grammars. In Proc. Conf. on Model Driven
Engineering Languages and Systems (MoDELS),
LNCS. Springer, 2006.

[11] J. Greenyer and E. Kindler. Reconciling TGGs with
QVT. In Proc. Conf. on Model Driven Engineering
Languages and Systems (MoDELS’07), volume 4735 of
LNCS, pages 16–30. Springer, 2006.

[12] A. Habel, R. Heckel, and G. Taentzer. Graph
Grammars with Negative Application Conditions.
Special issue of Fundamenta Informaticae,
26(3,4):287–313, 1996.

[13] E. Kindler and R. Wagner. Triple graph grammars:
Concepts, extensions, implementations, and
application scenarios. Technical Report tr-ri-07-284,
University of Paderborn, 2007.

[14] Object Management Group. OMG Unified Modeling
Language (OMG UML), Superstructure, V2.1.2,
November 2007.

[15] OMG. MOF QVT Final Adopted Specification.
http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

[16] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In Proc. Workshop on
Graph-Theoretic Concepts in Computer Science,
volume 903 of LNCS, pages 151–163. Springer, 1994.

[17] H. Ehrig, C. Ermel and F. Hermann. On the
Relationship of Model Transformations Based on
Triple and Plain Graph Grammars (Long Version),
Technical Report TR 2008-05. TU Berlin, 2008.

[18] Software Engineering Group, University of Paderborn.
Fujaba Tool Suite, 2007.
http://wwwcs.uni-paderborn.de/cs/ag-schaefer/Lehre/
PG/Fujaba/projects/tgg/index.html.

