
On-the-Fly Construction, Correctness and
Completeness of Model Transformations

based on Triple Graph Grammars:
Long Version

= Technical Report =

Hartmut Ehrig, Claudia Ermel, Frank Hermann and
Ulrike Prange

[ehrig, lieske, frank, uprange](at)cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany

Technischer Bericht
ISSN 1436-9915

On-the-Fly Construction, Correctness and
Completeness of Model Transformations

based on Triple Graph Grammars: Long Version
= Technical Report =

Hartmut Ehrig, Claudia Ermel, Frank Hermann, and Ulrike Prange

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

{ehrig, lieske, frank, uprange}@cs.tu-berlin.de

Abstract. Triple graph grammars (TGGs) are a formal and intuitive
concept for the specification of model transformations. Their main ad-
vantage is an automatic derivation of operational rules for bidirectional
model transformations, which simplifies specification and enhances us-
ability as well as consistency.
In this paper we continue previous work on the formal definition of model
transformations based on triple graph rules with negative application
conditions (NACs). The new notion of partial source consistency enables
us to construct consistent model transformations on-the-fly instead of
analyzing consistency of completed model transformations.
We show the crucial properties termination, correctness and complete-
ness (including NAC-consistency) for the model transformations result-
ing from our construction. Moreover, we define parallel independence
for model transformation steps which allows us to perform partial-order
reduction in order to improve efficiency.
The results are applicable to several relevant model transformations
and in particular to our example transformation from class diagrams
to database models.

1 Introduction

Model transformations based on triple graph grammars (TGGs) have been intro-
duced by Schürr in [14]. TGGs are grammars that generate languages of graph
triples, consisting of a source graph GS and a target graph GT , together with a
correspondence graph GC “between” them. From a TGG, operational rules for
bidirectional model transformations, so-called forward and backward transfor-
mation rules, can be derived automatically. Forward transformation rules take
the source graph as input and produce a corresponding target graph (together
with the correspondence graph linking it to the source graph). Since 1994, sev-
eral extensions of the original TGG definitions have been published [15,13,10],
and various kinds of applications have been presented [16,11,12].

Major properties expected to be fulfilled for model transformations based on
forward transformation rules are termination, correctness and completeness.

in the following sense (see also [15]):

– Correctness: Whenever a forward transformation sequence starting with
source graph (GS ← ∅ → ∅) derives triple graph (GS ← GC → GT), then
this triple graph must be derivable also by the triple rules in TGG.

– Completeness: Whenever a triple graph (GS ← GC → GT) can be generated
by the triple rules in TGG, then there is a forward transformation sequence
leading from (GS ← ∅ → ∅) to (GS ← GC → GT).

In a previous series of papers we focused on the formal definition of TGGs
and the analysis of model transformation properties: in [3], we showed how to
analyze bi-directional model transformations based on TGGs with respect to
information preservation, which is based on a decomposition and composition
result for triple graph grammar sequences. Moreover, completeness and correct-
ness of model transformations have been studied on this basis in [6]). In [7],
the formal results were extended to TGGs with negative application conditions
(NACs), a key concept for many model transformations (see [15]. In contrast
to the presented algorithm in [15] for controlling the model transformations we
introduced NAC consistency based on source consistent forward sequences. In
this way we could extend several important results to the case of TGGs with
NACs. Model transformations based on triple rules with NACs were also ana-
lyzed in [8] for a restricted class of triple rules with distinct kernel elements. For
this restricted class of triple graph grammars local confluence and termination
can be analyzed and thus, model transformations can be checked for functional
behavior.

As shown in [4] and [7] the notion of source consistency ensures correctness
and completeness of model transformations based on triple graph grammars
with and without NACs. However, source consistency does not directly guide
the construction of the model transformation, because it has to be checked for
the complete forward sequence. This means that possible forward sequences have
to be constructed until one is found to be source consistent. Additionally, ter-
mination of this search is not guaranteed in general.

It is the main contribution of this paper to introduce a construction tech-
nique for correct and complete model transformation sequences on-the-fly, i.e.
correctness and completeness properties of a model transformation need not
to be analyzed after completion, but are ensured by construction. In our con-
struction, we check source consistency while creating the forward sequences and
define suitable conditions for termination. Thus, re-computations of model trans-
formations may be avoided. Moreover, we present a characterization of parallel
independence of forward transformation steps and use this notion for an op-
timization of efficiency based on partial order reduction [9]. Summing up, the
paper provides the basis for efficient implementations of model transformation
tools that ensure termination, correctness and completeness.

The paper is structured as follows: Sec. 2 reviews the definition of triple graph
grammars with NACs from [7]. In Sec. 3 we introduce an on-the-fly construction
of source consistent forward transformation sequences, generalizing the notion of
source consistency to partial source consistency. The on-the-fly construction is

3

analyzed in Sec. 4 regarding correctness and completeness of the model transfor-
mations, and termination of the construction. Moreover, parallel independence
of forward transformation steps is defined and used to find switch equivalent
model transformation sequences by performing an optimization based on partial
order reduction. Sec. 5 discusses related work, and Sec. 6 concludes the paper.

2 Review of Triple Graph Grammars with NACs

Triple graph grammars [14] are a well known approach for bidirectional model
transformations. Models are defined as pairs of source and target graphs, which
are connected via a correspondence graph together with its embeddings into
these graphs. In [13], Königs and Schürr formalize the basic concepts of triple
graph grammars in a set-theoretical way, which is generalized and extended by
Ehrig et al. in [3] to typed, attributed graphs. In this section, we shortly review
triple graph grammars with negative application conditions (NACs) [15,7].

Definition 1 (Triple Graph and Triple Graph Morphism). A triple graph
G =(GS ←sG−− GC −tG−→ GT) consists of three graphs GS, GC , and GT , called source,
connection, and target graphs, together with two graph morphisms sG : GC → GS

and tG : GC → GT . G is empty, if all components are empty.
A triple graph morphism m = (mS , mC , mT) : G → H between two triple

graphs G =(GS ←sG−− GC −tG−→ GT) and H = (HS ←sH−− HC −tH−→ HT) consists of
three graph morphisms mS : GS → HS, mC : GC → HC and mT : GT → HT

such that mS ◦sG = sH ◦mC and mT ◦tG = tH ◦mC . It is injective, if morphisms
mS, mC , and mT are injective. A typed triple graph G is typed over a triple graph
TG by a triple graph morphism typeG : G→ TG.

colsattrs
parent

:CT

:AC

next

Class
name: String

Attr

name: String

type: String

Column

name: String

type: String

next

Table

name: String

Fig. 1. Triple type graph for CD2RDBM

Example 1. Fig. 1 shows the type graph TG of the triple graph grammar GG
for our example model transformation from class diagrams to database models.
The source component of TG defines the structure of of class diagrams while
in its target component the structure of relational database models is specified.
Classes correspond to tables and attributes to columns. Throughout the exam-
ple, originating from [15] and [3], elements are arranged left, center, and right
according to the component types source, correspondence and target. Morphisms
starting at a connection part are given by dotted arrows.Note that the case study
is equipped with attribution, which is based on the concept of E-graphs [5].

4

The extension of the results of this paper to the case with attributes is straight
forward, because all results can be shown in the framework of weak adhesive HLR
categories and hence, also for the category AGraphsATG of attributed graphs.

Triple rules are used to build up source and target graphs as well as their
connection graphs, i.e. they are non-deleting. Structure filtering which deletes
parts of triple graphs, is performed by projection operations only, i.e. structure
deletion is not done by rule applications.

Definition 2 (Triple Rule tr and Triple Transformation Step). A triple
rule tr consists of triple graphs L and R, called left-hand and right-hand sides,
and an injective triple graph morphism tr = (trS , trC , trT) : L→ R and w.l.o.g.
we assume tr to be an inclusion.

(LS

trS

��

L LC
sLoo

trC

��

tL // LT)

trT

��
(RSR

tr

��
RC

sR

oo
tR

// RT)

LS

mS

��

&&LLL
LL LCoo //

mC
��

%%KKK
K LT

mT ��

&&MMM
MM

RS

nS

��

RCoo //

nC

��

RT

nT

��
(GS

tS

%%
G GCoo //

tC

$$
GT)

tT

%%KKK

(HSH
tr !)KKKKK

KKKKK

HCsHoo tH
// HT)

Given a triple rule tr : L→ R, a triple graph G and an injective triple graph
morphism m : L→ G, called triple match m, a triple graph transformation step
(TGT-step) G =

tr,m
==⇒ H from G to a triple graph H is given by three pushouts

(HS , tS , nS), (HC , tC , nC) and (HT , tT , nT) in category Graph with induced
morphisms sH : HC → HS and tH : HC → HT . Morphism n = (nS , nC , nT) is
called comatch.

Moreover, we obtain a triple graph morphism t : G→ H with t = (tS , tC , tT)
called transformation morphism. A sequence of triple graph transformation
steps is called triple (graph) transformation sequence, short: TGT-sequence.
Furthermore, a triple graph grammar TGG = (S, TG , TR) consists of a triple
start graph S, triple type graph TG and a set TR of triple rules.

:Class

name=n
:CT

:Table

name=n

Class2Table(n:String)

:parent

:Class

:Class

name=n

:CT :Table

:CT

Subclass2Table(n:String)

++
++

++

++++
++

Fig. 2. Rules for transforming classes to tables

Example 2 (Triple Rules). Examples for triple rules are given in Fig. 2 in short
notation. Left and right hand side of a rule are depicted in one triple graph.
Elements, which are created by the rule, are labeled with green ”++” and marked
by green line coloring. Rule ”Class2Table” synchronously creates a class in a class
diagram with its corresponding table in the relational database. Accordingly the
other rules create parts in all components.

According to [7] we present negative application conditions for triple rules. In
most case studies of model transformations source-target NACs are sufficient
and we regard them as the standard case.

5

Definition 3 (Negative Application Conditions). Given a triple rule tr =
(L → R), a general negative application condition (NAC) (N, n) consists of a
triple graph N and an injective triple graph morphism n : L→ N . A NAC with
n = (nS , idLC

, idLT
) is called source NAC and a NAC with n = (idLS

, idLC
, nT)

is called target NAC. This means that source-target NACs, i.e. either source or
target NACs, prohibit the existence of certain structures either in the source or
in the target part only.

A match m : L → G is NAC consistent if there is no injective q : N → G
such that q ◦ n = m. A triple transformation G

∗⇒ H is NAC consistent if all
matches are NAC consistent.

Operational rules for model transformations are automatically derived from
the set of triple rules TR. From each rule tr of TR we derive a forward rule trF

for forward transformation sequences and a source rule trS for the construction
resp. parsing of a model of the source language. Analogously, we derive a target
rule trT for models of the target language and backward rules trB , which are
not presented explicitly.

Definition 4 (Derived Triple Rules). From each triple rule tr = (L → R)
with NACs we derive the following source, target and forward rules:

(LS

trS ��

∅oo

��

// ∅)

��
(RS ∅oo // ∅)

source rule trS

(∅
��

∅oo

��

// LT)
trT ��

(∅ ∅oo // RT)
target rule trT

(RS

id ��
LC

trS◦sLoo

trC
��

tL // LT)
trT��

(RS RC
sRoo tR // RT)
forward rule trF

Furthermore, trS contains all source NACs of tr and trF as well as trT contain
all target NACs of tr. TRS, TRT and TRF denote the sets of all source, target
resp. forward rules derived from TR.

A set of triple rules TR with NACs and start graph ∅ generates a visual
language VL of integrated models, i.e. models with elements in the source, target
and connection component. In order to formalize the domain and codomain
of correct model transformation sequences we define the sets VLS of source and
VLT of target models by a restriction of the integrated models to the source and
target components, respectively.

Definition 5 (Triple, Source and Target Language). A set of triple rules
TR defines the triple language VL = {G |∅ ⇒∗ G via TR} of triple graphs.
Source language V LS and target language are derived by projection to the triple
components, i.e. V LS = projS(V L) and V LT = projT (V L), where projX is a
projection defined by restriction to one of the triple components, i.e. X ∈ {S, T}.

Note that a source rule trS may be applicable to triple graphs G even if the
corresponding triple rule tr is not applicable, because the left hand side of trS is
smaller in general. For this reason, the set V LS0 of models that can be generated
resp. parsed by the set of all source rules TRS is possibly larger than VLS in
Def. 5 and we have VLS ⊆ VLS0 = {GS |∅ =⇒∗ (GS ← ∅ → ∅) via TRS}.
Analogously, we have V LT ⊆ V LT0 = {GT |∅ =⇒∗ (GT ← ∅→ ∅) via TRT }.

6

NAC1
NAC2

NextAttr2NextColumn(n:String, t:String)

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t
++

:cols

:next

:next
:Column

++
:Attr

:attrs

:next

:next

NAC1
NAC2

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t

:cols

:next

:next
:Column

++

Attr2NextColumn(n:String, t:String)

NAC1
NAC2

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t

Attr2Column(n:String, t:String)

NAC1
:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs

++++

Source rule: Attr2ColumnS(n:String, t:String)

NAC1

:cols

:AC

:Class

:Attr

name=n

type=t

:attrs

:CT t1:Table

:Column

:cols

++

++++

:Column

name=n

type=t

Forward rule: Attr2ColumnF(n:String, t:String)

Fig. 3. Rules for attributes and columns and derived source and forward rules

Example 3 (Triple Rules with NACs). Examples for triple rules with NACs and
derived rules are given in Fig. 3, where NACs are indicated by red frames with
label “NAC”. The triple rules specify the synchronous construction of attributes
in the source component and their corresponding columns in the target com-
ponent. Attributes and columns build up list structures, which is ensured by
the NACs. The first attribute of a class is created by rules “Attr2Column”
and “Attr2NextColumn” while rule “NextAttr2NextColumn” extends an exist-
ing list of attributes. Lists of columns are initialized by rule “Attr2Column”
only, because there is no inheritance structure in data base tables, and they are
extended by the other two rules. The source rule trS and forward rule trF of
tr =“Attr2Column” are shown in the right part of Fig. 3, where trS contains
the source NAC (NAC1) and trF the target NAC (NAC2) of tr .

Thm. 1 based on [3,7] shows that TGT-sequences can be decomposed to
source and forward sequences and composed out of them. All together this corre-
spondence is bijective. The result uses the following notion of match consistency.

Definition 6 (Match and Source Consistency). Let tr∗S and tr∗F be se-
quences of source rules tri,S and forward rules tri,F , which are derived from the

same triple rules tri for i = 1, . . . , n. Let further G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn be a
TGT-sequence with (mi,S , ni,S) being match and comatch of tri,S (respectively

(mi,F , ni,F) for tri,F) then match consistency of G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn means
that the S-component of the match mi,F is uniquely determined by the comatch
ni,S (i = 1, . . . , n).

7

A TGT-sequence Gn0 =
tr∗F==⇒ Gnn is source consistent, if there is a match consis-

tent sequence ∅ =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn.

Note that by source consistency the application of the forward rules is con-
trolled by the source sequence, which generates the given source model. More-
over, ∅ =

tr∗S==⇒ Gn0 is uniquely determined by source consistency of Gn0 =
tr∗S==⇒ Gnn.

Theorem 1 (De-/Composition of TGT-Sequences with NACs).

1. Decomposition: For each TGT-sequence

G0 =tr1=⇒ G1 =⇒ . . . =trn==⇒ Gn (1)

with NACs there is a corresponding match consistent TGT-sequence

G0 = G00 =
tr1,S===⇒ G10 . . . =

trn,S===⇒ Gn0 =
tr1,F===⇒ Gn1 . . . =

trn,F===⇒ Gnn = Gn (2)

with NACs.
2. Composition: For each match consistent transformation sequence (2) with

NACs there is a canonical transformation sequence (1) with NACs.
3. Bijective Correspondence: Composition and decomposition are inverse

to each other.

Remark 1 (Injective matches). According to Def. 2 the matches of the triple
rules are required to be injective. If we allow non-injective matches, then we
must allow n and q in definition 3 to be non-injective as well.

Model transformations with NACs from models of the source language VLS0

to models of the target language VLT0 can be defined on the basis of forward rules
as shown in [3,7]. In this paper we focus our attention to model transformations

based on forward rules, where the forward sequence G0 =
tr∗F==⇒ Gn is required

to be source consistent. This means that it is controlled by the corresponding
source sequence ∅ =

tr∗S==⇒ G0.

Definition 7 (Model Transformation based on Forward Rules). A model

transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT) consists of a source graph GS,

a target graph GT , and a NAC- as well as source consistent forward TGT-
sequence G0 =

tr∗F==⇒ Gn with GS = proj S(G0) and GT = proj T (Gn).
A model transformation MT : VLS0 V VLT0 is defined by all model transfor-
mation sequences (GS , G0 =

tr∗F==⇒ Gn, GT) with GS ∈ VLS0 and GT ∈ VLT0.

3 On-the-Fly Construction of Model Transformations

In order to construct a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT)

according to Def. 7 from a given GS there have been two alternatives up to now
[3,7]: Either we construct a parsing sequence ∅ =

tr∗S==⇒ G0 first and then try to

extend it to a match consistent sequence ∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ Gn, or we construct

8

directly a forward sequence G0 =
tr∗F==⇒ Gn and check afterwards, whether it is

source consistent. This means that many candidates of forward transformation
sequences may have to be constructed before a source consistent one is found.

We present an on-the-fly check of source consistency using the new notion
of partial source consistency. The construction proceeds stepwise and constructs
partial source consistent forward sequences. For each step the possible matches
of model transformation rules are filtered, such that sequences that will not lead
to a source consistent one are rejected as soon as possible. Simultaneously, the
corresponding source sequences of the forward sequences are constructed on-
the-fly leading to complete source sequences for the complete forward sequences.
Intuitively, this can be seen as an on-the-fly parsing of the source model.

Partial source consistency of a forward sequence extends source consistency
in Def. 6 to the case where G00 =

tr∗S==⇒ Gn0 and G0 =
tr∗F==⇒ Gn are subsequences

of the corresponding sequences of a match consistent sequence ∅ = G00 =
tr∗S==⇒

G0 =
tr∗F==⇒ Gn with inclusion gn : Gn0 ↪→ G0.

Partial source consistency of a forward sequence, which is necessary for a
complete model transformation, requires that there has to be a corresponding
source sequence, such that both sequences are partially match consistent. This
means that the matches of the forward sequence are controlled by an automatic
parsing of the source model, which is given by inverting the source sequence. This
allows us to incrementally extend partially source consistent sequences and we
can derive complete source consistent sequences, which ensure that all elements
of the source model are translated exactly once.

Definition 8 (Partial Match and Source Consistency). Let TR be a set
of triple rules with source and target NACs and let TRF be the derived set of
forward rules with target NACs. A NAC -consistent sequence

∅ = G00 =
tr∗S==⇒ Gn0 ↪−gn−→ G0 =

tr∗F==⇒ Gn

defined by pushout diagrams (1) and (3) for i = 1 . . . n with GC
0 = ∅, GT

0 = ∅
and inclusion gn : Gn0 ↪→ G0 is called partially match consistent, if diagram
(2) commutes for all i, which means that the source component of the forward
match mi,F is determined by the comatch ni,S of the corresponding step of the
source sequence with gi = gn ◦ tn,S . . . ti−1,S.

Li,S
� � tri,S //

mi,S ��

Ri,S

ni,S��(1)

� � // Li,F

(2) mi,F ��

� � tri,F // Ri,F

ni,F��(3)

Gi−1,0
� �

ti,S

// Gi,0
� �

gi

// G0
� � // Gi−1

� �

ti,F

// Gi

A NAC -consistent forward sequence G0 =
tr∗F==⇒ Gn is partially source consistent,

if there is a source sequence ∅ = G00 =
tr∗S==⇒ Gn0 with inclusion Gn0 ↪−gn−→ G0 such

that G00 =
tr∗S==⇒ Gn0 ↪−gn−→ G0 =

tr∗F==⇒ Gn is partially match consistent.

Definition 9 (Partial Source Consistency). A NAC -consistent forward se-

quence G0 =
tr∗F==⇒ Gn is partially source consistent, if there is a source sequence

9

∅ = G00 =
tr∗S==⇒ Gn0 with inclusion Gn0 ↪−gn−→ G0 such that G00 =

tr∗S==⇒ Gn0 ↪−gn−→
G0 =

tr∗F==⇒ Gn is partially match consistent.

Remark 2.

1. If gn = idG0 , partial match consistency coincides with match consistency.
2. For n = 0 the partially match consistent sequence is given by g0 : G00 ↪→ G0.

Remark 3. Note that we can also consider a more general version of Def. 8,
where G00 is not required to be empty. In this case Thm. 2 is modified accord-
ingly and the model G00 is fixed for all steps of the construction of a partially
match consistent sequence. This notion would provide the basis for incremental
model transformations. We can assume that G00 is an integrated model that
contains a source model and its corresponding target model equipped with the
correspondence part. G0 as extension of G00 contains further elements in the
source component that have to be transformed into target elements in order to
propagate the updates from the source model to the target model.

Example 4 (Partial Match and Source Consistency).
Let us consider a candidate sequence starting with triple
graph G0 (depicted to the right) which represents a class
diagram consisting of one class with two linked attributes.
By triple rules, G0 is mapped to a corresponding table with
two linked columns. Note that for this example, we assume
the triple rules shown in Fig. 3, but first without NACs.
This unsuccessful attempt will be improved later.

In the first step (i = 1), we apply rule tr1,S = Class2TableS to the empty start
graph G00 yielding the source graph G10 which contains one class. Obviously, G10

is included in G0. Hence, diagram (2) commutes for step 1. The corresponding
forward rule tr1,F = Class2TableF is applied to G0 and maps the class node to
a table node, resulting in G1.

For step i = 2, we apply source rule tr2,S = Attr2ColumnS to graph G10

which adds an attribute and links it to the class. The result graph is G20. Again,
G20 is included in G0, which is included in G1, and diagram (2) for step 2
commutes. The corresponding forward rule tr2,F = Attr2ColumnF is applied to
G1, resulting in G2, where the upper attribute of the class now is mapped to a
column of the table.

10

In the third step (i = 3), we apply the same source rule once more, i.e.
tr3,S = Attr2ColumnS , and add a second attribute to G20, resulting in source
graph G30. This graph is included in G0, which in turn is included in G2. Diagram
(2) commutes for step 3. The application of the corresponding forward rule
tr3,F = Attr2ColumnF at the co-match of tr3,S yields G3, where now also the
second attribute is mapped to a column of the table.

Since for all considered steps, diagram (2) of Def. 8 commute, we conclude

that the sequence ∅ = G00
tr1,S=⇒ G10

tr2,S=⇒ G20
tr3,S=⇒ G30 ↪−gn−→ G0

tr1,F=⇒ G1
tr2,F=⇒

G2
tr3,F=⇒ G3 is a partial match consistent sequence.
The forward sequence G0

tr1,F=⇒ G1
tr2,F=⇒ G2

tr3,F=⇒ G3 is partially source con-
sistent, because we have the partial match consistent sequence ∅ = G00

tr1,S=⇒
G10

tr2,S=⇒ G20
tr3,S=⇒ G30 ↪−gn−→ G0

tr1,F=⇒ G1
tr2,F=⇒ G2

tr3,F=⇒ G3.
Note that this forward sequence, although being partially source consistent,

cannot be extended to a complete source consistent sequence. The reason is that
after the third step, we do not find a new partially source consistent match for
some tr4,F . We will analyze in Ex. 6 what went wrong and how NACs in triple
rules can help to improve the construction of valid source consistent sequences.

In order to provide an improved construction of source consistent forward
sequences we characterize valid matches by introducing the following notion of
forward consistent matches. The formal condition of a forward consistent match
is given by a pullback diagram where both matches satisfy the corresponding
NACs, and intuitively, it specifies that the effective elements of the forward rule
are matched for the first time in the forward sequence (see Interpretation 1
below).

Definition 10 (Forward Consistent Match). Given a partially match con-

sistent sequence ∅ = G00 =
tr∗S==⇒ Gn−1,0 ↪−gn−→ G0 =

tr∗F==⇒ Gn−1 then a match
mn,F : Ln,F → Gn−1 for trn,F : Ln,F → Rn,F is called forward consistent
if there is a source match mn,S such that (1) below is a pullback and the matches
mn,F and mn,S satisfy the corresponding target and source NACs, respectively.

11

Ln,S
� � //

mn,S
��

Rn,S
� � // Ln,F

(1) mn,F

��
Gn−1,0

� �

gn−1
// G0

� � // Gn−1

Interpretation 1. The pullback property of (1) means that the intersection of
the match mn,F (Ln,F) and the source graph Gn−1,0 constructed so far is equal
to mn,F (Ln,S), the match restricted to Ln,S , i.e. we have

(2) : mn,F (Ln,F) ∩Gn−1,0 = mn,F (Ln,F).
This condition can be checked easily and mn,S : Ln,S → Gn−1,0 is uniquely
defined by restriction of mn,F : Ln,F → Gn−1. Furthermore, as a direct conse-
quence of (2) we have

(3) : mn,F (Ln,F \ Ln,S) ∩Gn−1,0 = ∅.
On the one hand, the source elements of Ln,F \Ln,S - called effective elements -
are the elements to be transformed by the next step of the forward transformation
sequence. On the other hand, Gn−1,0 contains all elements that were matched
by the preceding forward steps, because matches of the forward sequence coin-
cide on the source part with comatches of the source sequence. Hence, condition
(3) means that the effective elements were not matched before, i.e. they do not
belong to Gn−1,0.

Example 5 (Forward Consistent Match). In the partial match consistent se-
quence from Ex. 4, all forward rule matches are forward consistent. Consider
for example the situation in step 3, depicted below, where all mappings have
been indicated explicitly by equal numbers. We can see that L3,F ∩G20 = L3,S ,
which implies that Diagram (1) from Def. 10 is a pullback. Analogously, the
matches from forward rules in steps 1 and 2 are also forward consistent.

In the following improved construction of model transformations, we check
the matches to be forward consistent. This allows us to filter the available
matches to those which can lead to correct model transformations while those
matches that cannot lead to correct model transformations are rejected.

Theorem 2 (On-the-Fly Construction of Model Transformations). Given
a triple graph G0 with GC

0 = GT
0 = ∅, execute the following steps:

1. Start with G00 = ∅ and g0 : G00 ↪→ G0.
2. For n > 0 and an already computed partially source consistent sequence

s = 〈G0 =
tr∗F==⇒ Gn−1 〉 with ∅ = G00 =

tr∗S==⇒ Gn−1,0 and embedding gn−1 :

12

Gn−1,0 ↪→ G0 find a (not yet considered) forward consistent match for some

trn,F leading to a partially source consistent sequence G0 =
tr∗F==⇒ Gn−1 =

trn,F===⇒
Gn with G00 =

tr∗S==⇒ Gn−1,0 =
trn,S===⇒ Gn0 and embedding gn : Gn0 ↪→ G0. If

there is no such match, s cannot be extended to a source consistent sequence.
Repeat until gn = idG0 or no new forward consistent matches can be found.

3. If the procedure terminates with gn = idG0 , then G0 =
tr∗F==⇒ Gn is source

consistent leading to a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT)

with GS and GT being the source and target models of G0 and Gn.

Proof. We have to show that this procedure is well-defined, i.e. that in Step
2, a forward consistent match leads to an extended partially source consistent
sequence G0 =

tr∗F==⇒ Gn.
Given the situation as in Step 2 above, (1) + (2) is a pullback because mn,F

is forward consistent. The construction of pushout (1) leads to the source trans-
formation Gn−1,0 =

trn,S===⇒ Gn0, embedding gn−1 : Gn−1,0 ↪→ G0 and gS
n ◦ nS

n,S =
mS

n,F due to (1) being a pushout and (1) + (2) being a pullback over monomor-

phisms. Moreover, Gn−1,0 =
trn,S===⇒ Gn0 and Gn−1 =

trn,F===⇒ Gn are NAC-consistent

by assumption. Thus, G0 =
tr∗F==⇒ Gn is partially source consistent.

Ln,S
� � trn,S //

mn,S

��

Rn,S

nn,S

��
(1)

� � // Ln,F

mn,F

��
(2)

Gn−1,0
� � tn,S //
� u

gn−1

77Gn,0
� � gn // G0

� � // Gn−1

�

The on-the-fly construction does not restrict the choice of a suitable n, trn,F ,
and match in Step 2. Hence, different search algorithms are possible, e.g.

– Depth First: If we increase n after every iteration, and only decrease n by 1
if no more new forward consistent matches can be found, a depth-first search
is performed.

– Breadth First: If we increase n only after all forward consistent matches for
n are considered, the construction performs a breadth-first search.

Depending on the type of the model transformation, other search strategies may
be reasonable. In Sec. 4, we show how to make the construction more efficient
by analyzing independent transformations.

Example 6 (On-the-Fly Construction). Let us assume we have found already
the partial match consistent sequence from Ex. 4 by depth-first search. All
forward rule matches found so far are forward consistent. But after the third
rule application step (i = 3), we do not find a new partial source consistent
match for some tr4,F . Hence, we cannot extend our sequence found so far to
a source consistent sequence. The reason is that there exists no triple rule for

13

t5:cols

s9:parent

c2:

AC

s8:next

s1:Class

name=“Person“

s5:Attr

name=“customer_id“

type=Integer

t2:Column

name=“S-ID“

type=String

t7:next

s4:Class

name=“Customer“

s3:Attr

name=“birth“

type=String

s2:Attr

name=“S-ID“

type=String

s7:attrss6:attrs

s10:attrs

c3:

AC

c5:

AC

c1:

CT

t1:Table

name=“Person“

t3:Column

name=“birth“

type=String

t4:Column

name=“customer_id“

type=Integer

c4:

CT

t6:cols

t8:cols

t9:next

Fig. 4. G5 of Forward Sequence

inserting a next link between two already inserted attributes. The mistake we
made was to use the wrong rule Attr2ColumnS for the insertion of the sec-
ond attribute. If we had used rule NextAttr2NextColumnS instead, we would
have constructed a sequence which could be extended to a source consistent
sequence. If a sequence cannot be extended to a source-consistent one, one
has two choices: either, we have to try to apply a different rule in the pre-
vious step (and maybe have to go back even further), or we restrict the ap-
plicability of our triple rules, e.g. by adding negative application conditions.
In the second case, when considering also the NACs in Fig. 3, we will always
construct a source consistent sequence, because only one attribute-adding rule
would be applicable in each step. An example for a source-consistent sequence,
constructed by partially source consistent sequences according to Thm. 2, is
the model transformation (GS = G0,S , G0 =

tr∗F==⇒ G5, GT = G5,T), where G5

(shown in Fig. 4) is generated by the forward sequence G0 =Class2Table=======⇒ G1

=Attr2Col=====⇒ G2 =Subclass2Table=========⇒ G3 =NextAttr2NextCol============⇒ G4 =Attr2NextCol=========⇒ G5,

and G0 is generated by the corresponding source sequence ∅ =
tr∗S==⇒ G0. All ele-

ments in Fig. 4 are labeled with numbers. Table 1 specifies the matches and the
created objects for each transformation step.

Table 1. Steps of Source Consistent Model Transformation

Source Sequence Elements Forward Sequence Elements
Step Matched Created Matched Created

1 s1 s1 c1,t1
2 s1 s2,s7 s1,s2,s7,c1,t1 c2,t2,t5
3 s1 s4,s9 s1,c1,t1,s4,s9 c4
4 s1,s2,s7 s3,s8 s1-s3,s6-s8,c1,t1,t2,t5 c3,t3,t6,t7
5 s4 s5,s10 s4,s5,s10,c4,t1,t3,t6 c5,t4,t8,t9

14

4 Analysis of the Construction and Improvement of
Efficiency

In this section, we analyze the on-the-fly construction in Thm. 2 regarding cor-
rectness, completeness, and termination of the model transformations and show
how to improve efficiency by parallel independence, which allows partial order
reduction.

The on-the-fly construction is correct, which means that if it terminates
both the source and target models of the resulting model transformations are
valid models of the source and target languages, respectively. Moreover, it is
also complete, which means that for any source model the procedure can find a
model transformation sequence leading to a corresponding target model.

Theorem 3 (Correctness and Completeness).

– Correctness: If the on-the-fly construction terminates with gn = idG0 , then

the resulting model transformation (GS , G0 =
tr∗F==⇒ Gn, GT) is correct, i.e.

GS ∈ V LS and GT ∈ V LT .
– Completeness: For each GS ∈ V LS exists GT ∈ V LT with a model trans-

formation (GS , G0 =
tr∗F==⇒ Gn, GT), which can be obtained by the on-the-fly

construction.

Remark 4. Dually, for each GT ∈ V LT exists GS ∈ V LS where the correspond-
ing model transformation can be obtained dually by partially target consistent
sequences.

Proof. – Correctness: If the procedure terminates with a source consistent for-
ward transformation G0 =

tr∗F==⇒ Gn with a corresponding source transforma-

tion ∅ = G00 =
tr∗S==⇒ Gn0 = G0 then there is a TGT-sequence ∅ = G00 =tr∗=⇒

Gn with GS
0 = GS

n = GS and GT
n = GT and by Def. 5 GS ∈ V LS and

GT ∈ V LT .
– Completeness: GS ∈ V LS implies that there is a TGT-transformation ∅ =

G00 =tr∗=⇒ Gn with GS
n = GS and tr∗ = (tri)i=1...n, which can be decomposed

by Thm. 1 into G00 =
tr∗S==⇒ Gn0 = G0 =

tr∗F==⇒ Gn with matches mi,S and mi,F .
The on-the-fly construction starts with ∅ = G00 and g0 : G00 ↪→ G0. In
Step 2, for i = 1, . . . n we have a partially match consistent sequence ∅ =

G00 =
tr1...i

S===⇒ Gi0 ↪−gi−→ G0 =
tr1...i

F===⇒ Gi. Choose tri+1,F as the next rule in
the forward sequence with match mi+1,F . For the source match mi+1,S , (1)
is a pushout and since the original sequence is source consistent mi+1,F

is uniquely determined by ni+1,S , which means that there is an inclusion
gi+1 : Gi+1,0 ↪−→ Gi such that mS

i+1,F = gS
i+1 ◦ nS

i+1 and gS
i = gS

i+1 ◦ tSi+1,S .
With (1) being both pushout and pullback, and gi+1 and G0 ↪→ Gi being
monomorphisms we have that (1)+(2) is a pullback, leading to the fact that
mi+1,F is forward consistent. This procedure terminates after n steps with
gn = idG0 leading to the target model GT = GT

n . �

15

Li+1,S
� � tri+1,S //

mi+1,S

��
(1)

Ri+1,S

ni+1,S

��
(2)

� � // Li+1,F

mi+1,F

��
Gi0

� �

ti+1,S

// Gi+1,0
� � gi+1 // G0

� � // Gi

In general, the termination of the on-the-fly construction cannot be guaran-
teed. But for the case that all source rules create new elements also the termi-
nation of the on-the-fly construction is ensured.

Theorem 4 (Termination). The on-the-fly construction of a triple graph G0

with GC
0 = GT

0 = ∅ terminates if all source rules tri,S are creating, i.e. Ri,S \
Li,S 6= ∅.

Proof. In the case of creating source rules, the sequence of inclusions GS
00 ↪−t

S
1,S−−→

GS
10 ↪−t

S
2,S−−→ GS

20 . . . is strictly increasing, which means that we have, after a finite
number of steps, that either Gn0 = G0 and the procedure terminates, or there
are no more forward rules with forward consistent matches and the procedure
aborts. �

Example 7 (Termination). The on-the-fly construction of triple graph G5 in
Ex. 6 terminates because all used source rules in the source sequence are creating,
as can be easily seen in Table 1 in the left column Source Sequence Elements.

Confluence. For functional behaviour of the model transformations, also conflu-
ence should be considered, which insures that the results of different transfor-
mations of a source graph lead to the same target graph. In general, it would be
interesting to find sufficient conditions for local confluence and confluence.

Example 8. Note that the triple rules from our running example are not conflu-
ent. We have source-consistent sequences for the same G0 which lead to different
corresponding tables. If a class has more than one attribute, the order of columns
in the resulting table depends on the order in which we transform the attributes.
So, the columns of the table could be linked to each other in any order and would
always be a valid result of a source-consistent forward transformation.

In the following, we describe how to improve efficiency by analyzing parallel
independence of extensions. Two partially match consistent sequences which
differ only in the last rule application are parallel independent if the last rule
applications are parallel independent both for the source and forward sequence,
and, in addition, if the embeddings into the given graph G0 are compatible.

Definition 11 (Parallel Independence of Partially Match Consistent
Extensions). Two partially match consistent sequences

∅ = G00 =
tr∗S==⇒ Gn0 =

tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =
tr∗F==⇒ Gn =

tr1,F===⇒ Gn+1 and

∅ = G00 =
tr∗S==⇒ Gn0 =

tr2,S===⇒ G′n+1,0 ↪−g
′
n+1−−−→ G0 =

tr∗F==⇒ Gn =
tr2,F===⇒ G′n+1

16

are parallel independent if Gn0 =
tr1,S===⇒ Gn+1,0 and Gn0 =

tr2,S===⇒ G′n+1,0 as well

as Gn =
tr1,F===⇒ Gn+1 and Gn =

tr2,F===⇒ G′n+1 are parallel independent leading to the
diagram (1S) and (1F), and diagram (2) is a pullback.

Gn0

tr1,S +3

tr2,S

��

Gn+1,0

(1S) tr2,S

��
G′n+1,0 tr1,S

+3 Gn+2,0

Gn

tr1,F +3

tr2,F

��

Gn+1

(1F) tr2,F

��
G′n+1 tr1,F

+3 Gn+2

Gn0
� � t1,S //

� _
t2,S

��

Gn+1,0

(2)

� _

gn+1

��
G′n+1,0

� �

g′n+1

// G0

In the case of parallel independence of the extensions, both extensions can
be extended both in the source and forward sequences leading to two longer
partially match consistent sequences which are switch-equivalent.

Theorem 5 (Partial Match Consistency with Parallel Independence).

If ∅ = G00 =
tr∗S==⇒ Gn0 =

tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =
tr∗F==⇒ Gn =

tr1,F===⇒ Gn+1 and

∅ = G00 =
tr∗S==⇒ Gn0 =

tr2,S===⇒ G′n+1,0 ↪−g
′
n+1−−−→ G0 =

tr∗F==⇒ Gn =
tr2,F===⇒ G′n+1 are parallel

independent then the following upper and lower sequences are partially match
consistent and called switch equivalent.

Gn+1,0
tr2,S

!)KKKK
KKKK

Gn+1
tr2,F

�'GGG
G

GGG
G

∅ = G00

tr∗S +3 Gn0

tr1,S 7?wwww
wwww

tr2,S
�'GGG

G
GGG

G
Gn+2,0

� � // G0

tr∗F +3 Gn

tr1,F 9A{{{{
{{{{

tr2,F
�%

CCC
C

CCC
C

Gn+2

G′n+1,0

tr1,S

5=tttt
tttt

G′n+1

tr1,F

7?wwww
wwww

Proof. We show the partial match consistency of the sequence ∅ = G00 =
tr∗S==⇒

Gn0 =
tr1,S===⇒ Gn+1,0 =

tr2,S===⇒ Gn+2,0 ↪−gn+2−−−→ G0 =
tr∗F==⇒ Gn =

tr1,F===⇒ Gn+1 =
tr2,F===⇒ Gn+2,

the other one follows dually. It suffices to show that the match m2,F in pushout
(3F) is forward consistent, which means that (4) is a pullback.

L2,F
tr2,F //

m2,F

��

R2,F

n2,F

��
(3F)

Gn+1
� �

t2,F

// GS
n+2

L2,S
tr2,S //

m2,S

��

R2,S
� � // L2,F

m2,F

��
(4)

Gn+1,0
� �

gn+1
// G0

� � // Gn+1

By parallel independence we have the following pushouts from (1S) and (1F)
with (3S) = (6S) + (7S) and (3F) = (6F) + (7F).

L1,S
tr1,S //

m1,S

��

R1,S

n1,S

��
(5S)

L1,F
tr1,F //

m1,F

��

R1,F

n1,F

��
(5F)

L2,S

m′2,S //

tr2,S

��

Gn0

t1,S //

t′2,S
��

(6S)

Gn+1,0

(7S)
��

L2,F

m′2,F //

tr2,F

��

Gn

t1,F //

t′2,F

��
(6F)

Gn+1

��
(7F)

R2,S
n′2,S

// G′n+1,0
// Gn+2,0 R2,F

n′2,F

// G′n+1
// Gn+2

17

This implies that mS
2F = tS1F ◦m

′S
2F = g

′S
n+1◦n

′S
2S , where the last equality holds

by match consistency of the second sequence and tS1F = id. (6S) is a pushout
and also a pullback, and thus the square (6S)+(2) as a composition of pullbacks
is also a pullback, and hence also (4) is a pullback.

L2,S
tr2,S //

m′2,S

��

R2,S

n′2,S
��

(6S)

� � // L2,F

m2,F

��

Gn,0 t′2,S
//

t1,S

��

G′n+1,0

g′n+1
��

(2)

Gn+1,0 gn+1
// G0

� � // Gn+1

�

Example 9 (Parallel Independence). Consider the sequence of rule applications
in Table 1. Here, we may switch step 2 and step 3 without changing the result
G5 since the sequences ∅ = G00 =Class2TableS========⇒ G10 =Attribute2ColumnS============⇒ G2,0 ↪−g2−→
G0 =Class2TableF========⇒ G1 =Attribute2ColumnF=============⇒ G2 and ∅ = G00 =Class2TableS========⇒ G′10

=Subclass2TableS==========⇒ G′2,0 ↪−g
′
2−→ G0 =Class2TableF========⇒ G1 =Subclass2TableF==========⇒ G′2 are parallel

independent.

We can analyze parallel independence on-the-fly for the forward steps which
are applicable to the current intermediate triple graph. Based on the induced par-
tial order of dependencies between the forward steps we can apply several tech-
niques of partial order reduction in order to improve efficiency. This means that
we can neglect remaining switch-equivalent sequences, if one of them has been
constructed. This improves efficiency of corresponding depth-first and breadth-
first algorithms. For an overview of various approaches concerning partial order
reduction see [9], where also benchmarks show that these techniques can dra-
matically reduce complexity.

5 Related Work and Evaluation of our Approach

Since 1994, several extensions of the original TGG definitions have been pub-
lished [15,13,10], and various kinds of applications have been presented [16,11,12].
For an extensive overview see [15]. A new extension of TGGs towards declara-
tive, pattern-based model transformation is presented in [2], where triple rules
are derived from triple graph constraints.

Furthermore, Kindler and Wagner [12] discuss that several applications of
model transformations based on TGGs require an efficient strategy for finding
a correct transformation sequence because of the non-deterministic character of
the matching of forward rules. A new strategy for controlling the construction
of a model transformation was given in [15], where elements of the source model
are distinguished for each step of the model transformation whether they were
translated so far. In this paper we have formalized this separation by specifying

18

which elements were matched so far and we call the new matched elements in
an intermediate model transformation step effective elements (see Def. 10).

As stated in Sec. 1 this paper extends especially various concepts and results
of our previous papers [3,8,6,7]. In the following we explain how our approach
complies with the design principles of the “Grand Research Challenge of the
Triple Graph Grammar Community”, which was formulated by Schürr et. al.
in [15]:

1. Correctness: Model transformations shall be correct in the way that when-
ever the algorithm translates a source model GS into a target model GT then
there has to be a triple graph G = (GS ← GC → GT) ∈ VL. This property
is shown in Thm. 3 for an algorithm based on our construction in Thm. 2.

2. Completeness and Termination: Completeness means that the algorithm
translates each model GS ∈ VLS . This property subsumes Termination.
Both properties are ensured for our construction by Thm. 3 and Thm. 4 if
triple rules are creating on the source part.

3. Efficiency: Model transformations shall have polynomial space and time
complexity with exponent k the maximal number of elements of a rule. Our
construction does not guarantee this requirement in general. But note that
the algorithm in [15] does only meet this condition, because it avoids back-
tracking by aborting a translation in the case that the chosen sequence of
model transformation steps does not lead to a target model, even if there
may be a possible sequence. Therefore, completeness is not achieved in their
approach. Note further that by Thm. 5 we are able to perform partial order
reduction, which has shown to provide massive power for the reduction of
complexity (see e.g. [9]).

4. Expressiveness: Finally, features that are urgently needed for solving prac-
tical problems like NACs and attribute conditions shall be captured. Both,
NACs and attributes are handled by our approach. It remains open, whether
our restriction to source-target NACs rules out some interesting practical ap-
plications.

6 Conclusion and Future Work

In this paper we have given a new formal construction of model transforma-
tions based on triple graph grammars including crucial properties like NAC-
consistency, correctness, completeness and a sufficient condition for termina-
tion. In contrast to previous formal constructions in [14,3,7] the new construc-
tion avoids a parsing of the source graph beforehand or afterwards, but allows
to construct simultaneously NAC-consistent forward and source transformation
sequences leading to an on-the-fly construction of model transformations. More-
over, we have shown correctness and completeness of this on-the-fly construction
and termination for triple rules with non-identical source part. Currently, these
constructions are being implemented by us based on Mathematica libraries.

Finally, we have studied parallel independence of model transformation steps,
which allows us to perform partial-order reduction in order to improve efficiency

19

of the construction. We have not analyzed local confluence in this paper, which
- together with termination - leads to functional behaviour of the model trans-
formation. But we are confident that our concept of parallel independence can
be extended to study critical pairs and local confluence for model transforma-
tion sequences based on existing approaches for graph transformation systems
[5] including tool support by our tool AGG [1].

References

1. AGG, 2009. http://tfs.cs.tu-berlin.de/agg.

2. J. de Lara and E. Guerra. Pattern-based model-to-model transformation. In
H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, editors, Proc. of ICGT’08,
volume 5214 of Lecture Notes in Computer Science, pages 426–441. Springer, 2008.

3. H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserv-
ing bidirectional model transformations. In M. B. Dwyer and A. Lopes, editors,
Fundamental Approaches to Software Engineering, volume 4422 of LNCS, pages
72–86. Springer, 2007.

4. H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model Inte-
gration based on the Algebraic Approach to Triple Graph Grammars. In C. Ermel,
J. de Lara, and R. Heckel, editors, Proc. Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT’08), volume 10. EC-EASST, 2008.

5. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer
Verlag, 2006.

6. H. Ehrig, C. Ermel, and F. Hermann. On the Relationship of Model Transforma-
tions Based on Triple and Plain Graph Grammars. In G. Karsai and G. Taentzer,
editors, Proc. Third International Workshop on Graph and Model Transformation
(GraMoT’08), New York, NY, USA, 2008. ACM.

7. H. Ehrig, F. Hermann, and C. Sartorius. Completeness and Correctness of Model
Transformations based on Triple Graph Grammars with Negative Application Con-
ditions. In R. Heckel and A. Boronat, editors, Proc. Workshop on Graph Trans-
formation and Visual Modeling Techniques (GT-VMT’09). EC-EASST, 2009. to
appear.

8. H. Ehrig and U. Prange. Formal Analysis of Model Transformations Based on
Triple Graph Rules with Kernels. In H. Ehrig, R. Heckel, G. Rozenberg, and
G. Taentzer, editors, Proc. International Conference on Graph Transformation
(ICGT’08), volume 5214 of LNCS, pages 178–193, Heidelberg, 2008. Springer Ver-
lag.

9. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer,
1996.

10. E. Guerra and J. de Lara. Attributed typed triple graph transformation with
inheritance in the double pushout approach. Technical Report UC3M-TR-CS-
2006-00, Universidad Carlos III, Madrid, Spain, 2006.

11. E. Guerra and J. de Lara. Model view management with triple graph grammars.
In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors,
Proc. Intern. Conf. on Graph Transformation (ICGT’06), volume 4178 of LNCS,
pages 351–366, Heidelberg, 2006. Springer.

20

12. E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions, imple-
mentations, and application scenarios. Technical Report TR-ri-07-284, Department
of Computer Science, University of Paderborn, Germany, 2007.

13. A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars - A
Survey. In Proc. SegraVis School on Foundations of Visual Modelling Techniques,
volume 148, pages 113–150, Amsterdam, 2006. Electronic Notes in Theoretical
Computer Science, Elsevier Science.

14. A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
G. Tinhofer, editor, WG94 20th Int. Workshop on Graph-Theoretic Concepts in
Computer Science, volume 903 of Lecture Notes in Computer Science, pages 151–
163, Heidelberg, 1994. Springer Verlag.

15. A. Schürr and F. Klar. 15 years of triple graph grammars. In Intern. Conf. on
Graph Transformation (ICGT 2008), pages 411–425, 2008.

16. G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovsky,
U. Prange, D. Varro, and S. Varro-Gyapay. Model Transformation by Graph
Transformation: A Comparative Study. In Proc. Workshop Model Transforma-
tion in Practice, Montego Bay, Jamaica, October 2005.

21

