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Abstract. Triple graph transformation has become an important ap-
proach for model transformations. Triple graphs consist of a source, a
target and a connection graph. The corresponding rules also contain these
parts and describe the simultaneous construction of both the source and
the target model. From these rules, forward rules can be derived which
describe the model transformation from a given source model to a target
model. The forward transformation must be source consistent in order
to define a valid model transformation. Source consistency implies that
the source and the target model correspond to each other according to
a triple transformation.

In this paper, the relationship between the source consistency of for-
ward transformations, and NAC consistency and termination used in
other model transformation approaches is analysed from a formal point
of view. We define the kernel of a forward rule and construct NACs based
on this kernel. Then we give sufficient conditions such that source consis-
tency implies NAC consistency and termination. Moreover, we analyse
how to achieve local confluence independent of source consistency. Both
results together provide sufficient conditions for functional behaviour of
model transformations. Our results are illustrated by an example de-
scribing a model transformation from activity diagrams to CSP.

1 Introduction

Model transformations are most important for model-driven software develop-
ment. In recent years, triple graph grammars (TGGs) introduced by A. Schürr
[1] have been shown to be a suitable basis to define model transformations in
various application areas [2, 3]. TGGs are based on triple graphs and triple rules
which allow to consistently co-develop two related structures modeled by graphs.
TGG rules are triples of non-deleting graph rules and generate the language of
triple graphs, which can be projected to the first and third component, usually
called source and target language, respectively.

In [1], it was shown that a triple rule tr can be decomposed into a source
rule trS and a forward rule trF , and similarly for the transformations, where the
forward rules can be used to define model transformations from source to target
models. Dually, triple rules and transformations can be decomposed into target
and backward rules and transformations leading to model transformations from
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target to source models, and hence to bidirectional model transformations be-
tween different domain-specific modeling languages [4, 5, 6]. The decomposition
result in [1] has been extended by a corresponding composition result in [5] lead-
ing to a bijective correspondence between triple graph transformation sequences
and consistent sequences of corresponding source and forward transformation
sequences.

A forward transformation GS
tr∗

F=⇒ G is called a forward model transformation
from the source projection of GS to the target projection of G if it is “source
consistent”. As defined in [5], “source consistency” means that there is a gener-

ating sequence ∅
tr∗

S=⇒ GS for the source model via the corresponding source rules

such that the matches of the source components in GS
tr∗

F=⇒ G are defined by the

items generated by ∅
tr∗

S=⇒ GS . Actually, source consistency can be considered
as a control condition for forward transformation sequences in order to obtain a
model transformation from the source to the target model.

In most practical approaches using TGGs for model transformations there is
no formal control condition for how to apply the forward rules. But the intuitive
idea is to apply each forward rule to a corresponding item of the source graph [7].
In other graph transformation approaches to model transformations (see [5]), the
control condition is given by different layers of rules with negative application
conditions (NACs), where the rules in each layer are applied as long as possible.
Termination is checked by suitable termination criteria [8].

In this paper, the relationship between source consistency of forward transfor-
mation sequences on the one hand and NAC consistency and termination on the
other hand is analysed from a formal point of view. For this purpose, we consider
triple graph rules tr : L → R with kernels, where the kernel is a distinguished
triple k(tr) = (x, r, y) ∈ R of connected nodes in the source, connection, and
target graphs created by the triple rule tr. This allows to define the correspond-
ing kernels k(trS) = x and k(trF ) = k(tr) for the source and forward rules,
respectively. Moreover, for a forward rule trF = L→ R we define so-called ker-
nel NACs NAC(trF ) = L ∪ k(trF ). This means that a NAC consistent forward
transformation via trF cannot be applied twice at the same match.

Our first main result shows that the source consistency of GS
tr∗

F=⇒ G implies
NAC consistency and termination. In fact, an even slightly weaker notion called
“kernel source consistency” is sufficient for this result, where source consistency
is restricted to the kernel elements. In our second main result we give sufficient
conditions for local confluence of forward rules with kernel NACs. Both results
together lead to confluence and termination of forward rules with kernel NACs
and hence to functional behaviour of the corresponding model transformation.

This paper is organized as follows: In Section 2, we review the basic definitions
for triple graph grammars. An example model transformation from activity dia-
grams to CSP is introduced in Section 3. In Section 4, kernels of triple rules and
some basic properties are defined. In Section 5, the main results are stated and
proven, and applied to our example model transformation in Section 6. Finally,
the conclusion is given in Section 7.
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2 Triple Graph Transformation

In this section, we give a short introduction of the basic notions of triple graphs
and triple graph grammars. which have been introduced in [1] as an approach
to consistently develop related structures.

Triple graphs consist of a source, a target and a connection graph which is
embedded into both source and target graphs. For the underlying graphs, we
use for simplicity the category Graphs of graphs and graph morphisms, but the
main results in [5] have been formulated already in the framework of adhesive
HLR systems [8].

Definition 1 (Triple Graph). A triple graph G = (SG
sG← CG

tG→ TG) consists
of graphs SG, CG, and TG called source graph, connection graph, and target
graph, respectively, and graph morphisms sG : CG → SG and tG : CG → TG.

For triple graphs G and H, a triple graph morphism f = (fS , fC , fT ) : G→ H
consists of graph morphisms fS : SG → SH , fC : CG → CH and fT : TG → TH

such that sH ◦ fC = fS ◦ sG and tH ◦ fC = fT ◦ tG.
Triple graphs and triple graph morphisms form the category TripleGraphs.

Remark 1. The category TripleGraphs is isomorphic to the comma category
ComCat(S,C,T, {s : C→ S, t : C→ T}) where S,C,T = Graphs and all
functors are the identities on Graphs.

For simplicity, for a morphism f : G→ H and x ∈ SG we write f(x) instead
of fS(x), and similarly for x ∈ CG, TG.

The concept of typing plays an important role in modeling. Thus we introduce
typed triple graphs.

Definition 2 (Typed Triple Graph). Given a triple graph TG as type graph,
a typed triple graph (G, typeG) consists of a triple graph G and a triple graph
morphism typeG : G→ TG. G is said to by typed over TG with typing typeG.

For typed triple graphs (G, typeG) and (H, typeH), a typed triple graph mor-
phism f is a triple graph morphism f : G→ H such that typeH ◦ f = typeG.

Triple graphs typed over TG and typed triple graph morphisms form the cat-
egory TripleGraphsTG.

Remark 2. The category TripleGraphsTG is isomorphic to the slice category
TripleGraphs\TG.

For the access to the different graph parts, projections of a triple graph are
defined.

Definition 3 (Projection). For a triple graph G = (SG
sG← CG

tG→ TG) the
projections of G to the source, connection, and target graph are defined by
projS(G) = SG, projC(G) = CG, and projT (G) = TG, respectively. In case
of typed triple graphs, also the typing is projected.
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In the following, we give all the definitions based on triple graphs. They can be
formulated analogously for typed triple graphs as used in Section 4.

A triple rule is a rule based on triple graphs as in standard DPO transfor-
mation. It constructs simultaneously source and target graphs as well as their
connection graph. According to [1, 5], only non-deleting triple rules are allowed.
This simplifies the definition since we do not need to consider an interface graph
but only the left and right hand side of the rule.

Definition 4 (Triple Rule and Triple Transformation). A triple rule tr =
(L tr→ R) consists of triple graphs L and R, called left hand side and right hand
side, respectively, and an injective triple graph morphism tr : L→ R.

Given a triple rule tr, a triple graph G and a triple graph morphism m :
L → G, called match, a direct triple transformation G

tr,m
=⇒ H is given by the

pushout (1) in TripleGraphs, which is the componentwise pushout (2) on the
source, connection and target graphs in Graphs due to the comma category
construction. The morphism p in pushout (1) is called comatch.

A sequence of direct triple transformations is then called triple tranformation.

L

R

G

H

SL CL TL

SR CR TR

SG CG TG

SH CH TH

tr

m

p

f

trS

mS

pS

fS

trC

mC

pC

fC

trT

mT

pT

fT

sL tL

sR tR

sG
tG

sH tH

(1)

(2)

Since we consider only nondeleting injective rules tr : L → R we can assume
w.l.o.g. that L ⊆ R and all derived triple graphs are included in each other, i.e.
for a transformation sequence G0

tr1,m1=⇒ G1
tr2,m2=⇒ . . .

trn,mn=⇒ Gn we have that
Gi ⊆ Gj for i ≤ j.

To extend the expressiveness of triple graph transformations we define nega-
tive application conditions which restrict the applicability of a triple rule.

Definition 5 (Negative Application Condition). Given a triple rule tr =
(L tr→ R), a negative application condition (NAC) (N, n) consists of a triple
graph N and a triple graph morphism n : L→ N .

A match m : L → G is NAC consistent if there is no q : N → G such that
q ◦ n = m. A triple transformation G

∗=⇒ H is NAC consistent if all matches
are NAC consistent.

Up to now, the triple rules simultaneously create the source, connection and
target graphs. But for a model transformation, some source model is given that
has to be transformed into the corresponding target model. For this purpose,
we can derive source and forward rules from a given triple rule. The source
rule only creates a part of the source model, and the forward rule describes the
transformation of this part to the target model.
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Definition 6 (Source and Forward Rule). Given a triple rule tr = (L tr→ R),
the source rule trS and the forward rule trF are defined by trS = ((SL

∅← ∅
∅→

∅)
(trS,∅,∅)−→ (SR

∅← ∅
∅→ ∅)) and trF = ((SR

trS◦sL← CL
tL→ TL)

(idSR
,trC ,trT )−→ R).

Now a triple graph grammar consists of a set of triple rules and a start graph.

Definition 7 (Triple Graph Grammar). A triple graph grammar GG =
(TR, S) consists of a set TR of triple rules and a triple graph S, the start graph.

For the rule set TR, we get induced sets TRS = {trS | tr ∈ TR} and TRF =
{trF | tr ∈ TR} of source and forward rules.

For the relationship of triple rules with their source and forward rules, match
and source consistency are introduced. Match consistency describes that in a
transformation sequence, the forward rule is always applied via the comatch
of the corresponding source rule for the source graph. Source consistency of a
forward transformation requires a match consistent transformation. In [5], it is
shown that a triple transformation can be split into match consistent source and
forward transformations via the same rule sequence, and vice versa.

Definition 8 (Match Consistency). Consider a triple transformation tt :

∅
tr∗

S=⇒ GS
tr∗

F=⇒ G where tr∗S = (tri,S)i=1,...,n and tr∗F = (tri,F )i=1,...,n are derived
from the same triple rules tr∗ = (tri)i=1,...,n, and we have matches mi,S and
mi,F , and comatches pi,S and pi,F , respectively. Then tt is called match consis-
tent if the source component of the match mi,F is completely determined by the
comatch pi,S , i.e. (mi,F )S = (pi,S)S, for i = 1, . . . , n.

Definition 9 (Source Consistency). A forward triple transformation GS
tr∗

F=⇒
G with tr∗F = (tri,F )i=1,...,n is called source consistent if there exists a source

triple transformation ∅
tr∗

S=⇒ GS such that tr∗S = (tri,S)i=1,...,n and ∅
tr∗

S=⇒ GS
tr∗

F=⇒
G is match consistent.

According to [5], a source consistent transformation leads to a forward model
transformation.

Definition 10 (Forward Model Transformation). A forward triple trans-

formation GS
tr∗

F=⇒ G with G′
S = projS(GS) and G′

T = projT (G) is called a

forward model transformation from G′
S to G′

T if GS
tr∗

F=⇒ G is source consistent.

3 Example: From Activity Diagrams to CSP

In this section, we demonstrate the definitions from Section 2 on a model trans-
formation from simple activity diagrams [9] with only actions, binary decisions
and merges to communicating sequential processes (CSP) [10]. This transforma-
tion is a slightly smaller version of the case study proposed in [11]. Due to the
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Fig. 1. The triple type graph

restrictions of the activity diagrams we can also restrict CSP to a SKIP process,
prefix operations and conditions.

The triple type graph for the model transformation is shown in Fig. 1. In the
upper part, the type graph for activity diagrams is shown. Basically, we have
different kinds of activity nodes and activity edges, that are connected by source
and target associations to the nodes. In the bottom of Fig. 1, the simplified
type graph of CSP is depicted. Processes are defined via process assignments. A
process expression can be a simple process, a prefix combining an event and a
process, a condition, or a successful termination denoted by SKIP.

In Fig. 2, the triple rules for the consistent development of activity diagrams
and the corresponding CSP models are depicted. We use a compact representa-
tion, where the stereotype 
new� means that this element is created by the
rule, and all other elements are already present in the left hand side. In the fig-
ure, on the left hand side of each rule the source graph is shown, followed by the
connection graph and the target graph on the right hand side. The morphisms
between these graphs are depicted by dashed arrows.

The triple rule trInitialNode describes that an initial node corresponds to an
CSP container where all other CSP elements are stored. With trActivityEdge, an
activity edge and its corresponding process are created. The other activity nodes
correspond to different process assignments. With the triple rule trAction, an ac-
tion and the corresponding prefix operation are created, while with trFinalNode

a final node and the corresponding SKIP process are defined. Finally, the rule
trDecisionNode handles the simultaneous creation of a binary decision and a condi-
tion, and trMergeNode creates a binary merge and the corresponding identification
of processes. Note that the rules trActivityEdge and trAction have input parameters to
define the attributes. To obtain a valid activity diagram, the rule trInitialNode has
to be applied exactly once, the rule trFinalNode at least once, and each produced
activity edge has to be connected by exactly one source and target association.
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«new»«new»

«new»

 : InitialNode

«new»

 : INCC

«new»

 : CSPContainer

«new»«new»
name = x

guard = y

«new»

 : ActivityEdge
«new»

 : AEP

name = x

«new»

 : Process

 : InitialNode  : INCC  : CSPContainer

 : AEP

 : AEP

«new»«new»

name = x

«new»

 : Action

«new»

 : APA

«new»

 : ProcessAssignment

«new»

target

«new»

source

«new»

 : Prefix

name = x

«new»

 : Event

«new»

assignment

«new»

process

«new»

event

«new»

target

 : InitialNode  : INCC  : CSPContainer

name

guard

 : ActivityEdge  : AEP

name

 : Process

«new»«new»
«new»

 : FinalNode

«new»

 : FNPA

«new»

 : ProcessAssignment

«new»

target
«new»

 : SKIP

«new»

assignment

«new»

identifier

«new»

process

 : InitialNode  : INCC  : CSPContainer

name

guard

 : ActivityEdge  : AEP

name

 : Process

name

guard = x

 : ActivityEdge  : AEP

name

 : Process

«new»«new»«new»

 : DecisionNode

«new»

 : DNPA

«new»

 : ProcessAssignment

«new»

target

«new»

source

expression = x

«new»

 : Condition

«new»

assignment

«new»

identifier

«new»

process

«new»

left

name

guard = "else"

 : ActivityEdge  : AEP

name

 : Process

name

guard

 : ActivityEdge

name

guard

 : ActivityEdge

name

 : Process

name

 : Process

«new»

right

«new»

source

 : InitialNode  : INCC  : CSPContainer

name

guard

 : ActivityEdge  : AEP

name

 : Process

name

guard

 : ActivityEdge
 : AEP

name

 : Process

«new»

«new»

«new»

 : MergeNode

«new»

 : MNPA2

«new»

 : ProcessAssignment

«new»

target «new»

target

«new»

 : ProcessAssignment

«new»

assignment

«new»

identifier

«new»

process

«new»

identifier

name

guard

 : ActivityEdge
 : AEP

name

 : Process
«new»

prozess

«new»

source

«new»

 : MNPA1«new»
«new»

«new»

assignment

«new»

identifier

trInitialNode

trActivityEdge

trAction

trFinalNode

trDecisionNode

trMergeNode

 : AEP

name

guard

 : ActivityEdge

name

 : Process

«new»

source

Fig. 2. The triple rules
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correct

add up points

passed get mark

failed

publish result

A

C
I

G [else]

FE

D [points >= 50]B

H

A := correct → B
B := add up points → C
C := D �< points >= 50 �> G
D := passed → E
E := get mark → F
F := publish result → I
G := failed → H
H := SKIP
I := SKIP

Fig. 3. Example model

In Fig. 3, an activity diagram and the corresponding process are depicted
in concrete syntax, which are the results of the source and target projec-
tions of the transformation sequence ∅

tr∗
=⇒ G with tr∗ = (trInitialNode, 9 ×

trActivityEdge, 6×trAction, trDecisionNode, 2× trFinalNode) with suitable parameter values.
From the triple rules in Fig. 2, we can derive source and forward rules. For

the source rules, we simply have to delete the connection and target graph parts
of the rules. For the forward rules, the source graph of the left hand side of
the forward rule is the source graph of the right hand side of the original rule,
thus we only have to delete the
new�-stereotypes of all elements in the source
graph of a rule to obtain the corresponding forward rule. In Fig. 4, this is shown
exemplarily for the rule trFinalNode leading to the forward rule trFinalNode

F .

 : InitialNode  : INCC  : CSPContainer

name

guard

 : ActivityEdge  : AEP

name

 : Process

«new»«new»
 : FinalNode «new»

 : FNPA

«new»

 : ProcessAssignment

target

«new»

 : SKIP

«new»

assignment

«new»

identifier

«new»

process

tr
F

FinalNode

Fig. 4. A forward rule

Now the transformation ∅
tr∗
=⇒ G from above can be decomposed into the

transformations ∅
tr∗

S=⇒ GS via the corresponding source rules and GS
tr∗

F=⇒ G
via the corresponding forward rules. In this case, A = projS(GS) is the activity

diagram depicted in Fig. 3. The forward transformation GS
tr∗

F=⇒ G is source
consistent and leads to the forward model transformation from A to P , where
P = projT (G) is the CSP model in Fig. 3.

4 The Kernel Approach

In the kernel approach, we consider typed triple graphs and an empty start
graph. For each rule, a distinguished kernel triple is selected. In this paper, we
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only consider the source and forward rules, but the theory can be done similarly
for the target and backward rules.

The kernel of each rule is a triple of nodes, one from each graph part of a
triple graph, that is connected and generated by the rule.

Definition 11 (Kernel). For a triple graph G, a node triple (x, r, y) ∈ SG ×
CG × TG is called connected if sG(r) = x and tG(r) = y.

Given a triple graph grammar GG = (TR, ∅), we define for each rule tr =
(L tr→ R) ∈ TR the kernel k(tr) = (x, r, y) ∈ R\L = (SR\SL) × (CR\CL) ×
(TR\TL) which is a connected node triple. Then k(trS) = x and k(trF ) = (x, r, y)
are the corresponding kernels of trS and trF , respectively.

For the source and forward rules we want to have distinguished kernel typing,
which means that elements of kernel types cannot be created as non-kernel types
by any other rule. In our example, we have distinguished kernel typing (see
Section 6).

Definition 12 (Distinguished Kernel Typing). Define the source kernel
types KTY PES = {type(x) | trS ∈ TRS, k(trS) = x} and the forward kernel
types KTY PEF = {type(r) | trF ∈ TRF , k(trF ) = (x, r, y)}.

TRS has distinguished kernel typing if for all trS ∈ TRS and x created by
trS, i.e. x ∈ SR\SL, we have that x �= k(trS) implies type(x) /∈ KTY PES.

TRF has distinguished kernel typing if for all trF ∈ TRF and connected
triples (x, r, y) created by trF we have that (x, r, y) �= k(trF ) implies type(r) /∈
KTY PEF , where (x, r, y) ∈ R created by trF : L→ R means that (x, r, y) /∈ L.

Moreover, TRF is called type functional if for all trF , tr′F ∈ TRF with ker-
nels k(trF ) = (x, r, y) and k(tr′F ) = (x′, r′, y′) we have that type(x) = type(x′)
implies type(r) = type(r′).

Remark 3. If sTG of the type graph TG is injective then TRF is type functional
in any case. Moreover, type(r) = type(r′) implies type(y) = type(y′).

In a triple transformation, the images of the kernels under the comatches are
called the kernel elements of the resulting graph.

Definition 13 (Kernel Elements). Consider a triple transformation ∅
tr∗

S=⇒
GS with tr∗S = (tri,S)i=1,...,n and comatches pi,S. The kernel elements of GS

generated by tr∗S are all elements xi = pi,S(xi) for kernels k(tri,S) = xi and
i = 1, . . . , n.

Consider a triple transformation GS
tr∗

F=⇒ G with tr∗F = (tri,F )i=1,...,n and
comatches pi,F . The kernel elements of G generated by tr∗F are all triples
(xi, ri, yi) = pi,F (xi, ri, yi) for kernels k(tri,F ) = (xi, ri, yi) and i = 1, . . . , n.

In the following Facts 1 and 2, we show that for triple transformations with
distinguished kernel typing, kernel elements are exactly the elements of kernel
types.
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Fact 1. Consider a triple graph grammar (TR, ∅) where TRS has distinguished

kernel typing and a transformation ∅
tr∗

S=⇒ GS . Then we have that x ∈ GS is a
kernel element if and only if type(x) ∈ KTY PES.

Proof. For x ∈ GS with type(x) ∈ KTY PES there is a rule tri,S = (L
tri,S→

R) such that x has been created by tri,S , and there is some x ∈ SR\SL with
pi,S(x) = x. Suppose x is no kernel element, i.e. x �= k(tri,S). Since TRS has
distinguished kernel typing it follows that type(x) = type(x) /∈ KTY PES , which
is a contradiction. Thus, x is a kernel element of GS . Vice versa, if x is a kernel
element generated by k(tri,S) = x then type(x) = type(x) ∈ KTY PES .

Fact 2. Consider a triple graph grammar (TR, ∅) where TRF has distinguished

kernel typing and a triple transformation GS
tr∗

F=⇒ G with projC(GS) = ∅. Then
we have that a connected triple (x, r, y) ∈ G is a kernel element if and only if
type(r) ∈ KTY PEF .

Proof. For (x, r, y) ∈ G with type(r) ∈ KTY PEF there is a rule tri,F = (L
tri,F→

R) such that r has been created by tri,F , because projC(GS) = ∅. Then there
is a triple (x, r, y) ∈ R with pi,F (x, r, y) = (x, r, y). It follows that (x, r, y) /∈ L,
otherwise r was created earlier. Suppose (x, r, y) �= k(tri,S). Since TRF has
distinguished kernel typing it follows that type(r) = type(r) /∈ KTY PEF , which
is a contradiction. Thus we have that k(tri,F ) = (x, r, y) and (x, r, y) is a kernel
element of G. Vice versa, if (x, r, y) is a kernel element generated by k(tri,S) =
(x, r, y) then type(r) = type(r) ∈ KTY PEF .

Kernel match and source consistency is the restriction of source and match
consistency to the kernel elements. Kernel consistency is easier to verify since
only one element for each direct transformation has to be considered.

Definition 14 (Kernel Match Consistency). Consider a triple transforma-

tion tt : ∅
tr∗

S=⇒ GS
tr∗

F=⇒ G where tr∗S = (tri,S)i=1,...,n and tr∗F = (tri,F )i=1,...,n

are derived from the same triple rules tr∗ = (tri)i=1,...,n with kernels k(tri) =
(xi, ri, yi), and we have matches mi,S and mi,F , and comatches pi,S and pi,F ,
respectively. The triple transformation tt is called kernel match consistent if
mi,F (xi) = pi,S(xi) for i = 1, . . . , n.

Definition 15 (Kernel Source Consistency). A forward triple transforma-

tion GS
tr∗

F=⇒ G with tr∗F = (tri,F )i=1,...,n is called kernel source consistent if there

exists a source triple transformation ∅
tr∗

S=⇒ GS such that tr∗S = (tri,S)i=1,...,n

and ∅
tr∗

S=⇒ GS
tr∗

F=⇒ G is kernel match consistent.

For each kernel element, from a triple transformation a unique rule can be iden-
tified which has created this element.

Fact 3. Given a triple transformation tt : ∅
tr∗

S=⇒ GS
tr∗

F=⇒ G with tr∗S =
(tri,S)i=1,...,n and tr∗F = (tri,F )i=1,...,n derived from the same triple rules
tr∗ = (tri)i=1,...,n, then we have that
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1. For each kernel element x in GS there is a unique i ∈ {1, . . . , n} such that
x is generated by tri,S, i.e x = xi and xi �= xj for all j �= i.

2. For each kernel element (x, r, y) in G there is a unique i ∈ {1, . . . , n} such
that (x, r, y) is generated by tri,F , i.e. (x, r, y) = (xi, ri, yi) and ri �= rj,
yi �= yj for all j �= i.

3. If tt is kernel match consistent then in Item 2 also xi �= xj for all j �= i.

Proof. 1. For each i = 1, . . . , n, when applying tri,S a new kernel element xi =
pi,S(xi) is created in GS such that x1, . . . , xn are pairwise disjoint.

2. For each i = 1, . . . , n, when applying tri,F a kernel element (xi, ri, yi) =
pi,F (xi, ri, yi) is created in G. Since ri and yi are newly created by tri,F it
follows that r1, . . . , rn and y1, . . . , yn are pairwise disjoint.

3. In the case of kernel match consistency, xi of a kernel triple (xi, ri, yi) is the
kernel element xi generated by the kernel of tri,S such that x1, . . . , xn are
pairwise disjoint due to Item 1.

To allow the application of a forward rule to a source kernel element only once,
kernel NACs for forward rules are defined.

Definition 16 (Kernel NAC). For a forward rule trF = (L trF→ R) with kernel
k(trF ) = (x, r, y) we define the kernel NAC NAC(trF ) = (N, n) with triple graph
N = L ∪ k(trF ), sN (r) = x, tN (r) = y and inclusion n : L→ N .

5 Results for Model Transformations in the Kernel
Approach

In this section, we analyse how to achieve kernel source consistency and state the
main results for forward transformations in the kernel approach. In Section 6,
we apply these results to our example from Section 3.

A forward triple transformation GS
tr∗

F=⇒ G with tr∗F = (tri,F )i=1,...,n is kernel

source consistent if GS is generated by ∅
tr∗

S=⇒ GS with corresponding source
rule trS = (tri,S)i=1,...,n leading to kernel elements xi in GS that determine the
kernel match for the forward rule tri,F . In other words, each forward rule tri,F is
applied exactly once at the kernel element xi generated by the source rule tri,S .

For a forward transformation GS
tr∗

F=⇒ G to become kernel source consistent we

have to construct first a source generating sequence ∅
tr∗

S=⇒ GS leading to kernel
elements x1, . . . , xn ∈ GS . This is a parsing problem for GS , which may lead
to nondeterministic results. Then we have to apply the corresponding forward
rules tri,F without kernel NACs at the kernel elements xi. If this is successful

we obtain a kernel source consistent forward transformation tt : GS
tr∗

F=⇒ G and
under the conditions of Thm. 1 tt is NAC consistent and terminating.

Obviously, source consistency of GS
tr∗

F=⇒ G implies kernel source consistency.
Vice versa, kernel source consistency implies source consistency if all matches
are uniquely determined by the kernel matches (see Thm. 2).
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Theorem 1 (NAC Consistency and Termination). Consider a triple graph
grammar (TR, ∅) where TRS, TRF have distinguished kernel typing, a kernel

source consistent forward triple transformation tt : GS
tr∗

F=⇒ G, and forward rules
with kernel NACs. Then we have that:

1. tt is NAC consistent.
2. tt is terminating if TRF is type functional.

Proof. Let tt : GS = GS(0)
tr1,F=⇒ GS(1)

tr2,F=⇒ . . .
trn,F=⇒ GS(n) = G. Since tt is

kernel source consistent there exists a triple transformation ∅
tr∗

S=⇒ GS such that

∅
tr∗

S=⇒ GS
tr∗

F=⇒ G is kernel match consistent.

1. Suppose that tt is not NAC consistent. This means that there is a rule
tri,F = (L

tri,F→ R) with match mi,F , comatch pi,F , and kernel NAC (Ni, ni)

such that GS(i−1)
tri,F=⇒ GS(i) is not NAC consistent, i.e. there is a triple

graph morphism q : Ni → GS(i−1) such that q ◦ ni = mi,F .
For the kernel k(tri,F ) = (xi, ri, yi) of tri,F we have the kernel element
pi,F (xi, ri, yi) = (xi, ri, yi) ∈ GS(i) and q(xi, ri, yi) = (x, r, y) ∈ GS(i−1)

with xi ∈ SL and mi,F (xi) = x. The commutativity of (1) with horizontal
inclusions and xi ∈ SL imply that x = mi,F (xi) = pi,F (xi) = xi.
(xi, ri, yi) is a connected triple and hence also (x, r, y) is connected in
GS(i−1). Since type(r) = type(ri) ∈ KTY PEF , Fact 2 implies that (x, r, y)
is a kernel element of G, and by Fact 3 Item 2 there is a unique j such
that (x, r, y) = (xj , rj , yj) is generated by trj,F . Obviously, j < i because
(x, r, y) ∈ GS(i−1). Now Fact 3 Item 3 implies that xi �= xj = x, which
contradicts xi = x. Hence tt is NAC consistent.

L R

GS(i−1) GS(i)

Ni L′ R′

G G′

N ′tri,F

mi,F pi,F

ni

q

tr′
F

m′

n′

q′(1) (2)

2. Suppose now that tt is not terminating, i.e. there is a direct triple transfor-

mation G
tr′

F ,m′
=⇒ G′ for some triple rule tr′F = (L′ tr′

F→ R′) ∈ TRF with kernel
k(tr′F ) = (x′, r′, y′) and kernel element (x′, r′, y′) ∈ G′ with x′ ∈ GS and
type(x′) = type(x′) ∈ KTY PES .

By Fact 1, x′ is a kernel element of GS and by Fact 3 Item 1 there is
a unique i such that x′ = xi is generated by tri,S with kernel k(tri,S) =

xi. Kernel match consistency of ∅
tr∗

S=⇒ GS
tr∗

F=⇒ G implies that the kernel
k(tri,F ) = (xi, ri, yi) implies a kernel element (xi, ri, yi) ∈ G with xi = x′.
It follows that type(x′) = type(x′) = type(xi) = type(xi), and by type
functionality of TRF also type(r′) = type(ri) = type(ri) and type(y′) =
type(yi) = type(yi). For the kernel NAC NAC(tr′F ) = (N ′, n′), we define a
morphism q′: N ′ → G by q′|L′ = m′ with m′(x′) = x′ = xi and q′(x′, r′, y′) =
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(xi, ri, yi). q′ is a valid morphism because it preserves the typing, and we

have that q′ ◦ n′ = m′. Thus, G
tr′

F=⇒ G′ is not NAC consistent, hence tt is
terminating.

Remark 4. Since source consistency implies kernel source consistency this theo-

rem also holds for source consistent forward triple transformations tt : GS
tr∗

F=⇒ G.

Thm. 1 and the following Thm. 2 concerning local confluence are applied to our
example from Section 3 in Section 6.

Theorem 2 (Local Confluence). Consider a triple graph grammar (TR, ∅)
where TRF has distinguished kernel typing and kernel NACs. If we have that

(1) The rules in TRF are uniquely determined by the left hand sides, i.e. for

rules trF = (L trF→ R) and tr′F = (L′ tr′
F→ R′), L

∼= L′ implies trF = tr′F .
(2) The matches are uniquely determined by the kernel matches, i.e. given ker-

nels k(trF ) = (x, r, y), k(tr′F ) = (x′, r′, y′) and matches m : L → G0,
m′ : L′ → G0, m(x) = m′(x′) implies m = m′ with L = L′.

then the forward rules TRF with kernel NACs are
locally confluent. This means that given G0

trF ,m
=⇒

G1, G0
tr′

F ,m′
=⇒ G2 then we have either G1

∼= G2

or the direct transformations are parallel inde-
pendent with NACs leading to the local Church-
Rosser property, i.e. there are transformations

G1
tr′

F ,i◦m′
=⇒ G3, G2

trF ,i′◦m
=⇒ G3.

G0 G1

G2 G3

trF ,m

tr′
F ,m′ tr′

F ,i◦m′

trF ,i′◦m

Proof. For given forward rules trF , tr′F ∈ TRF and matches m : L → G0,
m′ : L′ → G0 we have the following cases:

1. m = m′, which implies L = L′, and property (1) implies that also trF = tr′F .
Then the uniqueness of pushouts implies that G1

∼= G2.
2. m �= m′. For the forward rules, we have kernels k(trF ) = (x, r, y) and

k(tr′F ) = (x′, r′, y′) and m(x) = x, m′(x′) = x′.
Consider now the kernel NAC NAC(tr′F ) = (N ′, n′) with N ′ = L′∪k(tr′F ).

Given the transformation G0
trF ,m
=⇒ G1 with pushout (1) we have to show

that i ◦ m′ is NAC consistent, i.e. there does not exist a morphism q :
N ′ → G1 with q ◦ n′ = i ◦ m′. Suppose that such a q exists, then using
k(tr′F ) = (x′, r′, y′) there is a connected triple q(x′, r′, y′) = (x′, r′, y′) in G1

with type(x′) = type(x′), type(r′) = type(r′) and type(y′) = type(y′). Since
m′ satisfies N ′, (x′, r′, y′) /∈ G0, but created by trF . Hence there is a con-
nected triple (x2, r2, y2) ∈ R, (x2, r2, y2) /∈ L with p(x2, r2, y2) = (x′, r′, y′).
Since type(r2) = type(r′) = type(r′) ∈ KTY PEF it follows that k(trF ) =
(x, r, y) = (x2, r2, y2) from distinguished kernel typing of TRF . But this im-
plies that m(x) = m(x2) = p(x2) = x′ = m′(x′) by commutativity of (1),
and from property (2) it follows that m = m′, which is a contradiction.
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Hence i◦m′ is NAC consistent. Similarly,
i′◦m is NAC consistent, and with pushout (3)
the triple graph G3 is the result of both trans-

formations G1
tr′

F ,i◦m′
=⇒ G3 and G2

trF ,i′◦m
=⇒

G3. Thus we have parallel independence with
NACs and the local Church-Rosser property
leading to local confluence. �

N ′ L R

L′ G0 G1

R′ G2 G3

trF

tr′
F

m

m′

p

p′

i

i′

n′
q

(1)

(2) (3)

Since local confluence and termination imply confluence, we get the following
sufficient conditions for functional behaviour of forward model transformations.

Theorem 3 (Functional Behaviour). Under the assumptions of Thms. 1 and
2, forward model transformations have functional behaviour, i.e. they are termi-
nating and confluent.

6 Analysis of the Example Model Transformation

Now we want to analyse the model transformation described in Section 3.
The kernels for the triple rules in Fig. 2 are the triples in a box shaded
in gray. Thus we have that KTY PES = {InitialNode, ActivityEdge, Action,
FinalNode, DecisionNode, MergeNode} and KTY PEF = {INCC, AEP, APA,
FNPA, DNPA, MNPA1}, and it is easy to see that both TRS and TRF have
distinguished kernel typing and TRF is type functional. Moreover, the forward
rules are uniquely determined by the left hand sides.

Now consider the forward triple transformation GS
tr∗

F=⇒ G leading to the for-
ward model transformation from A to P from Section 3, with A and P depicted
in Fig. 3. Since this forward triple transformation is source consistent, it is also
kernel source consistent. From Thm. 1 it follows that it is then NAC consistent
and terminating if we consider forward rules with kernel NACs.

In a valid activity diagram without merge nodes, the matches for the forward
rules are uniquely determined by the kernel matches. To see this we have to take
a closer look at the triple rules. First we know that there is only one initial node.
This means, whenever an initial node is present in the left hand side its match
is uniquely determined. Moreover, the kernel element and its match induce the
complete match because of the graph structure, and in case of the triple rule
trDecisionNode

F also the value of the attributes. This means that for the triple rules
of our forward model transformation from A to P the conditions of Thm. 2 are
fulfilled and this model transformation is confluent. Thus, the target model P is
unique for the source model A.

On the other hand, for the triple rule trMergeNode
F the matches are not uniquely

determined by the kernel matches. This is easy to see, since for a valid match
we can swap the matches of the both activity edges which have the merge node
as a target. Thus we cannot apply Thm. 2. When applying the forward rule
via both matches, we get two different triple graphs which only differ in the
mappings of the nodes MNPA1 and MNPA2. Note, that these two direct triple
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transformations are not confluent, since no rule can be applied to this merge
node due to the kernel NAC. Nevertheless, we have confluence concerning the
target models. In fact, the resulting target models are already isomorphic, since
the types of the connection nodes are not relevant for the target model.

7 Conclusion

In this paper, we have started a formal analysis of model transformations based
on triple rules which have been introduced in [1] and applied to various appli-
cation areas [2, 3, 7]. In [1], an important connection between the triple rules
and the corresponding forward rules and transformations was given. This re-
sult was extended in [5] to a bijective correspondence between triple transfor-

mations ∅
tr∗
=⇒ G based on triple rules tr∗ and match consistent sequences

∅
tr∗

S=⇒ GS
tr∗

F=⇒ G based on corresponding source rules tr∗S and target rules
tr∗F . This allows to define model transformations formally by source consistent

forward transformation sequences GS
tr∗

F=⇒ G.
In order to analyse this kind of model transformations on a formal basis,

we have defined the kernel of a forward rule and constructed a NAC based on
this kernel. This allows to define kernel source consistency as source consistency
restricted to kernel elements. Intuitively, this means that each forward rule is
applied exactly once to the distinguished kernel element in the source graph
generated by the corresponding source rule.

In our main results, we show that kernel source consistency implies NAC con-
sistency and termination, and we give sufficient conditions for local confluence,
which leads to functional behaviour of forward model transformations. Although
the forward rules are non-deleting, this result is non-trivial because we have to
ensure NAC consistency.

For a discussion of the relationship between model transformations based on
triple and plain graph grammars we refer to [6].

At the moment, the conditions for distinguished kernel typing and type func-
tionality are very restrictive, and only a subset of practical model transforma-
tions can be analyzed by our approach. In future work we want to extend our
approach, in particular to forward rules that create either target or connection
elements, but not both. As the discussion in Section 6 shows, the properties for
local confluence in Thm. 2 are very restrictive. It would be interesting to analyse
how these conditions and the concept for local confluence can be weakened, for
example concerning confluence only on the target models. Moreover, we want
to check under what conditions kernel source consistency is not only sufficient
but also necessary for NAC consistency and termination. In addition to kernel
NACs we want to consider also other NACs for forward rules. In this context,
we want to apply the Critical Pair Lemma with NACs shown in [12] to forward
transformations and verify confluence for other practical examples.

All our results dually hold for target and backward rules, which can be
derived from triple rules similar to source and forward rules. This allows to
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analyze bidirectional model transformations between source and target lan-
guages, especially the problem of how to obtain functional inverse model
transformations.
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