
Embedding and Confluence of Graph

Transformations with Negative Application
Conditions

Leen Lambers1, Hartmut Ehrig1, Ulrike Prange1, and Fernando Orejas2

1 Institute for Software Engineering and Theoretical Informatics
Technical University Berlin, Germany

{leen,ehrig,uprange}@cs.tu-berlin.de
2 Department L.S.I, Technical University of Catalonia, Spain

orejas@lsi.upc.edu

Abstract. The goal of this paper is the generalization of embedding and
confluence results for graph transformation systems to transformation
systems with negative application conditions (NACs). These conditions
restrict the application of a rule by expressing that a specific structure
must not be present before or after applying the rule to a certain context.
Such a condition influences each rule application and transformation and
therefore changes significantly the properties of the transformation sys-
tem. This behavior modification is reflected by the generalization of the
Embedding Theorem and the Critical Pair Lemma or Local Confluence
Theorem, formulated already for graph transformation systems without
negative application conditions. The results hold for adhesive high-level
replacement systems with NACs and are formulated in this paper for
the instantiation to double-pushout graph transformation systems with
NACs. All constructions and results are explained on a running example.

1 Introduction

In graph transformation, negative application conditions (NACs) express that
certain structures at a given time are forbidden. They are a widely used feature
for several applications of graph transformation e.g., [1,2]. In order to allow
confluence analysis for these applications, the theory already worked out for
graph transformation systems (gts) without NACs has to be generalized to gts
with NACs. The notion of critical pairs is central in this theory. It was first
developed in the area of term rewriting systems (e.g., [3]) and, later, introduced
in the area of graph transformation for hyper-graph rewriting [4,5] and then for
all kinds of transformation systems fitting into the framework of adhesive high-
level replacement (HLR) categories [6]. We tailored the theory presented in this
paper for gts with NACs and not for other kind of constraints or application
conditions, since NACs are already widely used in practice.

For gts without NACs, embedding of a graph transformation sequence with-
out NACs and local confluence of a gts without NACs has been investigated in
detail in [6]. Recall that in order to be able to embed a transformation without

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 162–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Embedding and Confluence of Graph Transformations 163

NACs into some larger context by some extension morphism k, this morphism
should be consistent as defined in [6]. Using the results on concurrency for graph
transformation with NACs [7] we introduce in this paper the definition of NAC-
consistency of an extension morphism. This is an additional condition on top
of standard consistency enabling the generalization of the Embedding Theorem
to transformations with NACs. Recall moreover that, for a gts without NACs,
in order to be locally confluent it suffices that all critical pairs are strictly con-
fluent. Having generalized the notion of critical pairs [8], completeness [8], and
embedding to transformations with NACs in this paper, we moreover introduce a
sufficient condition on the critical pairs with NACs. This condition implies local
confluence of a gts with NACs as stated in the introduced Critical Pair Lemma
with NACs. The proofs of these results are given in a technical report [9] on
the level of adhesive HLR systems. In return, all results are illustrated in this
paper by an example modeling order and payment transactions in a restaurant
by typed graphs and rules with NACs.

The structure of this paper is as follows. In Section 2, we introduce preliminar-
ies on gts with NACs and main results on concurrency for graph transformation
with NACs. In Section 3, it is explained under which conditions it is possible to
embed transformations with NACs. In Section 4, results on confluence of trans-
formation systems with NACs are formulated. Section 5 concludes this paper
with remarks on future work and a short summary.

2 Graph Transformation Systems with NACs

In this section, we reintroduce gts with NACs and some preliminary results that
we need for the remaining paper. NACs are an important feature for the modeling
of transformation systems, expressing that a certain structure is not present
when performing the transformation [10] and thus enhancing the expressiveness
of the transformation. In order to provide a rich theory for such transformations
with NACs, they are integrated into the framework of adhesive HLR systems [6].
In [7] it is remarked that gts with NACs are a valid instantiation of adhesive HLR
systems with NACs. In this paper, we concentrate on formulating the results for
graph transformation with NACs and showing their significance on an example.

Definition 1 (typed graph and graph morphism)
A graph G = (GE , GV , s, t) consists of a set GE of edges, a set GV of vertices
and two mappings s, t : GE → GV , assigning to each edge e ∈ GE a source
q = s(e) ∈ GV and target z = t(e) ∈ GV . A graph morphism f : G1 → G2

between two graphs Gi = (Gi,E , Gi,V , si, ti), (i = 1, 2) is a pair f = (fE :
GE,1 → GE,2, fV : GV,1 → GV,2) of mappings, such that fV ◦ s1 = s2 ◦ fE and
fV ◦ t1 = t2 ◦ fE. A type graph is a distinguished graph TG. A typed graph
GT : (G, type) over TG is a graph G and a graph morphism type : G→ TG. A
typed graph morphism f : GT

1 → GT
2 is a graph morphism f : G1 → G2 with

type2 ◦ f = type1.

164 L. Lambers et al.

From now on we only consider typed graphs and morphisms over a given type
graph TG and omit the prefix typed and the index T in our notations.

Definition 2 (injective, surjective, overlapping, pair factorization). A
graph morphism f : G1 → G2 is injective (resp. surjective) if fV and fE are
injective (resp. surjective) mappings. Two graph morphisms m1 : L1 → G and
m2 : L2 → G are jointly surjective if m1,V (L1,V) ∪ m2,V (L2,V) = GV and
m1,E(L1,E)∪m2,E(L2,E) = GE. A pair of jointly surjective morphisms (m1, m2)
is also called an overlapping of L1 and L2. A pair factorization of two graph
morphisms (m1 : G1 → H, m2 : G2 → H) consists of a pair of jointly surjective
morphisms (e1 : G1 → E, e2 : G2 → E) and an injective morphism m : E → H
such that m ◦ e1 = m1 and m ◦ e2 = m2 and is unique up to isomorphism.

Definition 3 (rule and match). A graph transformation rule p : L
l← K

r→ R
consists of a rule name p and a pair of injective graph morphisms l : K → L
and r : K → R. The graphs L, K and R are called the left-hand side (lhs), the
interface, and the right-hand side (rhs) of p, respectively. Given a rule p : L

l←
K

r→ R and a graph G, one can try to apply p to G if there is an occurrence of
L in G i.e. a graph morphism, called match m : L→ G.

A negative application condition or NAC as introduced in [10] forbids a certain
graph structure to be present before or after applying a rule.

Definition 4 (negative application condition)

– A negative application condition or NAC(n) on L is a
graph morphism n : L → N . A graph morphism g : L →
G satisfies NAC(n) on L i.e. g |= NAC(n) if and only if
� q : N → G which is injective such that q ◦ n = g.

L

g

��

n �� N

q
X

��G

– A NAC(n) on L (resp. R) for a rule p : L
l← K

r→ R is called left (resp.
right) NAC on p. NACp,L (resp. NACp,R) is a set of left (resp. right) NACs
on p. NACp = (NACp,L, NACp,R), consisting of a set of left and a set of
right NACs on p is called a set of NACs on p.

Definition 5 (graph transformation with NACs)

– A graph transformation system with NACs is a set of rules where each rule
p : L

l← K
r→ R has a set NACp = (NACp,L, NACp,R) of NACs on p.

– A direct graph transformation G
p,g⇒ H via a rule p :

L
l← K

r→ R with NACp = (NACp,L, NACp,R) and
a match g : L→ G consists of the double pushout [11]
(DPO) at the right where g satisfies each NAC

L

g

��

K
r ��

��

l�� R

h

��
G D ���� H

in NACp,L, written g |= NACp,L, and h satisfies each NAC in NACp,R,
written h |= NACp,R. Since pushouts in Graph always exist, the DPO can
be constructed if the pushout complement of K → L → G exists. If so, we
say that the match g satisfies the gluing condition of rule p. A graph trans-
formation, denoted as G0

∗⇒ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of
direct graph transformations.

Embedding and Confluence of Graph Transformations 165

Remark 1. From now on we only consider gts with rules having an empty set of
right NACs. This is without loss of generality, because each right NAC can be
translated into an equivalent left NAC as explained in [6], where Theorem 7.17
can be specialized to NACs as remarked in [7].

Example 1. Here we introduce our running example Restaurant modeling order
and payment transactions in a restaurant. The type and start graph of Restau-
rant are depicted in Fig. 1. Note that all results reviewed and introduced in this
paper hold in particular for typed gts with NACs, since they are a valid instanti-
ation of adhesive HLR systems with NACs. The rule openAccountTable shown in
Fig. 1 models the opening of an account for one of the tables in the restaurant.
This rule holds two NACs: notOpened forbids the rule to be applied twice to
the same table and noAlert specifies that an account can not be opened if there
exists an alert for the table. An alert can be generated by rule alertUnpaidTable
if a staff member of the restaurant notices that guests have left a table without
paying. In this case an exception handling starts making sure that unpaid orders
are considered when doing the daily accounting. The NAC noAlert for this rule
avoids it to be applied if an alert for the table already exists. noteUnpaidOrder
notes an unpaid order for a table by deleting it. resetAlert can reset the alert for
a table if it e.g. appeared to be a false alarm or all unpaid orders are processed
by noteUnpaidOrder in the meanwhile. Furthermore, gatherOrder can assign an
order for a table if there is no alert, payOrder models the paying of an order for
the case that there is no alert expressed by NAC noAlert and finally closeAc-
countTable can close the account of a table if all orders of a table are processed
which is expressed by NAC noOrders. Note that the rules payOrder and note-
UnpaidOrder have the same effect on the system since they both just delete an
order, but the first one can only be applied if there is no alert in contrast to the
second one. Of course it is possible to augment this system with information on
the price of the order, keeping track of a list of paid resp. unpaid orders etc.
For the purpose of this paper though we restrict ourselves to these more simple
operations.

In the following sections, we repeatedly need two constructions translating NACs
via morphisms and rules. More precisely, the mapping D translates NACs down-
wards along morphisms. Given a diagram as depicted in Fig. 2, consider a NACL′

c

on L′
c and a morphism mc, then Dmc(NACL′

c
) translates NACL′

c
into equivalent

NACs on Lc. The basic idea of the construction of D is to consider all suitable
overlappings of Lc and NACL′

c
. The mapping DL translates NACs down- and

leftwards, i.e. given the diagram in Fig. 2 with NACLn on Ln, a morphism en,
and a rule Lc ← Cc → E, then DLpc(NACLn) translates the NACs on Ln

to equivalent NACs on Lc. The construction of DL is based on D translating
NACLn to equivalent NACs on E, and then on the well-known construction of
right to left application conditions [6]. For more details see [7,9].

Now we introduce the concurrent rule with NACs pc induced by a transforma-
tion with NACs t : G0

n+1=⇒ Gn+1 via a sequence of rules p0, . . . , pn. Intuitively,
a concurrent rule with NACs summarizes in one rule which parts of a graph G0

166 L. Lambers et al.

Fig. 1. Start graph, type graph and rules of Restaurant

should be present, preserved, deleted, and produced by t. Moreover we have a
summarized set of NACs on the concurrent rule pc expressing which graph parts
are forbidden when applying p0, . . . , pn to G0 leading to t. Note that in [7,9]
it is proven that it is possible to repeat the transformation t in one step via
the concurrent rule pc with NACs. In addition, whenever it is possible to apply
a concurrent rule with NACs pc it is also possible to resequentialize this one-step

Embedding and Confluence of Graph Transformations 167

L0

m′
c �� L′

c

mc

��

g′
c

��

K′
c

��

���� R′
c

e′c ��

h′
c

��

Ln

en

		

gn

Kn

��

�� �� Rn

��

gn+1

��

Lc

gc

��

Cc

��

l�� �� E

h

��

Cn

��

�� r �� Rc

hc

��

Kc

(1)
kc

��
kn

G0 Dn
���� Gn D�� �� Gn+1

Fig. 2. Definition of concurrent rule with NACs

transformation into single steps via the sequence of original rules with NACs
which led to this concurrent rule.

Definition 6 (concurrent rule with NAC, concurrent (co-, lhs-)match
induced by G0

n+1=⇒ Gn+1)

n = 0 For a direct transformation G0 ⇒ G1 via match g0 : L0 → G0, comatch
g1 : R0 → G1 and rule p0 : L0 ← K0 → R0 with NACp0 the concurrent
rule pc with NAC induced by G0 ⇒ G1 is defined by pc = p0 with NACpc =
NACp0 , the concurrent comatch hc is defined by hc = g1, the concurrent lhs-
match by id : L0 → L0 and the concurrent match gc by gc = g0 : L0 → G0.

n ≥ 1 Consider p′c : L′
c ← K ′

c → R′
c (resp. g′c : L′

c → G0, h′
c : R′

c → Gn,m′
c :

L0 → L′
c), the concurrent rule with NACs (resp. concurrent match, comatch,

lhs-match) induced by G0
n=⇒ Gn. Let ((e′c, en), h) be the pair factoriza-

tion of the comatch h′
c and match gn of Gn ⇒ Gn+1. According to Fact

5.29 in [6] PO-PB decomposition, PO composition and decomposition lead
to the diagram in Fig. 2 in which (1) is a pullback and all other squares
are pushouts. For a transformation sequence G0

n+1=⇒ Gn+1 the concurrent
rule pc with NACs (resp. concurrent match, comatch, lhs-match) induced
by G0

n+1=⇒ Gn+1 is defined by pc = Lc
l◦kc← Kc

r◦kn→ Rc (gc : Lc → G0,
hc : Rc → Gn+1, mc ◦ m′

c : L0 → Lc). Thereby NACpc is defined by
NACpc = DLpc(NACLn) ∪Dmc(NACL′

c
).

Example 2. Consider the graph Middle2Orders depicted in Fig. 3 and a transfor-
mation t : Middle2Orders

alertUnpaidTable⇒ G1
noteUnpaidOrder⇒ G2

noteUnpaidOrder⇒
G3

resetAlert⇒ G4
closeAccountTable⇒ G5

closeAccountTable⇒ Startgraph in which an alert
is generated for the middle table, consequently both orders on the middle table
are noted as unpaid, the alert is then reset, the middle table account is closed
and the right table account is closed as well. The lhs Lc and rhs Rc of the con-
current rule pc induced by transformation t is depicted in Fig. 3 together with
the concurrent transformation via pc summarizing t into one step. It deletes two

168 L. Lambers et al.

Fig. 3. Concurrent rule and transformation with NACs

different orders belonging to the middle table, closes its account and in addition
closes the account of the right table. Note that the node ids in this figure define
the morphisms. The concurrent NACpc induced by t holds a NAC(n1) forbid-
ding more than two orders, a NAC(n2) forbidding an alert for the table holding
already two orders, a NAC(n3) forbidding any order, and NAC(n4) forbidding
an alert for the other table. Note that the same NAC(n2) is induced by the
NACs of alertUnpaidTable and closeAccountTable applied to the middle table.

G0

(1)

∗t ��

k0

��

Gn

kn

��
G′

0
∗t′ �� G′

n

Li

mi

��

Ki

ji

��

ri

��
li

�� Ri

ni

��
Gi

ki

��

Di

di

��

gi

��
fi

�� Gi+1

ki+1

��
G′

i D′
i

g′
i

��
f ′

i

�� G′
i+1

Finally, for the Embedding Theorem with NACs we reintroduce the notion of ex-
tension diagram with NACs [8].

Definition 7 (extension diagram with NACs)

An extension diagram is a diagram (1), where, k0 :
G0→G′

0 is a graph morphism, called extension mor-
phism, and t : G0

∗⇒ Gn and t′ : G′
0

∗⇒ G′
n are graph

transformations via the same rules (p0, · · · , pn−1)
with NACs, and matches (m0, · · · , mn−1) and ex-
tended matches (k0 ◦m0, · · · , kn−1 ◦mn−1), respec-
tively, defined by the DPO diagrams on the right
for each pi. Since t and t′ are transformations with
NACs, the matches (m0, · · · , mn−1) and extended
matches (k0 ◦m0, · · · , kn−1 ◦mn−1) have to satisfy
the NACs of the rules (p0, · · · , pn−1).

Embedding and Confluence of Graph Transformations 169

3 Embedding of Transformations with NACs

Recall [6] that in order to be able to embed a transformation without NACs
into some other context by an extension morphism k, this morphism should not
identify graph elements which are deleted and on the other hand preserved by
the transformation. Moreover k should not map any node which is deleted by the
transformation to a node which is the source or target of an additional edge in
the new context. This condition on the extension morphism k can be checked by
computing its boundary and context, and checking then consistency as defined
in [6]. Combined with the results on concurrency for graph transformation with
NACs [7] it is possible to define also NAC-consistency of an extension morphism.
This is an additional condition needed on top of standard consistency to general-
ize the embedding of transformations to transformations with NACs. Note that
in order to make the difference between consistency and NAC-consistency of an
extension morphism clear, we call consistency from now on boundary consistency.

Now we can formulate the definition of NAC-consistency for an extension
morphism k0 w.r.t. a transformation t. It expresses that the extended concurrent
match induced by t should fulfill the concurrent NAC induced by t.

Definition 8 (NAC-consistency). A morphism k0 : G0 → G′
0 is called NAC-

consistent w.r.t. a transformation t : G0
∗⇒ Gn if k0 ◦ gc |= NACpc with NACpc

the concurrent NAC and gc the concurrent match induced by t.

The Embedding Theorem for rules with NACs needs NAC-consistency of the
extension morphism k0 on top of boundary consistency. Note that in [9] also the
Extension Theorem with NACs is proven describing the fact that boundary and
NAC-consistency are not only sufficient, but also necessary conditions for the
construction of extension diagrams for transformations with NACs.

Theorem 1 (Embedding Theorem with NACs [9])

Given a transformation t : G0
n=⇒ Gn with NACs.

If k0 : G0 → G′
0 is boundary consistent and NAC-

consistent w.r.t. t then there exists an extension diagram
with NACs over t and k0 as defined in Def. 7 and de-
picted on the right.

G0

(1)

∗t ��

k0

��

Gn

kn

��
G′

0
∗t′ �� G′

n

Example 3. Consider the transformation t : Middle2Orders
∗⇒ Startgraph with

its concurrent rule pc and NACpc as described in Example 2 and depicted as
concurrent transformation in Fig. 3. In addition, consider an inclusion morphism
k : Middle2Orders → Middle3Orders in which the graph Middle3Orders has
an additional order for the middle table. The morphism k is not NAC-consistent,
since the concurrent NAC induced by t is not satisfied by k ◦ gc. This is because
NAC(n1) forbidding more than 2 orders on the middle table is not satisfied.
Thus it is not possible to embed transformation t into Middle3Orders by the
extension morphism k, since k is not NAC-consistent. Intuitively speaking, it
is not possible to change the state of the tables in the restaurant in the same
way as transformation t if the middle table holds an extra order. This is because

170 L. Lambers et al.

rule closeAccountTable would forbid closing the account for the middle table still
holding one order. Consider a different inclusion morphism k′ : Middle2Orders →
4Tables in which 4Tables just holds an extra table. Now k′ is NAC-consistent
and it is possible to embed t into 4Tables. Intuitively speaking, the embedded
transformation t′ changes the states of the tables in the restaurant in the same
way as transformation t, but does this in a restaurant with an extra table.

4 Confluence of Transformations with NACs

Local confluence of a transformation system without NACs can be inferred from
the strict confluence of all critical pairs (see Critical Pair Lemma [6]). If a critical
pair is strictly confluent via some transformations t1 and t2, we say that (t1, t2)
is a strict solution of the critical pair. Intuitively speaking, strict confluence
means that the common structure which is preserved by the critical pair should
be preserved by the strict solution of this critical pair as well. For the Critical
Pair Lemma with NACs we need a stronger condition though to obtain local
confluence of the transformation system. In addition to strict confluence of all
critical pairs we need also NAC-confluence. NAC-confluence of a critical pair
ensures that for each context into which the critical pair can be embedded, such
a strict solution can be embedded into this context as well without violating the
NACs present in t1 and t2. In particular, a critical pair is NAC-confluent if the
NAC-consistency (as defined in Def. 8) of each extension morphism w.r.t. a strict
solution of the critical pair follows from the NAC-consistency of the extension
morphism w.r.t. the critical pair itself.

First we state the definition of a critical pair with NACs. A critical pair de-
scribes a conflict between two rules in a minimal context. Therefore we consider
in the following only overlaps of graphs in order to rule out superfluous context.
Moreover, it is proven in [8] that the following critical pair definition satisfies
completeness. This means intuitively that for each pair of conflicting transfor-
mations there exists a critical pair expressing the same conflict in a minimal
context.

Definition 9 (critical pair). A critical pair is a pair of direct transformations

K
(p1,m1)⇒ P1 with NACp1 and K

(p2,m2)⇒ P2 with NACp2 such that:

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 and (m1, m2) jointly surjective
(use-delete-conflict)
or

(b) there exists h12 : L1 → D2 s.t. d2 ◦ h12 = m1, but for one of the NACs
n1 : L1 → N1 of p1 there exists an injective morphism q12 : N1 → P2 s.t.
q12◦n1 = e2◦h12 and (q12, h2) jointly surjective (forbid-produce-conflict)

or
2. (a) �h21 : L2 → D1 : d1 ◦ h21 = m2 and (m1, m2) jointly surjective

(delete-use-conflict)
or

Embedding and Confluence of Graph Transformations 171

Fig. 4. Conflict Matrix for Restaurant and minimal context for (alertUn-
paidTable,gatherOrder)

(b) there exists h21 : L2 → D1 s.t. d1 ◦ h21 = m2, but for one of the NACs
n2 : L2 → N2 of p2 there exists an injective morphism q21 : N2 → P1 s.t.
q21◦n2 = e1◦h21 and (q21, h1) jointly surjective (produce-forbid-conflict).

N1
q12

��

N2
q21

��

R1

h1

��

K1
l1 ��r1��

��

L1

h12

��

n1

��

m1
���

��
��

��
� L2

h21

��

n2

��

m2
		��

��
��

��
K2

��

l2�� r2 �� R2

h2

��
P1 D1

d1

��
e1

�� K D2
d2

��
e2

�� P2

Example 4. All critical pairs of a gts can be computed by the graph transforma-
tion tool AGG [12]. They are illustrated by a Conflict Matrix as for our Restau-
rant example in the left part of Fig. 4. More precisely, entry (pj , pi) (row, column)

in this matrix denotes the number of critical pairs K
(pj ,mj)⇒ Pj with NACpj and

K
(pi,mi)⇒ Pi with NACpi describing delete-use and produce-forbid-conflicts as

defined in Def. 9. Consider in particular entry (alertUnpaidTable, gatherOrder).
This critical pair expresses a produce-forbid conflict, since when an alert is set
for a certain table it is impossible to gather an order for it afterwards. The min-
imal context expressing this conflict is in the right part of Fig. 4 depicting graph
Pj . The critical pair itself is depicted in the left part of Fig. 5.

Definition 10 (strict NAC-confluence). A critical pair P1
p1,g1⇐ K

p2,g2⇒ P2

is strictly NAC-confluent if

172 L. Lambers et al.

– it is strictly confluent via some trans-
formations t1 : K

p1,g1⇒ P1 ⇒∗ X and
t2 : K

p2,g2⇒ P2 ⇒∗ X (see [6])
– and it is NAC-confluent for t1 and t2, i.e.

for every injective morphism k0 : K → G

which is NAC-consistent w.r.t. K
p1,g1⇒ P1

and K
p2,g2⇒ P2 it follows that k0 is NAC-

consistent w.r.t. t1 and t2.

P1

∗����
��

��
�

��
��

��
�

G K
k0��

(p1,g1)
���������

�������

(p2,g2) ��
��

��
��

�

��
��

��
� X

P2

∗
���������

�������

Remark 2. Injectivity of k0 is sufficient by completeness of critical pairs [8].

Example 5. Consider again the Conflict Matrix of Restaurant depicted in Fig. 4.
Let us investigate the following critical pairs for strict NAC-confluence:

– (resetAlert,noteUnpaidOrder). It describes a delete-use-conflict, since
resetAlert deletes the alert and noteUnpaidOrder can only be applied if an
alert is set for the table. This critical pair can be resolved by a strict solution
by on the one hand applying payOrder and on the other hand resetAlert.
Now we investigate if this critical pair is also NAC-confluent for this solu-
tion. Rule resetAlert does not hold a NAC and therefore there is nothing to
prove. On the other hand payOrder holds a NAC which forbids an alert on
the table. The rules resetAlert and noteUnpaidOrder can only be applied if
an alert on the table is present. After applying resetAlert though this alert is
in any case deleted. The only problem that can occur is that in another con-
text more than one alert is present for a table. Cardinality constraints on the
type graph of Restaurant as depicted in Fig. 1 forbid this possibility though.
Therefore we can conclude that this critical pair is strictly NAC-confluent.

– (gatherOrder,closeAccountTable). It describes a produce-forbid-conflict,
since gatherOrder produces an order which is forbidden by closeAccount-
Table. This pair can be resolved on the one hand by paying the order and
closing the table account and on the other hand nothing. This solution de-
mands no alert on the table because of NAC noAlert on payOrder and no
orders because of NAC noOrders on closeAccountTable. It becomes clear that
this critical pair is NAC-confluent for this solution because it only occurs
on a table without an alert and without any order. These are exactly the
restrictions for which the above solution holds.

– (alertUnpaidTable,gatherOrder). We described this critical pair already in
Example 4 and it is depicted in Fig. 5. There exists a strict solution for
this critical pair resetting the alert on the one hand and paying the order
on the other hand. This solution is depicted also in Fig. 5 (part without
rounded rectangle). This critical pair is NAC-confluent for this solution since
alertUnpaidTable can be applied only on a table without any order and
therefore when paying the order there will not be any alert either.

Consider though a somewhat larger strict solution for this critical pair,
namely on the one hand resetting the alert and closing the account and on
the other hand paying the order and then closing the account. In Fig. 5 this
means we consider now as well the rounded rectangle. The critical pair is

Embedding and Confluence of Graph Transformations 173

Fig. 5. Critical pair (alertUnpaidTable,gatherOrder) with its solution

not NAC-confluent for this solution. This is because closeAccountTable has
a NAC noOrders which is not present in the NACs of the critical pair. This
means that the graph consisting of a table with an open account could be
embedded into a graph with a table with an open account and some order
already present. In this case it is not possible to apply the same strict solution
to the produce-forbid-conflict, since there are too many orders on the table.
This example demonstrates very nicely why in this case the minimal context
in which the conflict is resolved is not sufficient to resolve the conflict also
in any other valid context in the same way.

Theorem 2 (Local Confluence Theorem - Critical Pair Lemma with
NACs [9]). Given a gts with NACs, it is locally confluent if all its critical pairs
are strictly NAC-confluent.

Example 6. Our running example transformation system Restaurant is locally
confluent, since all critical pairs are strictly NAC-confluent. Consider again the
Conflict Matrix of Restaurant as depicted in Fig. 4.

– All critical pairs on the diagonal of the matrix are trivially strictly NAC-
confluent since they are of the form P

p,g⇐ K
p,g⇒ P .

– (gatherOrder,closeAccountTable) has been discussed in Example 5.
– (closeAccountTable,gatherOrder) denotes a critical pair in delete-use-conflict

and can be resolved analogously to (gatherOrder,closeAccountTable).
– (closeAccountTable,alertUnpaidTable) denotes a critical pair in delete-use-

conflict and can be resolved, without transformation on the result of closeAc-
countTable, just applying the rules resetAlert and then closeAccountTable to
the result of alertUnpaidTable. Thereby closeAccountTable can be applied
since an alert can only be generated if no alert was there yet. Therefore after
resetting this one alert, there will be no alert anymore on the table. Moreover
there are no orderings on the table, since the table could be closed already
at the start of the transformation.

– (alertUnpaidTable,gatherOrder) has been discussed in Example 5.
– (alertUnpaidTable,payOrder) will be discussed in Example 8.

174 L. Lambers et al.

– (alertUnpaidTable,closeAccountTable) denotes a critical pair in produce-
forbid-conflict and can be resolved analogously to (closeAccountTable,
alertUnpaidTable).

– (resetAlert,noteUnpaidOrder) has been discussed in Example 5

Given a critical pair and a strict solution for it, it would be desirable to have a
constructive method to check for NAC-confluence of this solution. Therefore the
following theorem formulates a constructive sufficient condition for a critical pair
P1

p1⇐ K
p2⇒ P2 which is strictly confluent via some transformations t1 : K

p1,g1⇒
P1 ⇒∗ X and t2 : K

p2,g2⇒ P2 ⇒∗ X to be also NAC-confluent for t1 and t2. This
means by definition that for every injective extension morphism k0 : K → G

which is NAC-consistent w.r.t. K
p1,g1⇒ P1 and K

p2,g2⇒ P2 it follows that k0 is also
NAC-consistent w.r.t. t1 and t2. In the following theorem two different conditions
on each single NAC(n1,j) (resp. NAC(n2,j)) of the concurrent NAC induced by
transformation t1 (resp. t2) are given which lead to NAC-confluence if one of
them is satisfied. The first condition expresses that there exists a suitable NAC
on p1 (resp. p2) which evokes the satisfaction of NAC(n1,j) (resp. NAC(n2,j)).
The second condition first asks for a suitable morphism between the lhs’s of
the concurrent rules induced by both transformations t1 and t2. Moreover it
expresses that there exists a suitable NAC on p2 (resp. p1) which evokes the
satisfaction of NAC(n1,j) (resp. NAC(n2,j)). Note that in the following theorem
Def. 6 is used in order to refer to a concurrent rule, match and lhs-match induced
by a transformation t, and it is referred to the downward translation of a NAC
on L via a morphism mc : L → Lc to a set of equivalent NACs on Lc denoted
as Dmc(NACL) and defined explicitly in [7].

Theorem 3 (Sufficient Condition for NAC-confluence). Given a critical
pair P1

p1⇐ K
p2⇒ P2 which is strictly confluent via the transformations t1 : K

p1,g1⇒
P1 ⇒∗ X and t2 : K

p2,g2⇒ P2 ⇒∗ X. Let Lc,1 (resp. Lc,2) be the left-hand side of
the concurrent rule pc,1 (resp. pc,2), mc,1 : L1 → Lc,1 (resp. mc,2 : L2 → Lc,2)
the lhs-match and gc,1 : Lc,1 → K (resp. gc,2 : Lc,2 → K) the concurrent match
induced by t1 (resp. t2). Then the critical pair P1

p1⇐ K
p2⇒ P2 is also NAC-

confluent for t1 and t2 and thus strictly NAC-confluent if one of the following
conditions holds for each NAC(n1,j) : Lc,1 → N1,j (resp. NAC(n2,j) : Lc,2 →
N2,j) of the concurrent NACpc,1 induced by t1 (resp. NACpc,2 induced by t2)

– there exists a NAC(n′
1,i) : Lc,1 → N ′

1,i (resp. NAC(n′
2,i) : Lc,2 → N ′

2,i)
in Dmc,1(NACL1) (resp. Dmc,2(NACL2)) and an injective morphism dij :
N ′

1,i → N1,j (resp. an injective morphism dij : N ′
2,i → N2,j) such that (1)

(resp. (1’)) commutes.
– there exists a morphism l21 : Lc,2 → Lc,1 (resp. l12 : Lc,1 → Lc,2) s.t. (2)

(resp. (2’)) commutes and in addition a NAC(n′
2,i) : Lc,2 → N ′

2,i (resp. n′
1,i :

Lc,1 → N ′
1,i) in Dmc,2(NACL2) (resp. Dmc,1(NACL1)) with an injective

morphism mij : N ′
2,i → N1,j (resp. an injective morphism mij : N ′

1,i → N2,j)
s.t. n1,j ◦ l21 = mij ◦ n′

2,i (resp. n2,j ◦ l12 = mij ◦ n′
1,i).

Embedding and Confluence of Graph Transformations 175

N1,j N ′
1,i

dij�� N ′
2,i

mij

��

Lc,1

n1,j

����������
n′

1,i

��
(1)

gc,1
���

��
��

��
�

Lc,2

gc,2
����

��
��

��

n′
2,i

��

l21

��

K

(3)

(2)

N ′
1,i

mij

��
N ′

2,i

dij �� N2,j

Lc,1
l12 ��

n′
1,i

��

gc,1
���

��
��

��
�

Lc,2

(1′)
n2,j

����������

gc,2
����

��
��

��

n′
2,i

��

K

(3′)

(2′)

Example 7 – Consider again the critical pair (gatherOrder,closeAccountTable)
as described in Example 5. The strict solution consists on the one hand of
a transformation that pays the order and then closes the account and on
the other hand nothing. Thus for the solution of this critical pair t2 merely
consists of t2 : K

closeAccountTable⇒ P2 and therefore this case is trivial. Thus
it remains to consider the diagram on the left in Theorem 3. Namely, on the
other hand t1 : K

gatherOrder⇒ K1
payOrder⇒ K2

closeAccount⇒ P2 is not trivial.
The concurrent rule pc,1 of this transformation closes the account of a table
with a concurrent NACpc,1 consisting of a NACn1,1 forbidding any alert and
a single NAC NACn1,2 forbidding any order for this table. Now NACn1,1 is
induced on the one hand by the downward translation of NAC noAlert of rule
gatherOrder, since they can be connected by an identity i.e. d1,1 = id. On the
other hand NACn1,2 is induced by NAC noOrders on rule closeAccountTable.
This is because the lhs Lc,1 of the concurrent rule pc,1 consists of an open
table and it is thus identical to the lhs Lc,2 of closeAccountTable. Therefore
the morphism l21 is in this case the identity as well as the morphism m12

connecting both single NACs.
– Consider also the critical pair (resetAlert,noteUnpaidOrder) as described in

Example 5. The sufficient condition as described in Theorem 3 is not fulfilled
for the strict solution described in Example 5. It was possible though to
conclude NAC-confluence according to Def. 10 for this solution anyway as
explained in Example 5.

The following corollary follows directly from Theorem 3. It states that NAC-
confluence for a critical pair is automatically fulfilled if a strict solution can be
found via rules without NACs.

Corollary 1. A critical pair P1
p1⇐ K

p2⇒ P2 is strictly NAC-confluent if it is
strictly confluent via the transformations t1 : K

p1,g1⇒ P1 ⇒∗ X (resp. t2 : K
p2,g2⇒

P2 ⇒∗ X) and both P1 ⇒∗ X and P2 ⇒∗ X are transformation sequences
without NACs.

Example 8. Consider now in the Conflict Matrix in Fig. 4 the critical pair corre-
sponding to (alertUnpaidTable,payOrder). A strict solution for this critical pair
on the one hand notes the unpaid order and resets the alert and on the other

176 L. Lambers et al.

hand does nothing. Then we have a table with an open account and without or-
ders. The rules noteUnpaidOrder and resetAlert are rules without NACs there-
fore according to the former corollary this critical pair is automatically strictly
NAC-confluent and does not have to be investigated further.

5 Conclusion

In this paper, the Embedding Theorem and Local Confluence Theorem formu-
lated in [6] for graph transformations without NACs are extended to graph
transformations with NACs. These results hold not only for the instantiation
of double-pushout gts with NACs as shown in this paper, but also for more
general adhesive HLR systems with NACs as proven in [9]. In our results includ-
ing NACs extra conditions such as NAC-consistency of the extension morphism
(resp. NAC-confluence of the set of critical pairs) are required in order to lead
to a correct embedding with NACs (resp. confluent gts with NACs). These ad-
ditional conditions are explained in our running example.

Future work consists of trimming the results towards efficient tool support and
generalizing the theory for transformation systems with NACs described in [9]
to transformation systems with more general application conditions as defined
in [13].

References

1. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovsky, T.,
Prange, U., Varro, D., Varro-Gyapay, S.: Model Transformation by Graph Trans-
formation: A Comparative Study. In: Proc. Workshop Model Transformation in
Practice, Montego Bay, Jamaica (October 2005)

2. Bottoni, P., Schürr, A., Taentzer, G.: Efficient Parsing of Visual Languages based
on Critical Pair Analysis and Contextual Layered Graph Transformation. In:
Proc.IEEE Symposium on Visual Languages, Long version available as technical
report SI-2000-06, University of Rom (September 2000)

3. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems. JACM 27(4), 797–821 (1980)

4. Plump, D.: Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence.
In: Sleep, M., Plasmeijer, M., van Eekelen, M.C. (eds.) Term Graph Rewriting, pp.
201–214. Wiley, Chichester (1993)

5. Plump, D.: Confluence of graph transformation revisited. In: Middeldorp, A., van
Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles:
Steps on the Road to Infinity. LNCS, vol. 3838, pp. 280–308. Springer, Heidelberg
(2005)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

7. Lambers, L., Ehrig, H., Orejas, F., Prange, U.: Parallelism and Concurrency in
Adhesive High-Level Replacement Systems with Negative Application Conditions.
In: Ehrig, H., Pfalzgraf, J., Prange, U. (eds.) CC 2007. Elsevier, Amsterdam (to
appear, 2008)

Embedding and Confluence of Graph Transformations 177

8. Lambers, L., Ehrig, H., Orejas, F.: Conflict Detection for Graph Transformation
with Negative Application Conditions. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76. Springer,
Heidelberg (2006)

9. Lambers, L.: Adhesive high-level replacement systems with negative application
conditions. Technical report, Technische Universität Berlin (2007),
http://iv.tu-berlin.de/TechnBerichte/2007/2007-14.pdf

10. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions 26, 287–313 (1996)

11. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Alge-
braic Approaches to Graph Transformation I: Basic Concepts and Double Pushout
Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Foundations, vol. 1, pp. 163–245. World Scientific,
Singapore (1997)

12. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–456. Springer, Heidelberg (2004)

13. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Constraints and application
conditions: From graphs to high-level structures. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303.
Springer, Heidelberg (2004)

http://iv.tu-berlin.de/TechnBerichte/2007/2007-14.pdf

	Embedding and Confluence of Graph Transformations with Negative Application Conditions
	Introduction
	Graph Transformation Systems with NACs
	Embedding of Transformations with NACs
	Confluence of Transformations with NACs
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

