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Abstract As presented in Ehrig et al. (Fundamentals of Algebraic Graph Trans-
formation, EATCS Monographs, Springer, 2006), adhesive high-level replacement
(HLR) categories and systems are an adequate framework for several kinds of trans-
formation systems based on the double pushout approach. Since (weak) adhesive
HLR categories are closed under product, slice, coslice, comma and functor category
constructions, it is possible to build new (weak) adhesive HLR categories from
existing ones. But for the general results of transformation systems, as additional
properties initial pushouts, binary coproducts compatible with a special morphism
class M and a pair factorization are needed to obtain the full theory. In this paper,
we analyze under which conditions these additional properties are preserved by the
categorical constructions in order to avoid checking these properties explicitly.
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1 Introduction

Adhesive high-level replacement categories and systems have been introduced
recently in [6] as an integration of the concepts of high-level replacement (HLR)
systems in [4, 5] – generalizing graph transformation systems – and of adhesive
categories in [11, 12] – generalizing bisimulation congruences.

In [3], adhesive HLR systems are shown to be an adequate unifying framework
for several interesting kinds of graph and net transformation systems. The main idea
is to generalize the algebraic approach of graph transformations introduced in [2, 7]
from graphs to high-level structures and to instantiate them with various kinds of
graphs, Petri nets, algebraic specifications, and typed attributed graphs.

Adhesive and weak adhesive HLR categories are the basis of adhesive HLR
systems. The concept of these categories is based on the existence and compatibility
of suitable pushouts and pullbacks, which are essential for the so-called van Kampen
(VK) squares, which have been introduced for adhesive categories in [11].

The idea of a VK square is that of a pushout which is stable under pullbacks, and,
vice versa, that pullbacks are stable under combined pushouts and pullbacks. The
name “van Kampen” is derived from the relationship between these squares and the
Van Kampen theorem in topology (see [1]).

While adhesive categories are based on the class of all monomorphisms, adhesive
and weak adhesive HLR categories (C,M) are based on a suitable subclass M
of monomorphisms. This more flexible class M is essential for some important
examples, such as typed attributed graphs, to become an adhesive HLR category.
The concept of weak adhesive HLR categories is also important, because some other
examples, such as place/transition nets and algebraic high-level nets (see [8]) satisfy
only a weaker version of adhesive HLR categories. This weaker version, however, is
still sufficient to obtain the basic main results for adhesive HLR systems in [3].

In [11], it was already observed how to extend the construction of adhesive
categories from basic examples such as the category Sets of sets and functions to
more complex examples such as the category Graphs of graphs and graph morphisms
and the category GraphsTG of graphs and graph morphisms typed over a type graph
TG. In fact, it is claimed in [11] that adhesive categories are closed under product,
slice, coslice and functor category constructions. This has been extended in [6] to
adhesive HLR categories and in [3] it is shown in addition that adhesive and also
weak adhesive HLR categories are closed under comma category constructions.

In [6] it is shown already that some results in the theory of adhesive HLR systems
require some additional properties like finite coproducts compatible with M, initial
pushouts and a pair factorization. Especially the existence and construction of initial
pushouts is nontrivial to be shown in several example categories. For this reason we
study in this paper how far the constructions of (weak) adhesive HLR categories
discussed above allow to preserve also these additional properties in order to avoid
checking these properties explicitly.

This paper is organized as follows. In Section 2, we introduce (weak) adhesive
HLR categories as presented in [3] and cite the important Construction theorem. In
Section 3, we analyze under which conditions the additional properties are preserved
under the categorical constructions mentioned above. Section 4 gives a conclusion
and an overview of future work.
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2 Adhesive and Weak Adhesive HLR Categories

In this section, we introduce the notion of adhesive and weak adhesive HLR cat-
egories, summarized as (weak) adhesive HLR categories, and present their closure
under certain categorical constructions. The reader is assumed to be familiar with the
basic notions of category theory, as presented in, e.g., [3, 9, 13]. For more motivation
and examples we refer to [3].

The basic notion of (weak) adhesive HLR categories are van Kampen (VK)
squares. The idea of a VK square is that of a pushout (PO) which is stable under
pullbacks, and, vice versa, that pullbacks are stable under combined pushouts and
pullbacks.

Definition 1 ([Weak] Van Kampen Square). A pushout (1) is a van Kampen square
if, for any commutative cube (2) with (1) in the bottom and where the back faces are
pullbacks, the following statement holds: the top face is a pushout iff the front faces
are pullbacks:

A′

B′

A

B

C′

D′

C

D

(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n g

A B

C D

(1)

m

f

n

g

Given a morphism class M, a pushout (1) with m ∈ M is a weak VK square if the
above property holds for all commutative cubes with f ∈ M or b , c, d ∈ M.

Remark Given a morphism class M, a pushout (1) is a pushout along M-morphisms
if m ∈ M (or f ∈ M). Analogously, a pullback (1) is a pullback along M-morphisms
if n ∈ M (or g ∈ M).

Example 1 In the following diagram a VK square along an injective function in Sets
is shown on the left-hand side. All morphisms are inclusions, except of 0 and 1 are
mapped to ∗ and 2 and 3 to 2.

Arbitrary pushouts are stable under pullbacks in Sets. This means that one
direction of the VK square property is also valid for arbitrary morphisms. However,
the other direction is not necessarily valid. The cube on the right-hand side is such a
counterexample, for arbitrary functions: all faces commute, the bottom and the top
are pushouts, and the back faces are pullbacks. But, obviously, the front faces are not
pullbacks, and therefore the pushout in the bottom fails to be a VK square.
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{0, 1}

{0, 1, 2, 3}

{0, 1}

{0, 1, 2}

{∗}

{∗, 2, 3}

{∗}

{∗, 2}

{0, 1} × {0, 1}

{0, 1}

{0, 1}

{∗}

{0, 1}

{∗}

{∗}

{∗}

π2

+mod2

π1

Definition 2 ([Weak] Adhesive HLR Category). A category C with a morphism class
M is called a (weak) adhesive HLR category if:

1. M is a class of monomorphisms closed under isomorphisms, composition ( f :
A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M), and decomposition (g ◦ f ∈ M,

g ∈ M ⇒ f ∈ M).
2. C has pushouts and pullbacks along M-morphisms, and M-morphisms are

closed under pushouts and pullbacks.
3. Pushouts in C along M-morphisms are (weak) VK squares.

Example 2 The categories Sets and Graphs of sets and graphs, respectively, together
with the class M of injective morphisms are adhesive HLR categories.

For the typing of graphs, a distinguished graph TG, called type graph, defines
the available node and edge types. Then, a typed graph is a graph G together
with a typing morphism t : G → TG. Typed graph morphisms are graph morphisms
that preserve the typing. The category GraphsTG of typed graph together with the
morphism class M of injective morphisms is an adhesive HLR category.

Also the category AGraphsATG of typed attributed graphs with the class M of
injective morphisms with isomorphic data part is an adhesive HLR category. For
typed attributed graphs, we have typing as well as attributes for nodes and edges,
where the attribute values are specified by some algebra. Typed attributed graph
morphisms map the graphs and the algebras such that both types and attribution is
preserved.

The category PTNets of Petri nets with the morphism class M of injective
morphisms is not an adhesive HLR category, but a weak adhesive HLR category,
since only pullbacks along M-morphisms are constructed componentwise, but not
over general morphisms (see [8]).

(Weak) adhesive HLR categories are closed under product, slice, coslice, functor,
and comma category constructions, where some of these notions are explained in
the remark below. This means that we can construct new (weak) adhesive HLR
categories from given ones.



Construction and properties of adhesive HLR categories 369

Theorem 1 (Construction of [Weak] Adhesive HLR Categories). If (C,M1) and
(D,M2) are (weak) adhesive HLR categories, then we have the following results.

1. The product category (C × D,M1 × M2) is a (weak) adhesive HLR category.
2. The slice category (C\X,M1 ∩ C\X) is a (weak) adhesive HLR category for any

object X in C.
3. The coslice category (X\C,M1 ∩ X\C) is a (weak) adhesive HLR category for

any object X in C.
4. The comma category (ComCat(F, G;I),M) with M = (M1 × M2) ∩

MorComCat(F,G;I) and with functors F : C → A, G : D → A is a (weak) adhesive
HLR category, if F preserves pushouts along M1-morphisms and G preserves
pullbacks (along M2-morphisms).

5. The functor category ([X, C],M1 − natural transf ormations) is a (weak) adhe-
sive HLR category for every category X.

Remark Given functors F : C → A and G : D → A, and an index set I , the objects
of the comma category (ComCat(F, G;I) are tuples (C, D, (opi)i∈I) with C ∈ C, D ∈
D and opi : F(C) → G(D). A morphism f : (C, D, opi) → (C′, D′, op′

i) consists of
morphisms fC : C → C′ in C and fD : D → D′ in D such that G( fD) ◦ opi = op′

i ◦
F( fC) for all i ∈ I .

F(C) G(D)

F(C′) G(D′)

opi

F( fC)

op′
i

G( fD)

In a functor category [X, C], an M1-natural transformation is a natural transfor-
mation t : F → G, where all morphisms tX : F(X) → G(X) are in M1.

Proof See [3]. 	


Example 3

1. The category Graphs × Graphs as the product category over Graphs together
with injective morphisms is an adhesive HLR category (see item 5).

2. The category GraphsTG as the slice category Graphs\TG together with injective
morphisms is an adhesive HLR category.

3. The category PSets of sets and partial functions is isomorphic to the coslice
category {1}\Sets and thus PSets together with injective total functions is an
adhesive HLR category.

4. The category PTNets of Petri nets is isomorphic to the comma category
ComCat(F, G;I) with F = Id : Sets → Sets, G = �⊕ : Sets → Sets and I =
{pre, post}, where A⊕ is the free commutative monoid over A. Since F preserves
pushouts and G preserves pullbacks along injective morphisms (but does not
preserve general pullbacks), PTNets together with injective Petri net morphisms
is a weak adhesive HLR category.
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5. The category Graphs is isomorphic to the functor category [S2, Sets] with
S2 = · ⇒ · and thus, together with injective graph morphisms, an adhesive
HLR category.

To simplify the proofs, product, slice and coslice categories can be seen as special
cases of comma categories. Hence, some results for these categories can be obtained
from the corresponding results for comma categories.

Fact 1 (Product, Slice and Coslice Category as Comma Category). For product, slice
and coslice categories, we have the following isomorphic comma categories:

1. C × D ∼= ComCat(!C : C → 1, !D : D → 1, ∅),
2. C\X ∼= ComCat(idC : C → C, X : 1 → C, {1}) and
3. X\C ∼= ComCat(X : 1 → C, idC : C → C, {1}),

where 1 is the final category, !C : C → 1 is the final morphism from C, and X : 1 → C
maps 1 ∈ 1 to X ∈ C.

In the following, we need the fact below about pushouts in comma categories. It
shows, that pushouts along M-morphisms in comma categories based on (weak) ad-
hesive HLR categories can be build componentwise from the underlying categories.

Fact 2 (Componentwise Pushouts in Comma Categories). Given weak adhe-
sive HLR categories (C,M1) and (D,M2) and functors F : C → A and G :
D → A, where F preserves pushouts along M1-morphisms, that lead to a
comma category ComCat(F, G;I). Then for objects A = (A1, A2, opA

i ), B =
(B1, B2, opB

i ), C = (C1, C2, opC
i ) ∈ ComCat(F, G;I) and morphisms a = (a1, a2) :

A → C, b = (b 1, b 2) : A → B with b ∈ M1 × M2 we have:
The diagram (1) is a pushout in ComCat(F, G;I) iff (1)C and (1)D are pushouts in

C and D, respectively, with f = ( f1, f2) and c = (c1, c2).

B1A1

C1 D1

(1)C

b1

a1 f1

c1

B2A2

C2 D2

(1)D

b2

a2 f2

c2

BA

C D

(1)

b

a f

c

Proof “⇐” Given the morphisms a and b in (1), and the pushouts (1)C and (1)D in
C and D, respectively. We have to show that (1) is a pushout in ComCat(F, G;I).

Since F preserves pushouts along M1-morphisms, with b 1 ∈ M1 the diagram
(2) is a pushout. Then D = (D1, D2, opD

i ) is an object in ComCat(F, G;I), where,
for i ∈ I , opD

i is the by (2) and G(c2) ◦ opC
i ◦ F(a1) = G(c2) ◦ G(a2) ◦ opB

i = G( f2) ◦
G(b 2) ◦ opB

i = G( f2) ◦ opA
i ◦ F(b 1) induced morphism with opD

i ◦ F(c1) = G(c2) ◦
opC

i and opD
i ◦ F( f1) = G( f2) ◦ opA

i . Therefore c = (c1, c2) and f = ( f1, f2) are
morphisms in ComCat(F, G;I) such that (1) commutes.
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F(B1)F(A1)

F(C1) F(D1)

F(X1)

F(b1)

F(a1) F( f1)

F(c1)

G(B2)G(A2)

G(C2) G(D2)

G(X2)

(2)

G(b2)

G(a2) G( f2)

G(c2)

G(h2)

G(k2)

G(x2)

opA
iopB

i

opC
i opD

i

opX
i

F(h1)

F(k1)

F(x1)

It remains to show that (1) is a pushout. Given an object X = (X1, X2, opX
i )

and morphisms h = (h1, h2) : C → X and k = (k1, k2) : A → X in ComCat(F, G;I)

such that h ◦ a = k ◦ b . From pushouts (1)C and (1)D we obtain unique mor-
phisms x1 : D1 → X1 and x2 : D2 → X2 such that xi ◦ ci = hi and xi ◦ fi = ki

for i = 1, 2. Since (2) is a pushout, from G(x2) ◦ opD
i ◦ F(c1) = G(x2) ◦ G(c2) ◦

opC
i = G(h2) ◦ opC

i = opX
i ◦ F(h1) = opX

i ◦ F(x1) ◦ F(c1) and G(x2) ◦ opD
i ◦ F( f1) =

G(x2) ◦ G( f2) ◦ opA
i = G(k2) ◦ opA

i = opX
i ◦ F(k1) = opX

i ◦ F(x1) ◦ F( f1) it follows
that G(x2) ◦ opD

i = opX
i ◦ F(x1). Therefore x = (x1, x2) ∈ ComCat(F, G;I), and x is

unique with respect to x ◦ c = h and x ◦ f = k.
“⇒” Given the pushout (1) in ComCat(F, G;I), we have to show that (1)C and

(1)D are pushouts in C and D, respectively.
Since (C,M1) and (D,M2) are weak adhesive HLR categories there exist

pushouts (1′)C and (1′)D over a1 and b 1 ∈ M1 in C and over a2 and b 2 ∈ M2 in D,
respectively.

A1B1

C1 E1

(1′)C

b1

a1 g1

e1

A2B2

C2 E2

(1′)D

b2

a2 g2

e2

AB

C E

(1′)

b

a g

e

Therefore (using “⇐”) there is a corresponding pushout (1′) in ComCat(F, G;I)

over a and b with E = (E1, E2, opE
i ), e = (e1, e2) and g = (g1, g2). Since pushouts are

unique up to isomorphism it follows that E ∼= D, which means E1
∼= D1 and E2

∼= D2

and therefore (1)C and (1)D are pushouts in C and D, respectively. 	


From Facts 1 and 2 we obtain immediately the following Fact 3.

Fact 3 (Componentwise POs in Product, Slice, Coslice Categories).Since C × D ∼=
ComCat(!C : C → 1, !D : D → 1, ∅), C\X ∼= ComCat(idC : C → C, X : 1 → C, {1})
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and X\C ∼= ComCat(X : 1 → C, idC : C → C, {1}) and the functors !C, idC and X
preserve pushouts, it follows that also in product, slice and coslice categories pushouts
along M-morphisms are constructed componentwise.

3 Additional Properties and Their Preservation

There are several important results in the theory of adhesive HLR systems in [3]
where we need (weak) adhesive HLR categories which satisfy some additional
properties. In this section we analyze, under which conditions these properties are
preserved by the categorical constructions discussed in Section 2. Section 3.1 handles
initial pushouts, Section 3.2 handles finite coproducts compatible with M and in
Section 3.3, the preservation of an E ′-M′ pair factorization is described.

These properties are needed in the theory of adhesive HLR systems as discussed
in Chapters 5 and 6 of [3], where coproducts are used for parallel productions,
initial pushouts for the extension of transformations and local confluence, and pair
factorizations for concurrent productions and critical pairs.

For the existence of initial pushouts, we need a special morphism class M′, since in
some categories initial pushouts over general morphisms do not exist or have a more
complicated structure that cannot be derived from the categorical constructions. This
morphism class M′ is also used for the E ′-M′ pair factorization, where E ′ is a class
of morphism pairs with the same codomain. For the local confluence theorem in [3],
we need an E ′-M′ pair factorization with initial pushouts over M′-morphisms.

3.1 Initial Pushouts

An initial pushout formalizes the construction of the boundary and context of a
morphism. For a morphism f : A → A′, we want to construct a boundary b : B →
A, a boundary object B, and a context object C, leading to a minimal pushout
satisfying an initiality property. Roughly speaking, A′ is the gluing of A and the
context object C along the boundary object B.

Definition 3 (Initial Pushout). Given a morphism f : A → A′ in a (weak) adhesive
HLR category, a morphism b : B → A with b ∈ M is called the boundary over f
if there is a pushout complement of f and b such that (1) is a pushout which is
initial over f . Initiality of (1) over f means, that for every pushout (2) with b ′ ∈ M
there exist unique morphisms b ∗ : B → D and c∗ : C → E with b ∗, c∗ ∈ M such that
b ′ ◦ b ∗ = b , c′ ◦ c∗ = c and (3) is a pushout.

B

C

A

A′

(1)

b

f

c

B

C

D

E

A

A′

(3) (2)

b∗

c∗

b ′

c′

f

b

c

Remark If an initial pushouts exists only over f ∈ M′ for a special class M′ of
morphisms, we say that (C,M) has initial pushouts over M′.
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Example 4 Initial pushouts exist in Sets, Graphs, GraphsTG and AGraphsATG (see
[3]). For Graphs and GraphsTG, they can be constructed by Theorem 2.

Theorem 2 (Preservation of Initial Pushouts). Given (weak) adhesive HLR cate-
gories (C,M1) and (D,M2) with initial pushouts over M′

1- and M′
2-morphisms,

respectively, for some morphisms classes M′
1 in C and M′

2 in D. Then we have the
following results.

1. C × D has initial pushouts over M′
1 × M′

2-morphisms.
2. C\X has initial pushouts over M′

1 ∩ C\X-morphisms.
3. For f : A → D ∈ M′

1 ∩ X\C with a′ : X → A the initial pushout exists, if

– the initial pushout over f in C can be extended to a valid square in X\C or
– a′ : X → A ∈ M1 and the pushout complement of a′ and f in C exists.

4. If F preserves pushouts along M1-morphisms and G(M2) ⊆ Isos, then
ComCat(F, G;I) has initial pushouts over M′

1 × M′
2- morphisms.

5. If C has intersections of M1-subobjects (see remark below) then [X, C] has initial
pushouts over M′

1-natural transformations.

Remark A category C has intersections of M1-subobjects, if it has the following
kind of limits compatible with M1: Given ci : Ci → D ∈ M1 with i ∈ I for some
index set I, then the corresponding diagram has a limit (C, (c′

i : C → Ci)i∈I, c : C →
D) in C and we have that c′

i ∈ M1 for all i ∈ I and c ∈ M1.

C

Ci

C j

D

c′
i ci

c

c′
j c j

(i, j ∈ I)

Proof

1. Since C × D ∼= ComCat(!C : C → 1, !D : D → 1, ∅), !C preserves pushouts and
!D(M2) ⊆ {id1} = Isos this follows from item 4. Then the initial pushout (3) of
a morphism ( f1, f2) : (A1, A2) → (D1, D2) ∈ M′

1 × M′
2 is the product of the

initial pushouts (1) over f1 in C and (2) over f2 in D.

B1

C1

A1

D1

(1)

b1

a1 f1

c1

B2

C2

A2

D2

(2)

b2

a2 f2

c2

(B1, B2)

(C1, C2)

(A1, A2)

(D1, D2)

(3)

(b1,b2)

(a1,a2) ( f1, f2)

(c1,c2)

2. Since C\X ∼= ComCat(idC : C → C, X : 1 → C, {1}), idC preserves pushouts and
X(M2) = X({id1}) = {idX} ⊆ Isos this follows from item 4. Then the initial
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pushout (2) over f : (A, a′) → (D, d′) ∈ M′
1 in C\X is given by the initial

pushout (1) over f in C, with b ′ = a′ ◦ b and c′ = d′ ◦ c.

B

C

A

D

(1)

b

a f

c

(B, b ′)

(C, c′)

(A, a′)

(D, d′)

(2)

b

a f

c

3. Given objects (A, a′), (D, d′) and a morphism f : A → D in X\C with f ∈ M′
1.

Then the initial pushout (1) over f in C exists by assumption. The remark of
Fact 2 implies that, for any pushout (2) in X\C with d, e ∈ M1, the diagram (3)

is a pushout in C. Since (1) is an initial pushout in C there exist unique morphisms
b ∗ : B → E and c∗ : C → F such that d ◦ b ∗ = b , e ◦ c∗ = c, b ∗, c∗ ∈ M1 and (4)

is a pushout in C.

B A

DC

(1)

b

fa

c

(E, e′)(A, a′)

(D, d′) (F, f ′)

(2)

d

f g

e

EA

D F

(3)

d

f g

e

EB

C F

(4)

b∗

a g

c∗

(A, a′)(B, b ′)

(C, c′) (D, d′)

(5)

b

a f

c

(E, e′)(B, b ′)

(C, c′) (F, f ′)

(6)

b∗

a g

c∗

(i) If the diagram (5), corresponding to (1) in C, is a valid extension of (1)

in X\C, then the remark of Fact 2 implies that it is already a pushout in
X\C. It remains to show that (6) is a valid square in X\C. With d ◦ b∗ ◦ b ′ =
b ◦ b ′ = a′ = d ◦ e′ and d being a monomorphism it follows that b ∗ ◦ b = e′
and thus b ∗ ∈ X\C, and analogously c∗ ∈ X\C. This means the square (6),
corresponding to (4), is also a pushout in X\C. Therefore (5) is the initial
pushout over f in X\C.

(ii) If a′ : X → A ∈ M1 and the pushout complement of a′ and f in C exists, we
can construct the unique pushout complement (7) in C, and with the remark
of Fact 2 the corresponding diagram (8) is a pushout in X\C.

X A

DH

(7)

a′

fh′

h

(A, a′)(X, idX)

(H, h′) (D, d′)

(8)

a′

h′ f

h

XB

C H

(9)

b∗
X

a h′

c∗
X

It remains to show the initiality of (8). For any pushout (2), e′ : X → E is
unique with respect to d ◦ e′ = a′, because d is a monomorphism.
Since (1) is an initial pushout in C and (7) is a pushout, there are morphisms
b ∗

X : B→ X and c∗
X : C→ H such that b ∗

X , c∗
X ∈ M1, a′ ◦ b ∗

X = b , h ◦ c∗
X = c

and (9) is a pushout. With e ◦ c∗ ◦ a = c ◦ a = h ◦ c∗
X ◦ a = h ◦ h′ ◦ b ∗

X = f ◦
a′ ◦ b ∗

X = f ◦ d ◦ e′ ◦ b ∗
X = e ◦ g ◦ e′ ◦ b ∗

X and e being a monomorphism (9)

implies that there is a unique i : H → F with c∗ = i ◦ c∗
X and i ◦ h′ = g ◦ e′. It
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further follows that e ◦ i = h using the pushout properties of H. By pushout
decomposition, then (10) is a pushout in C and using the remark of Fact 2 the
corresponding square in X\C is also a pushout. Therefore, (8) is an initial
pushout over f in X\C.

B X

HC

EA

D F

(9) (7) (3)

b∗
X

h′a

c∗
X

d

f g

e

a′

h

b

c

e′

i

EX

H F

(10)

e′

h′ g

i

4. Given f : A → D ∈ ComCat(F, G;I) with f = ( f1, f2) ∈ M′
1 × M′

2. Then we
have initial pushouts (1)C over f1 ∈ M′

1 in C with b 1, c1 ∈ M1 and (1)D over
f2 ∈ M′

2 in D with b 2, c2 ∈ M2.

(A1, A2, opA
i )(B1, B2, opB

i )

(C1, C2, opC
i ) (D1, D2, opD

i )

(1)

(b1,b2)

(a1,a2) ( f1, f2)

(c1,c2)

A2B2

C2 D2

(1)D

b2

a2 f2

c2

A1B1

C1 D1

(1)C

b1

a1 f1

c1

Since G(M2) ⊆ Isos, G(b 2)
−1 and G(c2)

−1 exist. Define objects B = (B1, B2,

opB
i = G(b 2)

−1 ◦ opA
i ◦ F(b 1)) and C = (C1, C2, opC

i = G(c1)
−1 ◦ opD

i ◦ F(c1))

in ComCat(F, G;I). Then we have

– G(b 2) ◦ opB
i = G(b 2) ◦ G(b 2)

−1 ◦ opA
i ◦ F(b 1) = opA

i ◦ F(b 1),
– G(c2) ◦ opC

i = G(c2) ◦ G(c2)
−1 ◦ opD

i ◦ F(c1) = opD
i ◦ F(c1),

– G(c2) ◦ G(a2) ◦ opB
i = G( f2) ◦ G(b 2) ◦ opB

i = G( f2) ◦ opA
i ◦ F(b 1) =

opD
i ◦ F( f1) ◦ F(b 1) = opD

i ◦ F(c1) ◦ F(a1) = G(c2) ◦ opC
i ◦ F(a1) and G(c2)

being an isomorphism implies that G(a2) ◦ opB
i = opC

i ◦ F(a1),

which means that a = (a1, a2), b = (b 1, b 2) and c = (c1, c2) are morphisms in
ComCat(F, G;I) with b , c ∈ M1 × M2.
We shall show that (1) is an initial pushout over ( f1, f2) in ComCat(F, G;I).
Fact 2 implies that (1) is a pushout with (b 1, b 2), (c1, c2) ∈ M1 × M2.
It remains to show the initiality. For any pushout (2) in ComCat(F, G;I) with
(d1, d2), (e1, e2) ∈ M1 × M2, Fact 2 implies that the components (2)C and (2)D

are pushouts in C and D, respectively.

(E1, E2, opE
i )(A1, A2, opA

i )

(D1, D2, opD
i ) (F1, F2, opF

i )

(2)

(d1,d2)

( f1, f2) (g1,g2)

(e1,e2)

E2A2

D2 F2

(2)D

d2

f2 g2

e2

E1A1

D1 F1

(2)C

d1

f1 g1

e1

The initiality of pushout (1)C implies that there are unique morphisms b ∗
1 :

B1 → E1 and c∗
1 : C1 → F1 with d1 ◦ b ∗

1 = b 1, e1 ◦ c∗
1 = c1 and b ∗

1, c∗
1 ∈ M1 such

that (3)C is a pushout. Analogously, the initiality of pushout (1)D implies that
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there are unique morphisms b ∗
2 : B2 → E2 and c∗

2 : C2 → F2 with d2 ◦ b ∗
2 = b 2,

e2 ◦ c∗
2 = c2 and b ∗

2, c∗
2 ∈ M2 such that (3)D is a pushout.

(E1, E2, opE
i )(B1, B2, opB

i )

(C1, C2, opC
i ) (F1, F2, opF

i )

(3)

(b∗
1,b∗

2)

(a1,a2) (g1,g2)

(c∗
1,c∗

2)

E2B2

C2 F2

(3)D

b∗
2

a2 g2

c∗
2

E1B1

C1 F1

(3)C

b∗
1

a1 g1

c∗
1

With G(d2) ◦ G(b ∗
2) ◦ opB

i =G(b 2) ◦ opB
i =opA

i ◦ F(b 1)=opA
i ◦ F(d1) ◦ F(b ∗

1) =
G(d2) ◦ opE

i ◦ F(b ∗
1) and G(d2) being an isomorphism it follows that (b ∗

1, b ∗
2) ∈

ComCat(F, G;I), and analogously (c∗
1, c∗

2) ∈ ComCat(F, G;I). This means that
we have unique morphisms (b ∗

1, b ∗
2), (c

∗
1, c∗

2) ∈ M′
1 × M′

2 ∩ ComCat(F, G;I)

with (d1, d2) ◦ (b ∗
1, b ∗

2) = (b 1, b 2) and (e1, e2) ◦ (c∗
1, c∗

2) = (c1, c2), and by Fact 2
(3) composed of (3)C and (3)D is a pushout. Therefore (1) is the initial pushout
over f in ComCat(F, G;I).

5. Let M f unct
1 denote the class of all M1-natural transformations. Given an M′

1-
natural transformation f : A → D in [X, C], by assumption we can construct
componentwise the initial pushout (1x) over f (x) in C for all x ∈ X, with
b 0(x), c0(x) ∈ M1.

A(x)B0(x)

C0(x) D(x)

(1x)

b0(x)

a0(x) f (x)

c0(x)

D(x)C0(x)

Ci(x)

(2)

c0(x)

d′
i(x) ci(x)

Define (C, (c′
i : C → Ci)i∈I, c : C → D) as the limit in [X, C] of all those ci : Ci →

D ∈ M f unct
1 such that for all x ∈ X there exists a d′

i(x) : C0(x) → Ci(X) ∈ M1

with ci(x) ◦ d′
i(x) = c0(x) (2), which defines the index set I. Limits in [X, C] are

constructed componentwise in C, and if C has intersections of M1-subobjects
it follows that also [X, C] has intersections of M f unct

1 -subobjects. Hence c′
i ∈

M f unct
1 and c ∈ M f unct

1 , and C(x) is the limit of ci(x) in C.
Now we construct the pullback (3) over c ∈ M f unct

1 and f in [X, C] and since
M f unct

1 -morphisms are closed under pullbacks, also b ∈ M f unct
1 .

AB

C D

(3)

b

a f

c

A(x)B(x)

C(x)

B0(x)

C0(x)

Ci(x)

D(x)

(3x)(4x)

b(x)

a(x) f (x)

c(x)

b ′(x)

a0(x)

c′(x)

b0(x)

d′
i(x) c′

i(x) ci(x)

c0(x)

For x ∈ X, C(x) being the limit of ci(x), the family (d′
i(x))i∈I with (2) implies that

there is a unique morphism c′(x) : C0(x) → C(x) with c′
i(x) ◦ c′(x) = d′

i(x) and
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c(x) ◦ c′(x) = c0(x). Then (3x) being a pullback and c(x) ◦ c′(x) ◦ a0(x) = c0(x) ◦
a0(x) = f (x) ◦ b 0(x) implies the existence of a unique b ′(x) : B0(x) → B(x) with
b(x) ◦ b ′(x) = b 0(x) and a(x) ◦ b ′(x) = c′(x) ◦ a0(x). M1 is closed under decom-
position, b 0(x) ∈ M1 and b(x) ∈ M1 implies b ′(x) ∈ M1. Since (1x) is a pushout,
(3x) is a pullback, the whole diagram commutes and c(x), b ′(x) ∈ M1, the M1

pushout-pullback property (see [3]) implies that (3x) and (4x) are both pushouts
and pullbacks in C and hence (3) and (4) are both pushouts and pullbacks in
[X, C].
It remains to show the initiality of (3) over f . Given a pushout (5) with b 1, c1 ∈
M f unct

1 in [X, C], (5x) is a pushout in C for all x ∈ X. Since (1x) is an initial
pushout in C, there exist morphisms b ∗

1(x) : B0(x) → B1(x), c∗
1 : C0(x) → C1(x)

with b ∗
1(x), c∗

1(x) ∈ M1, b 1(x) ◦ b ∗
1(x) = b 0(x) and c1(x) ◦ c∗

1(x) = c0(x). Hence
c1(x) satisfies (2) for i = 1 and d′

1(x) = c∗
1(x).

A B1

C1D

(5)

b1

a1f

c1

B1(x)A(x)

D(x)

B0(x)

C0(x) C1(x)

(5x)(1x)

b1(x)

f (x) a1(x)

c1(x)

b0(x)

a0(x)

c0(x)

b∗
1(x)

c∗
1(x)

This means c1 is one of the morphisms the limit C was built of and there is a
morphism c′

1 : C → C1 with c1 ◦ c′
1 = c by construction of the limit C.

Since (5) is a pushout along M f unct
1 -morphisms it is also a pullback, and f ◦ b =

c ◦ a = c1 ◦ c′
1 ◦ a implies that there exists a unique b ′

1 : B → B1 with b 1 ◦ b ′
1 = b

and a1 ◦ b ′
1 = c′

1 ◦ a. By M f unct
1 -decomposition also b ′

1 ∈ M f unct
1 . Now using also

c1 ∈ M f unct
1 the M f unct

1 pushout-pullback decomposition property implies that
also (6) is a pushout, which shows the initiality of (3).

B1A

D

B

C C1

(5)(3)

b1

f a1

c1

b

a

c

b ′
1

c′
1

AB1

C1

B

C D

(6) (5)

b1

a1 f

c1

b ′
1

a

c′
1

b

c
	


Example 5 According to the five cases in Theorem 2 we have the following examples
based on Example 3, where in all cases except 3 M′

1 is the class of all morphisms
in C.

1. Initial pushouts in Graphs × Graphs can be constructed componentwise in
Graphs (see item 5).

2. GraphsTG has initial pushouts to be constructed as in Graphs.
3. In PSets ∼= {1}\Sets, we have three different cases for initial pushouts over a

morphism f : (A, a′) → (D, d′):

– Case 1: The morphism f is injective. Then (1) is the initial pushout over
f in Sets with inc being an inclusion, which cannot be extended to a valid
square in {1}\Sets. But a′ : {1} → A is injective and thus a′ ∈ M1, and the
pushout complement (2) of a′ and f in Sets exists with C = D\ f (A)∪
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f (a′(1)) ⊆ D and d′(1) = f (a′(1)), which means by construction in the proof
of Theorem 2.3 that (3) is the initial pushout over f in {1}\Sets.

A∅

D\ f (A) D

(1)

∅

∅ f

inc

A{1}

C D

(2)

a′

d′ f

inc

(A, a′)({1}, id)

(C, d′) (D, d′)

(3)

a′

d′ f

inc

– Case 2: f is noninjective, and a′(1) ∈ Id( f ), with Id( f ) = {x ∈ A | ∃y ∈
A, x �= y : f (x) = f (y)}. Then (4) with C = D\ f (A) ∪ f (Id( f )) is the initial
pushout over f in Sets, which due to d′(1) = f (a′(1)) ∈ C can be extended to
a valid diagram (5) and hence by construction to the initial pushout (5) over
f in {1}\Sets.

AId( f )

C D

(4)

inc

f |Id( f ) f

inc

(A, a′)(Id( f ), a′)

(C, d′) (D, d′)

(5)

inc

f |Id( f ) f

inc

– Case 3: f is noninjective, and a′(1) /∈ Id( f ). In this case, pushout (4) above
is the initial pushout over f in Sets, but it cannot be extended to a valid
square in {1}\Sets. Moreover, the pushout complement over a′ and f does
not exist in Sets, thus Theorem 2 cannot be applied. Nevertheless, the initial
pushout in this case in {1}\Sets exists, it is the following pushout (6) with
C = D\ f (A) ∪ f (Id( f )) ∪ d′(1), which generalises cases 1 and 2.

(A, a′)(Id( f ) ∪ a′(1), a′)

(C, d′) (D, d′)

(6)

inc

f |Id( f )∪a′(1) f

inc

4. The constructions in product and slice categories are examples for the construc-
tion of initial pushouts in comma categories; hence we can reuse the examples in
items 1 and 2.

5. Since Sets has intersections of M-subobjects for the class M of injective func-
tions, the category Graphs as a functor category of Sets has initial pushouts.

3.2 Finite Coproducts Compatible with M

In the double pushout graph transformation, for parallel productions we need not
only finite coproducts for the definition of the objects of the parallel production,
but also finite coproducts compatible with M which ensure that the morphisms of
the parallel productions are M-morphisms. For the existence of finite coproducts
compatible with M it is sufficient to show the existence of binary coproducts
compatible with M.
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Definition 4 (Binary Coproduct Compatible with M). A (weak) adhesive HLR
category (C,M) has binary coproducts compatible with M if C has binary coprod-
ucts and, for each pair of morphisms f : A → A′, g : B → B′ with f, g ∈ M, the
coproduct morphism is also an M-morphism, i.e. f + g : A + B → A′ + B′ ∈ M.

A A + B B

A′ A′ + B′ B′

f gf+g

iA

iA′

iB

iB′

Example 6 Sets, Graphs, GraphsTG and AGraphsATG have binary coproducts com-
patible with M. For Graphs and GraphsTG this follows by Thm. 3, for AGraphsATG

see [3].

Theorem 3 (Preservation of Bin. Coproducts Compatible with M). Given (weak)
adhesive HLR categories (C,M1) and (D,M2) with binary coproducts compatible
with M1 and M2, respectively. Then we have the following results.

1. C × D has binary coproducts compatible with M1 × M2.
2. C\X has binary coproducts compatible with M1 ∩ C\X.
3. X\C has binary coproducts compatible with X\C ∩ M1, if C has general

pushouts.
4. If F preserves coproducts, then ComCat(F, G;I) has binary coproducts compat-

ible with M1 × M2-morphisms.
5. [X, C] has binary coproducts compatible with M1-natural transformations (see

remark after Theorem 2).

Proof

1. Since C × D ∼= ComCat(!C : C → 1, !D : D → 1, ∅) and !C preserves coproducts
this follows from item 4. The coproduct of objects (A1, A2) and (B1, B2) of the
product category is the componentwise coproduct (A1 + B1, A2 + B2) in C and
D, respectively. Analogously, the coproduct of morphism f = ( f1, f2) and g =
(g1, g2) is the componentwise coproduct morphism f + g = ( f1 + g1, f2 + g2) in
C and D. If f, g ∈ M1 × M2, then also f + g ∈ M1 × M2.

2. Since C\X ∼= ComCat(idC : C → C, X : 1 → C, {1}) and idC preserves coprod-
ucts this follows from item 4. In the slice category, the coproduct of (A, a′)
and (B, b ′) is the object (A + B, [a′, b ′]) which consists of the coproduct A + B
in C together with the morphism [a′, b ′] : A + B → X induced by a′ and b ′.
Analogously, for morphisms f and g the coproduct morphism in C\X is the
coproduct morphism f + g in C. If f, g ∈ M1 ∩ C\X, then also f + g ∈ M1 ∩
C\X.

3. If C has general pushouts, given two objects (A, a′) and (B, b ′) in X\C we
construct the pushout (1) over a′ and b ′ in C. The coproduct of (A, a′) and (B, b ′)
is the pushout object A +X B. Given morphisms f : A → C and g : B → D in
X\C, we can construct the pushouts (1), (2), (3) and (4) in C, and by pushout
composition we have G ∼= C +X D leading to the coproduct morphism f +X g
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in X\C. Using the Butterfly Lemma (see [3, 10]), also (5) is a pushout in C. If
f, g ∈ M1, f + g ∈ M1 because C has binary coproducts compatible with M1.
Since M1-morphisms are closed under pushouts, it follows that also f +X g∈M1.

X B D

A A +X B E

C F G ∼= C +X D

b ′ g
d′

a′

f

c′

f+X g

(1) (2)

(3)
(4)

A + B C + D

A +X B C +X D

f+g

f+X g

(5)

4. If C and D have binary coproducts and F preserves coproducts, then
the coproduct of two objects A = (A1, A2, opA

i ) and B = (B1, B2, opB
i ) in

ComCat(F, G;I) is the object A + B = (A1 + B1, A2 + B2, opA+B
i ), where

opA+B
i is the unique morphism induced by G(iA2) ◦ opA

i and G(iB2) ◦ opB
i . If G

preserves coproduct, i.e. G(A2)+G(B2)=G(A2+B2), then opA+B
i =opA

i +opB
i .

F(A1) F(A1 + B1) F(B1)

G(A2) G(A2 + B2) G(B2)

opA
i opB

iopA+B
i

F(iA1 )

G(iA2 )

F(iB1 )

G(iB2 )

For morphisms f = ( f1, f2) : (A1, A2, opA
i ) → (C1, C2, opC

i ) and g = (g1, g2) :
(B1, B2, opB

i ) → (D1, D2, opD
i ) we get a coproduct morphism f + g = ( f1 +

g1, f2 + g2). If f, g ∈ M1 × M2, the compatibility of coproducts with M1 and
M2 in C and D ensures that f1 + g1 ∈ M1 and f2 + g2 ∈ M2, respectively, that
means f + g ∈ M1 × M2.

5. If C has binary coproduct, the coproduct of two functors A, B : X → C in [X, C]
is the componentwise coproduct functor A + B with A + B(x) = A(x) + B(x)

for an object x ∈ X and A + B(h) = A(h) + B(h) for a morphism h ∈ X. For
natural transformations f = ( fx)x∈X and g = (gx)x∈X, the coproduct morphism is
the componentwise coproduct morphism in C, i.e. f + g = ( fx + gx)x∈X. If f and
g are M1-natural transformations we have fx, gx ∈ M1 for all x ∈ C, and since C
has binary coproducts compatible with M1 it follows that also fx + b x ∈ M1 for
all x ∈ X, therefore f + g is an M1-natural transformation. 	


Example 7

1. In Graphs × Graphs, binary coproducts are constructed componentwise and are
compatible with injective morphisms.

2. In GraphsTG, binary coproducts are constructed in Graphs and lifted to
GraphsTG. From the coproducts in Graphs they inherit the compatibility with
injective morphisms.
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3. The construction of binary coproducts in PSets ∼= {1}\Sets is given by the cor-
responding pushout in Sets, i.e. the binary coproduct of two sets A and B with
distinguished elements 1A and 1B, representing the respective undefined, is the
set A\{1A} �∪ B\{1B} �∪ {1}, where 1 represents the new undefined element of the
coproduct.

4. In PTNets, binary coproducts are constructed componentwise in Sets and are
compatible with injective Petri net morphisms.

5. In Graphs, binary coproducts are constructed componentwise in Sets and are
compatible with injective graph morphisms.

3.3 E ′-M′ Pair Factorization

A possible approach to analyze the confluence of a transformation system is to show
the termination of the system, and the strict confluence of so-called critical pairs. The
concept of an E ′–M′ pair factorization is essential for the definition of critical pairs.

Definition 5 (E ′–M′ Pair Factorization). Given a class of morphism pairs E ′ with the
same codomain and a class M′ of morphisms, a (weak) adhesive HLR category has
an E ′–M′ pair factorization if, for each pair of morphisms f : A → C and g : B → C,
there exist an object K and morphisms e : A → K, e′ : B → K, and m : K → C with
(e, e′) ∈ E ′ and m ∈ M′ such that m ◦ e = f and m ◦ e′ = g:

A

B

K C
e

e′
m

f

g

Definition 6 (Strong E ′–M′ Pair Factorization). An E ′–M′ pair factorization is
called strong, if the following E ′–M′ diagonal property holds:

Given (e, e′) ∈ E ′, m ∈ M′, and morphisms a, b , n as shown in the following
diagram, with n ◦ e = m ◦ a and n ◦ e′ = m ◦ b , then there exists a unique d : K → L
such that m ◦ d = n, d ◦ e = a and d ◦ e′ = b .

A

B K

L C

e

e′
a

b n

m

d

Fact 4 (Strong E ′–M′ Pair Factorization). In a (weak) adhesive HLR category
(C,M), the following properties hold:

1. If (C,M) has a strong E ′–M′ pair factorization, then the E ′–M′ pair factorization
is unique up to isomorphism.

2. A strong E ′–M′ pair factorization is functorial, i.e. given morphisms
a, b , c, f1, g1, f2, g2 as shown in the following diagram with c ◦ f1 = f2 ◦ a and
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c ◦ g1 = g2 ◦ b, and E ′–M′ pair factorizations ((e1, e′
1), m1) and ((e2, e′

2), m2) of
f1, g1 and f2, g2, respectively, then there exists a unique d : K1 → K2 such that
d ◦ e1 = e2 ◦ a, d ◦ e′

1 = e′
2 ◦ b and c ◦ m1 = m2 ◦ d.

A1

B1

K1 C1

A2

B2

K2 C2

e1

e′
1

f1

g1

m1

e2

e′
2

f2

m2

g2

a

b

cd

Proof

1. We show that strong E ′–M′ pair factorizations are unique up to isomorphism.
Suppose ((e1, e′

1), m1) with m1 : K1 → C and ((e2, e′
2), m2) with m2 : K2 → C are

two E ′–M′ pair factorizations of f and g.

A

B

K1

K2

C

e1

e′
1

e2

e′
2

m1

m2

f

g

kk′

Using the morphisms (e1, e′
1) ∈ E ′ and m1 ∈ M′, from the E ′–M′ diagonal prop-

erty we obtain a unique morphism k : K1 → K2 with m2 ◦ k = m1, k ◦ e1 = e2

and k ◦ e′
1 = e′

2. At the same time, idK1 is unique with respect to m1 ◦ idK1 = m1,
idK1 ◦ e1 = e1 and idK1 ◦ e′

1 = e′
1.

By exchanging the roles of ((e1, e′
1), m1) and ((e2, e′

2), m2), the E ′–M′ diagonal
property implies that there is a unique k′ : K2 → K1 with m1 ◦ k′ = m2, k′ ◦ e2 = e1

and k′ ◦ e′
2 =e′

1. Also, idK2 is unique with respect to m2 ◦ idK2 = m2, idK2 ◦ e2 = e2

and idK2 ◦ e′
2 = e′

2.
Thus, from m1 ◦ k′ ◦ k = m2 ◦ k = m1, k′ ◦ k ◦ e1 = k′ ◦ e2 = e1 and k′ ◦ k ◦ e′

1 =
k′ ◦ e′

2 = e′
1 it follows that k′ ◦ k = idK1 , and analogously k ◦ k′ = idK2 . This

means that K1 and K2 as well as the corresponding morphisms are isomorphic.
2. The fact that a strong E ′–M′ pair factorization is functorial follows directly

from the E ′–M′ diagonal property: Given the setting above, since (e1, e′
2) ∈ E ′
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and m2 ∈ M′ we obtain a unique morphism d : K1 → K2 with m2 ◦ d = c ◦ m1,
d ◦ e1 = e2 ◦ a and d ◦ e′

1 = e′
2 ◦ b . 	


Example 8

– In Sets, one possible choice for E ′ and M′ is to define E ′ as the class of jointly
surjective morphisms and M′ as the class of injective morphisms leading to a
strong E ′–M′ pair factorization.

– In categories with binary coproducts and an E–M factorization we have an
E ′–M′ pair factorization with M′ = M and (e, e′) ∈ E ′ ⇔ [e, e′] ∈ E , where [e, e′]
is the morphism induced by the binary coproduct.

– In the category AGraphsATG there are different possible choices for an E ′–M′
pair factorization (see [3]).

Theorem 4 (Preservation of E ′–M′ Pair Factorizations). Given (weak) adhesive
HLR categories (C,M1) and (D,M2) with E ′

1–M′
1 and E ′

2–M′
2 pair factorizations,

respectively. Then we have the following results.

1. C × D has an E ′–M′ pair factorization with M′ = M′
1 × M′

2 and E ′ = {((e1,

e2), (e′
1, e′

2))|(e1, e′
1) ∈ E ′

1, (e2, e′
2) ∈ E ′

2}. If the E ′
1–M′

1 and E ′
2–M′

2 pair factoriza-
tions are strong, so is the E ′–M′ pair factorization.

2. C\X has an E ′
1–M′

1 pair factorization, where strongness is preserved.
3. If M′

1 is a class of monomorphisms then X\C has an E ′
1–M′

1 pair factorization,
where strongness is preserved.

4. If G(M′
2) ⊆ Isos, then ComCat(F, G;I) has an E ′–M′ pair factorization (with

E ′, M′ as in the product category), where strongness is preserved.
5. If E ′

1–M′
1 is a strong pair factorization in C, then [X, C] has a strong E ′ f unct

1 –
M′ f unct

1 pair factorization, where M′ f unct
1 is the class of M′

1-natural transforma-
tions and (e, e′) ∈ E ′ f unct

1 iff (e(x), e′(x)) ∈ E ′
1 for all x ∈ X.

Proof

1. Since C × D ∼= ComCat(!C : C → 1, !D : D → 1, ∅) and !D(M′
2) ⊆ {id1} = Isos

this follows from item 4. For morphisms f = ( f1, f2) and g = (g1, g2) in C × D
we construct the componentwise pair factorizations ((e1, e′

1), m1) of f1, g1 with
(e1, e′

1) ∈ E ′
1 and m1 ∈ M′

1 and ((e2, e′
2), m2) of f2, g2 with (e2, e′

2) ∈ E ′
2 and m2 ∈

M′
2. This leads to morphisms e = (e1, e2), e′ = (e′

1, e′
2) and m = (m1, m2) in C × D

and an E ′–M′ pair factorization with (e, e′) ∈ E ′ and m ∈ M. If the E ′
1–M′

1
and the E ′

2–M′
2 pair factorizations are strong, then also E ′–M′ is a strong pair

factorization.
2. Since C\X ∼= ComCat(idC : C → C, X : 1 → C, {1}) and X(M′

2) ⊆ X({id1}) =
{idX} ⊆ Isos this follows from item 4. Given morphisms f and g in C\X, an
E ′

1–M′
1 pair factorization of f and g in C is also an E ′

1–M′
1 of f and g in C\X. If

the E ′
1–M′

1 pair factorization is strong in C, this is also true for C\X.
3. Given morphisms f : (A, a′) → (C, c′) and g : (B, b ′) → (C, c′) in X\C, we have

an E ′
1 − M′

1 pair factorization ((e, e′), m) of f and g in C. This is also a pair
factorization in X\C if e ◦ a′ = e′ ◦ b ′, because then (K, e ◦ a′) and (K, e′ ◦ b ′) is
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the same object in X\C. If m is a monomorphism, this follows from m ◦ e ◦ a′ =
f ◦ a′ = c′ = g ◦ b ′ = m ◦ e′ ◦ b ′.

X

A

B

K C
a′

b ′

e

e′
m

f

g

To show that strongness is preserved, we have to show the E ′
1–M′

1 diagonal
property in X\C. Since it holds in C, given (e, e′) ∈ E ′

1 ∩ X\C, m ∈ M′
1 ∩ X\C

and morphisms a, b , n in X\C with n ◦ e = m ◦ a and n ◦ e′ = m ◦ b we get an
induced unique d : K → L with d ◦ e = a, d ◦ e′ = b and m ◦ d = n. It remains to
show that d is a valid morphism in X\C.

(A, a′)

(B, b ′) (K, k′)

(L, l′) (C, c′)

e

e′
a

b n

m

d

Since m ◦ d ◦ k′ = n ◦ k′ = c′ = m ◦ l′ and m is a monomorphisms it follows that
d ◦ k′ = l′ and thus d ∈ X\C.

4. Given objects A = (A1, A2, opA
i ), B = (B1, B2, opB

i ), C = (C1, C2, opC
i ) and

morphisms f = ( f1, f2) : A → C, g = (g1, g2) : B → C in ComCat(F, G;I), we
have an E ′

1-M′
1 pair factorization ((e1, e′

1), m1) of f1, g1 with m1 : K1 → C1 in C
and an E ′

2-M′
2 pair factorization ((e2, e′

2), m2) of f2, g2 with m2 : K2 → C2 in D.
If G(m2) is an isomorphism, we have an object K = (K1, K2, opK

i = G(m2)
−1◦

opC
i ◦ F(m1)) in ComCat(F, G;I). By definition, m = (m1, m2) : K → C is a

morphism in ComCat(F, G;I). For e = (e1, e2) we have opK
i ◦ F(e1) =

G(m2)
−1 ◦ opC

i x ◦ F(m1) ◦ F(e1) = G(m2)
−1 ◦ opC

i ◦ F( f1) = G(m2)
−1 ◦ G( f2) ◦

opA
i = G(e2) ◦ opA

i and an analogous result for e′ = (e′
1, e′

2), therefore e and e′
are morphisms in ComCat(F, G;I). This means, ((e, e′), m) is an E ′-M′ pair
factorization in ComCat(F, G;I).

F(A1)

F(B1)

F(K1) F(C1)

G(A2)

G(B2)

G(K2) G(C2)

F(e1)

F(e′
1)

F( f1)

F(g1)

F(m1)

G(e2)

G(e′
2)

G( f2)

G(m2)

G(g2)

opA
i

opB
i

opC
iopK

i =G(m2)−1◦opC
i ◦F(m1)
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To show the E ′–M′ diagonal property, we consider (e, e′) = ((e1, e2), (e′
1, e′

2)) ∈
E ′, m = (m1, m2) ∈ M′ and morphisms a = (a1, a2), b = (b 1, b 2), n = (n1, n2) in
ComCat(F, G;I).

(A1, A2, opA
i )

(B1, B2, opB
i ) (K1, K2, opK

i )

(L1, L2, opL
i ) (C1, C2, opC

i )

(e1,e2)

(e′
1,e′

2)
(a1,a2)

(b1,b2) (n1,n2)

(m1,m2)

(d1,d2)

Since (e1, e′
1) ∈ E ′

1 and m1 ∈ M′
1, we get a uniqe morphism d1 : K1 → L1 in

C with m1 ◦ d1 = n1, d1 ◦ e1 = a1 and d1 ◦ e′
1 = b 1. Analogously, the E ′

2–M′
2

diagonal property implies a unique d2 : K2 → L2 with m2 ◦ d2 = n2, d2 ◦ e2 = a2

and d2 ◦ e′
2 = b 2.

It remains to show that d = (d1, d2) ∈ ComCat(F, G;I), i.e. the compatibil-
ity with the operations. We have for all i ∈ I G(m2) ◦ opL

i ◦ F(d1) = opC
i ◦

F(m1) ◦ F(d1) = opC
i ◦ F(n1) = G(n2) ◦ opK

i = G(m2) ◦ G(d2) ◦ opK
i , and since

G(m2) is an isomorphism it follows that opL
i ◦ F(d1) = G(d2) ◦ opK

i , i.e. d ∈
ComCat(F, G;I).

F(K1) G(K2)

F(L1) G(L2)

F(C1) G(C2)

opK
i

opL
i

opC
i

F(d1)

F(m1)

F(n1)

G(d2)

G(m2)

G(n2)

5. Given morphisms f = ( f (x))x∈X and g = (g(x))x∈X in [X, C], we have an E ′
1–M′

1
pair factorization ((ex, e′

x), mx) with mx : Kx → C(x) of f (x), g(x) in C for all x ∈
X. We have to show that K(x) = Kx can be extended to a functor and that e =
(ex)x∈X, e′ = (e′

x)x∈X and m = (mx)x∈X are natural transformations.
For a morphism h : x → y in X, we use the E ′

1–M′
1 diagonal property in C and

(ex, e′
x) ∈ E ′

1, my ∈ M′
1 to define Kh : Kx → Ky as the unique induced morphism

with my ◦ Kh = C(h) ◦ mx, Kh ◦ ex = ey ◦ A(h) and Kh ◦ e′
x = e′

y ◦ B(h).
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A(x)

B(x)

Kx C(x)

A(y)

B(y)

Ky C(y)

ex

e′
x

f (x)

g(x)

mx

ey

e′
y

f (y)

my

g(y)

A(h)

B(h)

C(h)Kh

Using the uniqueness property of the strong pair factorization in C, we can show
that K with K(x) = Kx, K(h) = Kh is a functor and by construction e, e′ and m
are natural transformations. This means (e, e′) ∈ E ′ f unct

1 and m ∈ M′ f unct
1 , i.e. this

is an E ′ f unct
1 –M′ f unct

1 pair factorization of f and g.
The E ′ f unct

1 –M′ f unct
1 diagonal property can be shown as follows. Given (e, e′) ∈

E ′ f unct
1 , m ∈ M′ f unct

1 and morphisms a, b , n in [X, C], from the E ′
1–M′

1 diagonal
property in C we obtain a unique morphism dx : K(x) → L(x) for x ∈ X. It
remains to show that d = (dx)x∈X is a natural transformation, i.e. we have to show
for all h : x → y ∈ X that L(h) ◦ dx = dy ◦ K(h).

A(x)

B(x) K(x)

L(x) C(x)

e(x)

e′(x)

a(x)

b(x) n(x)

m(x)

dx

A(y)

B(y) K(y)

L(y) C(y)

e(y)

e′(y)a(y)

b(y) n(y)

m(y)

dy

A(h)

B(h) K(h)

L(h) C(h)

Consider the following diagram, where because of (e(x), e′(x)) ∈ E ′
1 and m(y) ∈

M′
1 the E ′

1–M′
1 diagonal property can be applied. This means there is a unique

k : K(x) → L(y) with k ◦ e(x) = L(h) ◦ a(x), k ◦ e′(x) = L(h) ◦ b(x) and m(y) ◦
k = n(y) ◦ K(h).

A(x)

B(x) K(x)

L(y) C(y)

e(x)

e′(x)

L(h)◦a(x)

L(h)◦b(x) n(y)◦K(h)

m(y)

k
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For L(h) ◦ dx we have: L(h) ◦ dx ◦ e(x) = L(h) ◦ a(x), L(h) ◦ dx ◦ e′(x) = L(h) ◦
b(x) and m(y) ◦ L(h) ◦ dx = C(h) ◦ m(x) ◦ dx = C(h) ◦ n(x) = n(y) ◦ K(h).
For dy ◦ K(h) we have: dy ◦ K(h) ◦ e(x) = dy ◦ e(y) ◦ A(h) = a(y) ◦ A(h) =
L(h) ◦ a(x), dy ◦ K(h) ◦ e′(x) = dy ◦ e′(y) ◦ B(h) = b(y) ◦ B(h) = L(h) ◦ b(x)

and m(y) ◦ dy ◦ K(h) = n(y) ◦ K(h). Thus, from the uniqueness of k it follows
that k = L(h) ◦ dy = dy ◦ K(h) and d is a natural transformation. 	


Example 9

1. In Graphs × Graphs, the strong E ′–M′ pair factorization is constructed compo-
nentwise in Graphs (see item 5).

2. The category GraphsTG inherits the strong E ′–M′ pair factorization from
Graphs.

3. The category PSets ∼= {1}\Sets inherits the strong E ′–M′ pair factorization from
Sets, where M′ is the class of all injective morphisms and E ′ is the class of jointly
surjective morphisms.

4. The constructions in product and slice categories are examples for the construc-
tion of an E ′–M′ pair factorization in comma categories; hence we can reuse the
examples in items 1 and 2.

5. The category Graphs inherits the strong E ′–M′ pair factorization from Sets in
Example 8. It is constructed componentwise on the node and edge sets.

4 Conclusion and Future Work

The algebraic theory of graph transformations [5, 7] has been generalized recently
to the framework of adhesive high-level replacement systems, which are based on
adhesive [11, 12] and adhesive high-level replacement categories [3, 6]. It has been
shown already that this kind of categories is closed under product, slice, coslice,
comma and functor category constructions. The main contribution of this paper is to
show under which conditions additional properties like initial pushouts, coproducts
and pair factorizations, needed in the theory of adhesive high-level replacement sys-
tems, are preserved under these constructions. This avoids to check these properties
explicitly for all the instantiations of adhesive high-level replacement categories.

The most important new results are the construction of initial pushouts in functor
and comma categories, because in general initial pushouts cannot be constructed
componentwise. Moreover pair factorizations, introduced in [3, 6] as modifications of
E–M factorizations, are in general not preserved by functor category constructions.
For this reason we have introduced the new notion of a strong pair factorization,
which requires in addition a diagonal property similar to that of E–M factorizations.
This allows to show that strong pair factorizations are preserved by all the category
constructions including functor categories.

Concerning future work it remains to relax some of the conditions under which
the additional properties are preserved. Moreover, it is interesting to analyze how to
construct pushout complements in adhesive high-level replacement categories, where
a characterization for the existence of pushout complements using initial pushouts is
given already in [3].
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