
Integration of Categorical Frameworks:

Rule-Based Refinement and Hierarchical Composition for

Components

Julia Padberg
Technische Universität Berlin

Fakultät IV – Informatik und Elektrotechnik
Franklinstr. 28-29

D-10587 Berlin padberg@cs.tu-berlin.de

September 10, 2007

Abstract

The integration of two important categorical frameworks – namely adhesive High-Level Re-
placement (HLR) systems and the generic component concept – yields a categorical approach
to component transformation and refinement. The generic component concept is shown to
be an adhesive HLR category, so rules and transformations as well as the corresponding re-
sults are available. Moreover, the compatibility with the hierarchical component composition
is provided. The extension to rule-based refinement requires additional property-preserving
morphisms and yields property-preserving rules and transformations, i.e. refinements where
compatibility with the hierarchical component composition again is achieved.

The categorical framework is instantiated to typed algebraic high-level (AHL) nets and
illustrated with an example of AHL net components.

1 Introduction

Categorical frameworks play an important role in theoretical computer science as efficient means
for generalizing and transferring results as well as an abstract level for reasoning about basic
concepts. Well-known categorical frameworks are specification frames and institutions as a gener-
alization of abstract data types and logics, high-level replacement systems as a generalization of
the algebraic approach to graph transformations, Cartesian closed categories as an generalization
of functional programming languages, parameterised net classes as a generalization for high-level
Petri nets and others. These frameworks enjoy the following advantages of category theory:

• Categorical frameworks enable an effective way for proving results, as the main proofs are
given at the abstract level and then the instantiations yield a large amount of results for
very little proving effort.

• Moreover, categorical frameworks help separating the levels of abstraction. In this paper
we can distinguish three levels of abstraction: At the lowest level there are concrete spec-
ifications, namely the algebraic high-level nets in the example. At the next level there are
specification formalisms, e.g. the algebraic high-level net formalism, automata theory, the
double pushout approach to graph transformations. This is the level of the instantiations. At
the most abstract level there are the abstract theories (or meta-theories) that assume certain
categorical properties, but do not fix the formalism, e.g. high-level replacement systems, the
generic component concept or the formal component technique.



• Category theory has been the basis for the integration of the generic component concept and
adhesive high-level replacement systems in this paper. It is the mathematical basis for the
uniform description of a component technique for many different specification techniques,
since it allows the formulation of basic concepts independently of a specific formalism.

The generic component concept for system modeling [EOB+04, EBK+05, PE05] has been first
introduced in [EOB+02] at a semi-formal level. Its categorical formulation can be found in [PE05]
where pushouts characterize the main construction. The motivation is to describe components in-
dependently of a specific specification technique. The main concepts are a self-contained semantics
and the composition of components based on a generic transformation concept. There have been
quite different formal and semi-formal specification techniques used within this framework, such
as process algebras, UML, automata, various types of graph transformations as well as various
types of Petri nets.

Adhesive high-level replacements (HLR) systems [EEPT06] are an abstract theory for the
transformation of objects of an arbitrary category in the style of the double pushout approach
to graph transformations [CMR+97]. Basically the replacement is carried out in an arbitrary
category and not in the category of graphs. The main characteristic is that rules are given as a
span of morphisms and transformations as two pushouts in the chosen category. The theory of
HLR systems has been developed as an abstract framework for various types of graphs, as hyper-
graphs, attributed and typed graphs, structures, algebraic specifications, various Petri net classes,
elementary nets, place/transition nets, Colored Petri nets, or algebraic high-level nets, and more
(see [EHKP91, EEPT06]).

One important result of this paper is the integration of both theories and new results for com-
patibility of hierarchical composition and transformation. In order to achieve transformations of
components we have to make the approach in [PE05] more concrete, by relating the morphism
classes used for adhesive HLR systems and generic components leading to an adhesive HLR frame-
work for generic components. This leads to the main technical result that generic components form
a weak adhesive HLR system. Hence there are rules, transformations as well as suitable notions
for independence and then varied theorems hold: the Church-Rosser Theorem, the Parallelism
Theorem and the Concurrency Theorem. These concern the sequential, parallel or concurrent
application of rules. The transformation of components allows the change of a component by
changing its interfaces and/or its body specification. The integration of the framework for generic
components with adhesive HLR systems yields a solid formal foundation for the transformation
of generic components. Once adhesive HLR system have been instantiated with generic compo-
nents new questions of compatibility arise. The compatibility of component transformation with
component composition ensures the consistent development of components.

Rule-based refinement transforms specifications using rules so that specific system properties
are preserved Since the specification describes some desired system properties these need to be
guaranteed after each development step. Verification of each intermediate step requires a lot of
effort and hence is cost intensive. Preservation of system properties by a transformation is to
be understood in the following way: If a specification has a certain system property then the
transformed specification has the corresponding property as well. Rule-based refinement is an
extension of transformations with an additional refinement morphism (see [Pad99]) that preserves
specific properties in the underlying specification category. These morphisms are combined with
rules and transformations so that those preserve the properties as well. So, each part of the com-
ponent, import, export and body can be refined by applying rules that preserve properties. Again
we obtain the compatibility result that allows the stepwise preservation of desirable component
properties.

The application of the gained results in software engineering yields a formal component tech-
nique for component based software development. Software components are a useful and widely
accepted abstraction mechanism during the entire software life cycle from analysis to maintenance.
They need to be backed by thorough formal concepts and modeling techniques, because the high
complexity of component-based systems often impedes its consistency. The high complexity is
caused mainly by the non-deterministic and concurrent interaction of components. These also

2



lead to strong dependencies between a component and its environment. This is one main obstacle
for the adaption of component-based systems to changing environments. So, a formal component
technique as proposed in this paper, consisting of the component description, semantics, composi-
tion operations and refinement concepts, is required for the formal foundation of component-based
engineering. To illustrate this categorical framework we instantiate it with algebraic high-level
nets – a variant of high-level Petri nets with arc inscriptions and data token based on an algebraic
specification.

Parts of this paper can be found in [Pad05a], where we only sketch the results and where the
proofs have been omitted. Here we provide additional results concerning rule-based refinement.
We investigate algebraic high-level nets as an example instantiation, whereas in [Pad05a] the
instantiations are outlined for place/transition nets and deterministic input automata.

2 Categorical Frameworks in Computer Science

Now we review the both frameworks, namely Adhesive HLR Systems and the Transformation-
Based Framework for Generic Components.

2.1 Summary of Adhesive HLR Systems

High-Level replacement (HLR) systems have been introduced in [EHKP91] as a generalization
of the double pushout approach to graph transformations. Basically the replacement is carried
out in an arbitrary category and not in the category of graphs. The basic notions remain more
or less the same, but the notions of rules and transformations need an additional subclass M of
monomorphisms.

Definition 2.1 (Rules and transformations)
A rule is given by r = (L ← K → R) where L and R are
the left and right hand side objects, K is an intermediate
object1, and the morphisms K → L and K → R belong to
M a subclass of monomorphisms. Given a rule r and a
context object C2 we use morphisms K → L,K → R and
K → C2 to express a transformation step as the pushout
constructions (1) and (2) leading to a double pushout as
depicted adjacently.

L

��
(1)

K

��

//oo

(2)

R

��
C1 C2

//oo C3

An application of a rule is called a transformation step and describes the change of an object C1 to
an object C3 by applying that rule. A sequence of these rule applications yields a transformation.

The theory of HLR systems has been developed as an abstract framework for different types of
graph and Petri net transformation systems. HLR systems are instantiated with various types of
graphs, as hyper-graphs, attributed and typed graphs, structures, algebraic specifications, various
Petri net classes, elementary nets, place/transition nets, Colored Petri nets, or algebraic high-level
nets, and more (see [EHKP91] and [EEPT06]). Adhesive categories have been introduced in [LS04]
and have been combined with HLR categories and systems in [EHPP04] leading to the new concept
of (weak) adhesive HLR categories and systems. The main reason why adhesive categories are
important for the theory of graph transformation and its generalization to high-level replacement
systems is the fact that most of the HLR conditions required in [EHKP91] are shown to be already
valid in adhesive categories (see [LS04]). The fundamental construct for (weak) adhesive (HLR)
categories and systems are (weak) van Kampen squares.

Definition 2.2 (Weak van Kampen square) Given a class of monomorphisms M, then a
pushout (1) with m ∈M is a weak van Kampen (VK) square

3



if for any commutative cube (2) with

• (1) in the bottom

• f ∈M or b, c, d ∈M and

• the back faces being pullbacks

the following holds:

A m //

f

��

B

g

��

(1)

C n // D

the top is pushout ⇔ the front faces are pullbacks.

A′

a

��

f ′jjjjj

uujjjjj m′
MM

&&MM
(2)

C ′

c

��

n′
MM

&&MM
B′

b

��

g′jj

ttjjjjjjjj

D′

d

��

A

fiiiiiiii

ttii
m

NNN

''NNN
C

n
NNN

&&NNN
B

giiiiii

ttiiiii
D

(Weak) adhesive HLR systems [EEPT06] can be considered as abstract graph transformation
systems in the double pushout approach based on adhesive or weak adhesive HLR categories.

Definition 2.3 (Weak adhesive HLR category and system) A category Cat with a mor-
phism class M is called weak adhesive HLR category (Cat,M), if

1. M is a class of monomorphisms closed under isomorphisms and closed under composition
(f : A→ B ∈M, g : B → C ∈M ⇒ g ◦ f ∈M) and decomposition (g ◦ f ∈M, g ∈M ⇒
f ∈M),

2. Cat has pushouts and pullbacks along M-morphisms and M-morphisms are closed under
pushouts and pullbacks,

3. pushouts in Cat along M-morphisms are weak VK squares; see Definition 2.2.

An adhesive HLR system AHS = (Cat,M, P ) consists of an adhesive HLR category (Cat,M)
and a set of rules P .

2.2 Summary of the Transformation-Based Framework
for Generic Components

We now present basic ideas concerning the generic concept of components in a categorical frame.
In this framework a component consists of an import interface, an export interface and the body.
The import states the prerequisites the component assumes. The body represents the internal
functionality. The export gives an abstraction of the body that can be used by the environment.
In [PE05] we presented a categorical formalization of the concepts of the generic framework using
specific kinds of pushout properties which we use subsequently.

Definition 2.4 (Generic framework T for components) A generic framework for components
T = (Cat, I, E) consists of an arbitrary category Cat and two classes of morphisms I, called
import morphisms and E, called export morphisms that are both closed under composition and
isomorphisms.
Moreover, they satisfy the following extension conditions:

1. E-I-Pushout Condition:
Given the morphisms A

e→ B with e ∈ E and A
i−→ C with i ∈ I, then

there exists the pushout D in Cat with morphisms B
i′−→ D and C

e′

→ D
as depicted adjacently.

2. E and I are stable under pushouts:
Given a E-I-pushout as (1) above, then we have i′ ∈ I and e′ ∈ E as
well.

A

i

��

e //

(1)

B

i′

��
C

e′
// D

Accordingly, we have to require for a component that the import and export connections belong
to the corresponding class of morphisms.

4



Definition 2.5 (Component) A component C = (IMP,EXP,BOD, imp, exp) is given by ob-
jects IMP,EXP , and BOD in Cat and by the export morphism exp : EXP → BOD and the
import morphism imp : IMP → BOD with exp ∈ E and imp ∈ I.

Subsequently, hierarchical composition of components C1 and C2 is introduced. It takes a con-
nection h : IMP1 → EXP2 from the import interface IMP1 of C1 to the export interface EXP2

of C2. It is defined as follows.

Definition 2.6 (Hierarchical composition) Given components Ci = (IMPi, EXPi, BODi, impi, expi)
for i ∈ {1, 2} and a morphism h : IMP1 → EXP2 in E the composition C3 of the components C1

and C2 via h is defined by C3 = (IMP3, EXP3, BOD3, imp3, exp3) with imp3 = imp′1 ◦ imp2 and
exp3 = h′ ◦ exp1 as depicted below, where (1) is a pushout diagram in the category Cat.

EXP3 = EXP1

exp1

��

exp3

~~

IMP1
imp1 //

h

��
(1)

BOD1

h′

��

EXP2

exp2

��
IMP3 = IMP2

imp2 //

imp3

66BOD2

imp′
1 // BOD3

The hierarchical composition is denoted by C3 = C1 ◦h C2.

3 Integration of Adhesive HLR Systems
with the Transformation-Based Framework

for Generic Components

In this section we integrate the two categorical frameworks. The benefit of this integration is the
transfer of notions and results concerning rules and transformations to components. Basically,
the transformations are carried out in each part of the component. For each – the export, the
import and the body – there is a transformation in the underlying specification category. The
specification category has to be weak adhesive HLR category.

As the definition of components involves the different classes of morphisms I and E these need
to be taken into consideration as well as the class of monomorphisms M of the adhesive HLR
category. We first investigate the properties of component categories in regard of the involved
morphism classes. So, the difficulty to establish transformations for components directly depends
on the chosen class of refinement morphisms. Therefore we extend the approach in [PE05] by
relating the morphism classes used for the transformations and the components. This leads to the
adhesive HLR framework for generic components.

Definition 3.1 (Adhesive HLR framework for generic components) The adhesive HLR frame-
work for generic components A = (Catp,Catr,M) is given by:

1. Catp the category of specifications with plain morphisms.

2. Catr the category of specifications with refinement morphisms includes the category Catp
with the functor Inc : Catp → Catr being an inclusion in the sense that ObjCatp = ObjCatr .

3. (Catp,M) is a weak adhesive HLR category.

5



4. Catr has pushouts if at least one of the given morphisms is in Inc(MorCatp) and Inc(MorCatp)
is stable under pushouts.

5. The inclusion functor Inc : Catp → Catr preserves pushouts if at least one of the given
morphisms is in M.

6. The inclusion functor Inc : Catp → Catr preserves pullbacks if at least one of the given
morphisms is in M.

First we relate the adhesive HLR framework for generic components (Catp,Catr,M) to the
generic framework given in Definition 2.4. We choose the import morphisms to be plain morphisms,
i.e. I = Inc(MorCatp), and the export morphisms to be refinement morphisms, i.e. E = MorCatr .

Fact 3.2 (Relation of frameworks) For an adhesive HLR framework for generic components
(Catp,Catr,M) there is the framework for generic components T = (Catr, Inc(MorCatp),MorCatr).

Proof due to item 4 of Definition 3.1.
Subsequently, we show that the category of components Comp is a weak adhesive HLR category,
provided that the underlying category of specifications with plain morphisms is a weak adhesive
HLR category as well. We can define the category of components Comp, where we use plain
morphisms at the specification level for the definition of component morphisms. These additionally
have to be compatible with the corresponding import and export morphisms.

Definition 3.3 (Component category) Component morphisms are defined by f : C1 → C2

with f = (fI , fE , fB) s.t.fI : IMP1 → IMP2

fE : EXP1 → EXP2

fB : BOD1 → BOD2 so that

1. fB ◦ imp1 = imp2 ◦ fI

2. fB ◦ exp1 = exp2 ◦ fE

Components and component morphisms constitute Comp the category of components for fI , fE , fB ∈
Mor(Catp) and Compr for fI , fE , fB ∈Mor(Catr).

Theorem 3.4 ((Comp,M) is a weak adhesive HLR category) An adhesive HLR frame-
work for generic components A = (Catp,Catr,MCatp) in Definition 3.1 yields that (Comp,M)
with M = {f = (fI , fB , fE)|fI , fB , fE ∈MCatp} is a weak adhesive HLR category.

In order to show Theorem 3.4 we first state the subsequent facts.

Fact 3.5 (Pushouts of at least one M-morphism in Comp)

Given the span B
m←− A → C in Comp with A = (IMPA, EXPA, BODA)

(the same for B and C) and the morphism m ∈ M then the pushout B →
D ← C is constructed component-wise in Catp.

A m //

��
(1)

B

��
C // D

Proof:
We have a component-wise construction, so we have the following pushouts in the category Catp:
IMPD = IMPB +IMPA

IMPC , EXPD = EXPB +EXPA
EXPC

and BODD = BODB +BODA
BODC

impD : IMPD → BODD is the induced pushout morphism. We obtain – as Inc preserves
pushouts – the pushout EXPD = EXPB +EXPA

EXPC in Catr and the induced morphism
expD : EXPP → BODD in Catr.
As IMPD and BODD are pushouts in Catp and EXPD is pushout in Catr commutativity and
the universal property are inherited.
Hence we obtain D = (EXPD, IMPD, BODD) as the pushout.

√

6



Fact 3.6 (Pullbacks with at least one M-morphism in Comp)

Given cospan C
m−→ D ← B in Comp with m ∈M the pullback B ← A→ C

is constructed component-wise in Catp.

A //

��

B

��
C m // D

Proof analogously to the proof of Fact 3.5.
Proof of Theorem 3.4:
Given the pushout (1) with m ∈M and the commutative cube (2) in Comp with

• (1) in the bottom

• f ∈M or b, c, d ∈M and

• the back faces being pullbacks

we need to show the VK property in Comp, i.e.
the top is pushout ⇔ the front faces are pullbacks.

A m //

f

��
(1)

B

g

��
C n // D

A′

a

��

f ′jjjjj

ttjjjjj m′
MM

&&MM
C ′

c

��

n′
MM

&&MM
B′

b

��

g′jj

ttjjjjjjjj

(2)
D′

d

��

A

fiiiiiiii

ttii
m

NNN

&&NNN
C

n
NNN

&&NNN
B

gjjjjj

ttjjjjj
D

We have for each part of the component an VK-diagram in Catp, e.g. for the import part we
have:

IMPA′

aI

��

f ′
I
ffffff

ssffffff m′
I

RR
((RR

IMPC′

cI

��

n′
I

RR
((RR

IMPB′

bI

��

g′
I
ff

ssffffffffff

IMPD′

dI

��

IMPA

fI
ffffffffff

ssff
mI

RR
((RR

IMPC
nI

RR
((RR

IMPB
gI

ffffff

ssffffff
IMPD

Part 1: (” ⇒ ”) the top square is a pushout, so we have to show that the front faces are pull-
backs. This means that the components B′ and C ′ with the corresponding morphisms are
pullbacks in Comp:
Since there are the corresponding VK-diagrams in Catp, we have IMPC′ , BODC′ and
EXPC′ are pullbacks in Catp. Hence, we obtain the component IMPC′ → BODC′ ←
EXPC′ . Due to the uniqueness of the induced morphisms we have C ′ = IMPC′ →
BODC′ ← EXPC′ and hence is pullback.

Analogously for B′.

Part 2: (” ⇐ ”) The front faces are pullbacks and we need to show that component D′ with
the corresponding morphisms is pushout in Comp:
As we have the corresponding VK-diagram in Catp, we have IMPD′ , BODD′ and EXPD′

are pushouts in Catp. Hence, we obtain the component IMPD′ → BODD′ ← EXPD′ . Due

7



to the uniqueness of the induced morphisms we have D′ = IMPD′ → BODD′ ← EXPD′

and hence is pushout. √

So, we directly obtain the following essential concepts and results for the transformation of com-
ponents (see [EEPT06]) as the category of components Comp with the distinguished class M is
a weak adhesive HLR category:

Rules and transformations A rule is given by r = (CL ← CK → CR), where CL and CR are
the left and right hand side components, CK is an intermediate component of CL and CR

and the morphisms are in M. Given a rule r = (CL, CK , CR) and a context component
C2, we use morphisms CK → CL,K → CR and CK → C2 to define the transformation
C1 =⇒ C3 using the pushout constructions (1) and (2) as depicted below:

CL

��

CK

��

//oo CR

��
C1 C2

//oo C3

In Definition 4.1 we give these notions more precisely.

Parallelism results (chapter 5 in [EEPT06]) The Church-Rosser Theorem states a local con-
fluence in the sense of formal languages. The required condition of parallel independence
means that the matches of both rules overlap only in parts that are not deleted. Sequential
independence means that those parts created by the first transformation step are neither
necessary nor deleted in the second. The Parallelism Theorem states that sequential or
parallel independent transformations can be carried out either in arbitrary sequential order
or in parallel. In the context of step-by-step development these theorems are important as
they provide conditions for the independent development of different parts or views of the
system.

Concurrency and pair factorization (chapter 5 in [EEPT06]) The Concurrency Theorem
handles general transformations, which may be non-sequentially independent. Roughly spo-
ken, for a sequence there is a concurrent rule that allows the construction of a corresponding
direct transformation.

Embedding and local confluence (chapter 6 in [EEPT06]) Further important results for
transformation systems are the Embedding, Extension and the Local Confluence Theorems.
The first two allow to embed transformations into larger contexts and with the third one we
are able to show local confluence of transformation systems based on the strict confluence
of critical pairs.

Up to now the instantiations of the HLR theory have been specification techniques as varied types
of graph transformations, Petri nets, algebraic specifications, etc. Now we instantiate the HLR
theory with the generic component approach presented in Section 2.2. Hence, new questions of
compatibility emerge. Namely, the question arises whether the component operations are com-
patible with the transformation concept. In the subsequent section we characterize the conditions
under which transformations and hierarchical composition are compatible.

4 Compatibility Results

In this section we deal with the compatibility of hierarchical composition with rules, transforma-
tions and rule-based refinement. Composed rules are constructed by composing two given rules
yielding one rule that combines the effects of both. Compatibility of composition and transfor-
mation (respectively refinements) is given with respect to the composed rule and requires that
the connections for the rule composition are compatible with the connections of the component
composition.

8



Definition 4.1 (Rules and transformations) Based on an adhesive HLR framework for generic
components A = (Catp,Catr,MCatp) in the weak adhesive HLR category (Comp,M) a compo-
nent rule r = (CL ← CK → CR) is defined by the component morphisms CK → CL and CK → CR

both in the class M of monomorphisms.

Given a rule r = (CL ← CK → CR) the application of r yields the transformation step C1
r=⇒ C3

given by the following diagram in Catr:

EXPL

��

��3
33

33
33

33
33

EXPK

��

��4
44

44
44

44
44

//oo EXPR

��

��4
44

44
44

44
44

IMPL
''NNN

��3
33

33
33

33
33

IMPK
''OOO

��4
44

44
44

44
44

//oo IMPR
''NNN

��4
44

44
44

44
44

BODL

��3
33

33
33

33
33

BODK

��4
44

44
44

44
44

//oo BODR

��4
44

44
44

44
44

EXP1

��

EXP2

��

//oo EXP3

��
IMP1

''NNN
IMP2

''OOO
//oo IMP3

''NNN

BOD1 BOD2
//oo BOD3

with the following double pushouts in Catp:

EXPL

��

EXPK

��

//oo EXPR

��
EXP1 EXP2

//oo EXP3

IMPL

��

IMPK

��

//oo IMPR

��
IMP1 IMP2

//oo IMP3

BODL

��

BODK

��

//oo BODR

��
BOD1 BOD2

//oo BOD3

4.1 Compatibility of Hierarchical Composition and Transformations

If two rules change the component’s interfaces and are applied together to the composed compo-
nent, these rules need to composed as well. The following fact states the conditions ensuring that
the composition is well-defined.

Fact 4.2 (Component-wise composition of rules) Given the rules r = (CL ← CK → CR)
and r′ = (C ′

L ← C ′
K → C ′

R) and the morphisms hL : IMPL → EXP ′
L, hK : IMPK → EXP ′

K ,
and hR : IMPR → EXP ′

R so that:

1. IMPK → IMPL
hL→ EXP ′

L = IMPK
hK→ EXP ′

K → EXP ′
L

2. IMPK → IMPR
hR→ EXP ′

R = IMPK
hK→ EXP ′

K → EXP ′
R

as depicted in the following diagram

EXPL

��

EXPK

��

--
mm EXPR

��
IMPL

''OOO

hL

��

IMPK
''OOO

--
mm

hK

��

IMPR
''OOO

hR��
BODL

��

BODK
--

mm

��

BODR

��

EXP ′
L

��

EXP ′
K

��

--
mm EXP ′

R

��
IMP ′

L
&&MMM

IMP ′
K

&&MMM
--

mm IMP ′
R

&&MMM

BOD′
L

&&LLL
BOD′

K
--

mm
&&MMM

BOD′
R

&&MMM

B̂ODL B̂ODK

--
mm B̂ODR

then we can compose component-wise r̂ := r ◦h r′ = (ĈL ← ĈK → ĈR) for h := (hL, hK , hR)
where we have the following components:

9



ĈL := CL ◦hL
C ′

L = (IMP ′
L → B̂ODL ← EXPL),

ĈK := CK ◦hK
C ′

K = (IMP ′
K → B̂ODK ← EXPK), and

ĈR := CR ◦hR
C ′

R = (IMP ′
R → B̂ODR ← EXPR)

Proof due to Condition 4 in Definition 3.1.

We have C1
r=⇒ C3 via the component C2 and C ′

1
r′

=⇒ C ′
3 via the component C ′

2. Now indepen-
dence ensures that applying the composed rule r ◦ r′ to the composed component C1 ◦ C ′

1 indeed

results in the transformation C1 ◦ C ′
1

r◦r′

=⇒ C3 ◦ C ′
3 via the component C2 ◦ C ′

2.
Figure 1 depicts the components as semi-transparent rectangles where the blockkarrows denote
component morphisms.
The underlying diagram in the category Catr is required in Definition 4.3.

Figure 1: Diagram for independence

Definition 4.3 (Independence of transformation and composition) Given the rules r =
(CL ← CK → CR) and r′ = (C ′

L ← C ′
K → C ′

R) with r ◦h r′ for h := (hL, hK , hR) with the
morphisms hL : IMPL → EXP ′

L, hK : IMPK → EXP ′
K , and hR : IMPR → EXP ′

R then the
composition C1 ◦h1 C ′

1 is independent from r and r′ if there is h2 : IMP2 → EXP ′
2 so that:

1. IMP2
h2→ EXP ′

2 → EXP ′
1 = IMP2 → IMP1

h1→ EXP ′
1

2. IMPL → IMP1
h1→ EXP ′

1 = IMPL
hL→ EXP ′

L → EXP ′
1

3. IMPK → IMP2
h2→ EXP ′

2 = IMPK
hK→ EXP ′

K → EXP ′
2

If there are two components and two rules to be applied we can either compose two components
and then use a composed rule to transform the component or we transform the two components
independently and compose the results of the composition.

10



The following theorem states that under independence both ways result in the same component
(up to isomorphism).

Theorem 4.4 (Compatibility Theorem for composition and transformation) Based on an
adhesive HLR framework for generic components A = (Catp,Catr,MCatp) (see Definition 3.1)
we have:

Given the rules r = (CL ← CK → CR) and r′ = (C ′
L ← C ′

K → C ′
R) and

– for h := (hL, hK , hR) with hL : IMPL → EXP ′
L, hK : IMPK → EXP ′

K , hR : IMPR → EXP ′
R

let their composition r ◦h r′ be independent of the composition C1 ◦h1 C ′
1,

then C1
r=⇒ C3 as well as C ′

1
r′

=⇒ C ′
3 and C1 ◦h1 C ′

1
r◦hr′

=⇒ C3 ◦h3 C ′
3.

This is illustrated in the following diagram:

C1
◦h1

r

��

C ′
1

=

r′

��

Ĉ1

r◦hr′

��
C3

◦h3 C ′
3

= Ĉ3

Proof:
First we construct the two transformations C1

r=⇒ C3 and C ′
1

r′

=⇒ C ′
3.

Then we construct the compositions of the corresponding components Ĉi = Ci ◦hi C ′
i for 1 ≤

i ≤ 3: h1 and h2 are given and we compose Ĉ1 = C1 ◦h1 C ′
1 = (IMP ′

1, EXP1, B̂OD1) and
Ĉ2 = C2 ◦h2 C ′

2 = (IMP ′
2, EXP2, B̂OD2).

h3 : IMP3 → EXP ′
3 is obtained as the induced pushout morphism in Catr. So there is the

composition Ĉ3 = C3 ◦h3 C ′
3 = (IMP ′

3, EXP3, B̂OD3).
These compositions are well-defined as we have the corresponding pushouts with IMPi → BODi

in Inc(MorCatp) (due to Condition 4 in Definition 3.1).
Based on this construction it remains to show that (A) and (B) are pushouts in the category
Comp:

ĈL

��
(A)

ĈK

��

oo // ĈR

��
(B)

Ĉ1 Ĉ2
oo // Ĉ3

B̂ODL

��
(A′)

B̂ODK

��

oo // B̂ODR

��
(B′)

B̂OD1 B̂OD2
oo // B̂OD3

As we have the transformations C1
r=⇒ C3 and C ′

1
r′

=⇒ C ′
3 we already have the corresponding

pushouts for the export and import part. In the category Catr we have to show the corresponding
pushouts for the body part, that is the pushouts A′ and B′:
We construct B̂ODL → B̂OD1 as the induced pushout morphism.
Next we show that the square (A′) is a pushout:
Commutativity of (A′) we obtain using the uniqueness of the induced pushout morphism of the
pushout B̂ODK in Catr.

To show the universal property of the square A′ we assume some X ∈ Catr, s.t. B̂ODK →
B̂OD2 → X = B̂ODK → B̂ODL → X. Then we can construct BOD1 → X and BOD′

1 → X
due to the universal property of the pushouts BOD1 and BOD′

1.

11



So we have
IMP1

//

h3

��

BOD1

��

��

EXP ′
1

��
BOD′

1
//

11

B̂OD1

""FFF

X

Now we use the pushout B̂OD1 to obtain B̂OD1 → X.
Again we use the uniqueness property of induced pushout
morphisms to show that IMP1 → BOD1 → X

= IMP1 → BOD′
1 →→ X.

We obtain the unique B̂OD1 → X with respect to
BOD′

1 → B̂OD1 → X = BOD′
1 → X and BOD1 →

B̂OD1 → X = BOD1 → X.
The universal property of B̂ODL leads to B̂ODL →
B̂OD1 → X = B̂ODL → X and the universal property
of B̂OD2 leads to B̂OD2 → B̂OD1 → X = B̂OD2 → X.
Uniqueness of B̂OD1 → X is due to its construction.

Hence, we have the pushout (A′) and the pushout (B′) is constructed analogously.

We conclude: Ĉ1 = C1 ◦h1 C ′
1

r◦hr′

=⇒ C3 ◦h3 C ′
3 = Ĉ3

√

4.2 Compatibility of Hierarchical Composition
and Rule-Based Refinement

Preservation of system properties is of high interest in many applications as it allows omitting the
tedious verification of system properties at different stages of the development. In [Pad99] a notion
of refinement motivated by refinement concepts from Petri nets was introduced to the theory of
high-level replacement systems. The refinement in high-level replacement is given by a morphism
of a suitable category, relating the left with the right hand side of a rewriting rule. This category
allows morphisms that are more complex than those given in the underlying HLR category. We
require that this category includes the HLR category. On the one hand this allows the construction
of transformations and on the other hand this allows the description of the refinement relation
between the original and the refined parts.

Definition 4.5 (Adhesive HLR framework for rule-based component refinement) The ad-
hesive HLR framework for rule-based component refinement R = (Catp,Catr,M,Q) is given by

1. Catp the category of specifications with plain morphisms.

2. Catr the category of specifications with refinement morphisms includes the category Catp
as the functor Inc : Catp → Catr is an inclusion in the sense that ObjCatp = ObjCatr .

3. (Catp,M) is a weak adhesive HLR category.

4. Catr has pushouts if at least one of the given morphisms is in Inc(MorCatp).

5. The inclusion functor Inc : Catp → Catr preserves pushouts if at least one of the given
morphisms is in M.

6. The inclusion functor Inc : Catp → Catr preserves pullbacks if at least one of the given
morphisms is in M.

7. Q is a class of morphisms in Catr that is closed under composition and isomorphisms.

8. The class Q in Catr is stable under pushouts and is closed under the construction of
coproducts.

The additional conditions have been introduced as Q-Transformations in [Pad99]. The compatibil-
ity results that are already achieved for transformations are now extended to rule-based refinement.
Thus, the theory of high-level replacement systems is expanded in a consistent way.

12



Definition 4.6 (Q-morphisms, Q-rule and Q-transformations for components) A Q-morphism
q : CL → CR is in Compr with qI , qE , qB ∈ Q.
A Q-rule (r, q) is given by a rule r = CL ← CK → CR in Comp and a Q-morphism q : CL → CR,
so that CK → CL

q−→ CR = CK → CR in Compr.
Given a Q-rule (r, q) and a transformation C1

r=⇒ C3 defined by the pushouts (1) and (2) in

Comp, there is a unique Q-morphism q = (q
I
, q

E
, q

B
), such that C2 → C1

q
−→ C3 = C2 → C3

and CR → C3

q
←− C1 is pushout of C1 ← CL

q−→ CR in Compr.

The transformation C1
(r,q)
=⇒ C3 is called Q-transformation:

CL

q

((

��
(1)

CK
oo //

��
(2)

CR

��
C1

q

66C2
oo // C3

The existence of the pushout and the Q-morphism q is a direct consequence of the conditions 7
and 8 in Definition 4.5.
In an instantiation where Q represents a class of property-preserving morphisms we obtain proof
rules that allow the derivation of desired properties. The morphism q : CL → CR is a property-
preserving morphism in some instantiation, provided it preserves theses properties in the body
and the interfaces. Then we call (r, q) a property-preserving rule.
We directly have the extension of rules and transformations with additional morphisms, that pre-
serve properties of the body and the interfaces of a component. So, each part of the component,
import, export and body can be refined by applying property-preserving rules.
Proof rules are then obtained that allow the stepwise preservation of desirable component prop-
erties. The proof rule states that given certain assumptions (stated above the line) the property

(stated under the line) holds. For the property-preserving transformations C1
(r,q)
=⇒ C3 and a

property-preserving rule (r, q) we have the following proof rule:

(r, q) is a property-preserving rule; C1 satisfies the corresponding property

C3 satisfies this property, too

See Fact 5.4 for an example in case of the instantiation to algebraic high-level nets.
Moreover, the Compatibility Theorem 4.4 can be achieved forQ-transformations as well. Again, we
first define the hierarchical composition of rules and subsequently the independence of composition
and transformation.

Fact 4.7 (Component-wise composition of Q-rules) Given the Q-rules r = (CL ← CK →
CR, q : CL → CR) with q = (qI , qE , qB) and r′ = (C ′

L ← C ′
K → C ′

R, q′ : C ′
L → C ′

R) with
q′ = (q′I , q

′
E , q′B) for hL : IMPL → EXP ′

L, hK : IMPK → EXP ′
K , and hR : IMPR → EXP ′

R so
that

1. IMPK → IMPL
hL→ EXP ′

L = IMPK
hK→ EXP ′

K → EXP ′
L

2. IMPK → IMPR
hR→ EXP ′

R = IMPK
hK→ EXP ′

K → EXP ′
R

3. IMPL
qI−→ IMPR

hR→ EXP ′
R = IMPL

hL→ EXP ′
L

q′
E−→ EXP ′

R

4. BODL
qB−→ BODR ← IMPR is a pushout of BODL ← IMPL

qI−→ IMPR

13



then we compose component-wise r̂ := (r ◦h r′, q̂) = (ĈL ← ĈK → ĈR, q̂ : ĈL → ĈR)
with the Q-morphism q̂ = (q′I , qE , q̂B)

Proof:
We compose component-wise r̂ := r ◦ r′ = (ĈL ← ĈK → ĈR) where

ĈL := CL ◦hL
C ′

L = (IMP ′
L → B̂ODL ← EXPL),

ĈK := CK ◦hK
C ′

K = (IMP ′
K → B̂ODK ← EXPK), and

ĈR := CR ◦hR
C ′

R = (IMP ′
R → B̂ODR ← EXPR)

We merely need to construct q̂B : B̂ODL → B̂ODR as morphism induced by the pushout BOD′
L →

B̂ODL ← BODL of BOD′
L ← IMPL → BODL.

We compose the pushouts (1) and (2) and decompose the pushout (1 + 2) into pushout (3) and

the commutative square (4). As IMPL
qI−→ IMPR → BOD′

R = IMPL → DOB′
L

q′
B−→ BOD′

R we
have (4) is pushout, and with q′B ∈ Q we have q̂B ∈ Q.

IMPL

��

qI //

(1)

IMPR

��

//

(2)

BOD′
R

��
BODL

qB // BODR
// B̂ODR

IMPL

��

//

(3)

BOD′
L

��

q′
B //

(4)

BOD′
R

��
BODL

// B̂ODL

cqB // B̂ODR √

Next, the notion of independence of rules and composition is adapted for Q-rules.

Definition 4.8 (Independence of rule-based refinement and composition) Given the Q-
rules r = (CL ← CK → CR, q : CL → CR) with q = (qI , qE , qB) and r′ = (C ′

L ← C ′
K → C ′

R, q′ :
C ′

L → C ′
R) with q′ = (q′I , q

′
E , q′B) and their composition r ◦h r′ with q̂ = (q′I , qE , q̂B) for the

connection h = (hL, hK , hR) then we have that the composition C1 ◦h1 C ′
1 is independent from r

and r′ if there is h2 : IMP2 → EXP ′
2 so that:

1. IMP2
h2→ EXP ′

2 → EXP ′
1 = IMP2 → IMP1

h1→ EXP ′
1

2. IMPL → IMP1
h1→ EXP ′

1 = IMPL
hL→ EXP ′

L → EXP ′
1

3. IMPK → IMP2
h2→ EXP ′

2 = IMPK
hK→ EXP ′

K → EXP ′
2.

Theorem 4.9 (Compatibility Theorem for composition and rule-based refinement) For
an adhesive HLR framework for rule-based component refinement R = (Catp,Catr,M,Q) (see
Definition 4.5) we have:

Given the Q-rules r = (CL ← CK → CR, q : CL → CR) with q = (qI , qE , qB) and r′ = (C ′
L ←

C ′
K → C ′

R, q′ : C ′
L → C ′

R) with q′ = (q′I , q
′
E , q′B) and their composition r ◦h r′ with q̂ = (q′I , qE , q̂B)

for the connection h = (hL, hK , hR) so that the composition C1 ◦h1 C ′
1 is independent from r and

r′, then we have C1
(r,q)
=⇒ C3 as well as C ′

1

(r′,q′)
=⇒ C ′

3 and C1 ◦ C ′
1

(r◦hr′,bq)
=⇒ C3 ◦h3 C ′

3.
This is illustrated by the following diagram:

C1
◦h1

(r,q)

��

C ′
1

=

(r′,q′)

��

Ĉ1

(r◦hr′,bq)

��
C3

◦h3 C ′
3

= Ĉ3

Proof:
Analogously to the proof of the Composition Theorem 4.4 we have for the composed as well as for

14



the simple Q-transformations the following double-pushouts:

ĈL

��

bq

%%

(A)

ĈK

��

oo // ĈR

��
(B)

Ĉ1

bq

99Ĉ2
oo // Ĉ3

CL

��

q

%%

(C)

CK

��

oo // CR

��
(D)

C1

q

99C2
oo // C3

C ′
L

��

q′

%%

(E)

C ′
K

��

oo // C ′
R

��
(F)

C ′
1

q′

99C ′
2

oo // C ′
3

with

q̂ = (q′I , qE , q̂B) q = (qI , qE , qB) q′ = (q′I , q
′
E , q′B)

q̂ = (q′
I
, q

E
, q̂

B
) q = (q

I
, q

E
, q

B
) q′ = (q′

I
, q′

E
, q′

B
)

q̂
B

: B̂OD1 → B̂OD3 is given as the induced morphism of the pushout BOD′
1 → B̂OD1 ← BOD1

over BOD′
1 ← IMP1 → BOD1. It remains to show that (A + B) along q̂ and q̂ is a pushout as

well.
At the level of specifications (A + B) is given in the category Catr by:

EXPL

��

qE //

��






























EXPR

��

��		
		

		
		

		
		

		
		

		
	

IMP ′
L

((QQQQQQ
q′

I
//

��






























IMP ′

R

((QQQQQQ

��































B̂ODL
cqB

//

��		
		

		
		

		
		

		
		

		
B̂ODR

��		
		

		
		

		
		

		
		

		

EXP1

��

q
E

// EXP3

��

IMP ′
1

((QQQQQQ
q′

I
// IMP ′

3

((QQQQQQ

B̂OD1
cq
B

// B̂OD3

Due to C1
(r,q)
=⇒ C3 and C ′

1

(r′,q′)
=⇒ C ′

3 we have the following pushouts

EXP1

q
E−→ EXP3 ← EXPR over EXP1 ← EXPL

qE−→ EXPR and
EXP1

q
I−→ EXP3 ← IMPR over IMP1 ← IMPL

qI−→ IMPR.
Pushout decomposition yields that (2) is pushout as well.

B̂ODK

��

//
))

(1)

B̂ODL

��

cqB
//

(2)

B̂ODR

��
B̂OD2

//
55B̂OD1

cq
B

// B̂OD3

So, (A + B) is a pushout and we have C1 ◦h1 C ′
1

(r◦hr′,cqB)
=⇒ C3 ◦h3 C ′

3 with the double pushout
(A,B).

√

5 The Application as a Formal Component Technique

Changing environments - commercial, technical or social - demand software systems that can be
adapted to those changes with reasonable effort. In order to build up large software systems from

15



smaller parts, a flexible component concept for software systems and infrastructures is highly
important (see e.g. [Szy97, MBE+00, GT00]). Component-based systems have been proposed as
an adequate support for that task. Today there is no doubt on the importance of component-based
systems. In [MBE+00] a component concept for continuous software engineering is introduced that
represents the informal basis of the generic approach adopted in this paper. Component-based
software engineering needs to be backed by thorough formal concepts and modeling techniques, so
that the correctness and consistency of the component and the component-based system increase.
Formal specification of the component interface and the component specification allow the precise
modeling and the verification of required functionality. Moreover, the composition of components
can be given formally and both, correctness and consistency can be ensured for the composed
system. The presented formal description is the basis to make explicit the conditions under which
a component can be changed or exchanged.

The compatibility of component transformation with component composition is a key issue of
component transformation as it represents the core question of changing a component in some given
context. The main results concern the conditions for transforming or refining both components
and their interfaces in different ways while keeping the composition of these components intact.
These results are given by the Compatibility Theorems stating that the result of first transforming
respectively refining the two components and the composing them is the same (up to renaming)
as composing the two components first and applying then the composed rule.

As mentioned above the generic component framework including transformation can be applied
to various formal and semi-formal specification techniques. In this paper we concentrate on the
instantiation to algebraic high-level nets.

5.1 Instantiation to Algebraic High-Level Nets

We define algebraic high-level (AHL) nets and different notions of morphisms needed for safety
preservation leading to rules and transformations that are safety preserving.

An algebraic high-level net consists – roughly speaking – of a Petri net with inscriptions of an
algebraic specification SPEC defining the data type part of the net. The pre- and post-domain
of a transition is given by a multi-set of pairs of terms and places. Multi-sets can be considered as
elements of a free commutative monoid. Morphisms between AHL nets are given by morphisms
mapping places to places, transitions to transitions and mapping the data type to another one. In
order to have suitable abstraction between the export and the body of an AHL net component the
morphisms may map the transitions only partially. These are called t-partial AHL net morphisms.

Additionally, we define morphisms preserving safety properties of algebraic high-level nets. To
be able to preserve safety properties (expressed via formulas on markings), we must take care that
no new arcs are added to the context of mapped places by the morphism and no old (mapped)
arcs are deleted from their context. Otherwise new transitions could add or delete tokens on
”old” (mapped) places in an unpredictable way. We therefore call morphisms with these features
place-preserving.

Definition 5.1 (Typed algebraic high-level nets) A typed algebraic high-level net N =
(SPEC, P, T,A, pre, post, type, m̂) consists of an algebraic specification SPEC = (S, OP,X,E),
a set of places P , a set of transitions T and a SPEC algebra A. The two functions pre, post :
T −→ (TOP (X)⊗P )⊕ with TOP (X)⊗P := {(term, p)|term ∈ TOP,type(p) ; p ∈ P} assign to each
t ∈ T an element of the free commutative monoid over the Cartesian product of terms TOP (X)
with variables in X and the set P of places, so that the typing of the place is respected. The
function type : P −→ S assigns to each place its type, that is a sort of the specification, indicating
the sort of the data elements allowed on that place. The function m̂ : P → A⊕

type(p) assigns each
place its marking as a sum of data elements of the corresponding sort.

Given Ni = (SPECi, Pi, Ti, Ai, prei, posti, typei, m̂i) for 1 ≤ i ≤ 2 there are the following mor-
phism classes and categories:

A t-partial AHL net morphism f = (fSPEC , fP , fT , fA) : N1 → N2 is given component-wise

16



by the specification morphism fSPEC : SPEC1 → SPEC2, the function fP : P1 → P2 and
the partial function fT : T1 → T2 and the isomorphism fA : A1

∼−→ VfSP EC
(A2) on the

algebras such that:

• f is persistent: VfSP EC
(TOP2(X2)) ∼= TOP1(X1))

• f is type preserving: fS ◦ type1 = type2 ◦ fP

• f is arc preserving: for all t ∈ dom(FT ) we have
(f#

SPEC × fP ) ◦ pre1(t) ≤ pre2 ◦ fT (t) and
(f#

SPEC × fP ) ◦ post1(t) ≤ post2 ◦ fT (t)
where f#

SPEC is the extension of fSPEC to terms and (f#
SPEC × fA) is a generalised

homomorphisms (see [EBO92]).

• f is marking strict: (f#
SPEC × fA) ◦ m̂1 = m̂2 ◦ fP

AHL nets and t-partial morphisms comprise the category AHLtp.

A plain AHL net morphism is a t-partial AHL net morphism such that additionally:

• fT is a total mapping

• f is transition preserving: (f#
SPEC × fP ) ◦ pre1 = pre2 ◦ fT

AHL nets and plain morphisms comprise the category AHLp.

A place-preserving AHL net morphism is a t-partial AHL net morphism such that addi-
tionally:

• fT is a total mapping

• f is place-preserving:
•(fP (p)) = (fSPEC × fT )⊕(•p) and
(fP (p))• = (fSPEC × fT )⊕(p•) for all p ∈ P1

where the pre and post sets are defined as

•p =
∑
t∈T

post(t)(p) · t ∈ (TOP × T )⊕ and

p• =
∑
t∈T

pre(t)(p) · t ∈ (TOP × T )⊕

• fT , fP and fSPEC are injective.

The class of all place-preserving morphisms is denoted by Qpp.

t-partial morphisms represent the abstraction of the component’s body as given in its export
interface. Place-preserving morphisms preserve safety properties (see Fact 5.4) and are hence used
for the refinement along transformations.

Fact 5.2 (AHL nets as an adhesive HLR framework for rule-based component refinement)
AHL nets give rise to the following adhesive HLR framework for rule-based component refinement
(see Definition 4.5) RAHL = (AHLp,AHLtp,MAHL,Qpp) as the following facts hold:

1. AHLp is the category of AHL nets with plain morphisms.

2. AHLtp is the category of AHL nets with t-partial morphisms and includes the category Catp
as the functor Inc : Catp → Catr is an inclusion in the sense that ObjAHLp = ObjAHLtp .

3. (AHLp,MAHL) is a weak adhesive HLR category with MAHL the class of plain strict,
injective morphisms.

17



4. AHLtp has pushouts if at least one of the given morphisms is in Inc(MorAHLp) and Inc(MorAHLp)
is stable under pushouts.

5. The inclusion functor Inc : AHLp → AHLtp preserves pushouts if at least one of the given
morphisms is in MAHL.

6. The inclusion functor Inc : AHLp → AHLtp preserves pullbacks if at least one of the given
morphisms is in MAHL.

7. Qpp is the class of place-preserving morphisms in AHLtp and is closed under composition
and isomorphisms.

8. The class Qpp is stable under pushouts and closed under the construction of coproducts.

Proof:
Item 1 and item 2 are trivial.
Item 3 can be shown similarly to Fact 4.21 in [EEPT06], where typed, guarded AHL-nets over
one fixed specification are considered or it can be shown as in [PER95].
Item 4: AHLtp has pushouts being constructed component-wise (see Fact A.1 in Appendix A).
Item 5 and 6: The inclusion functor Inc : AHLp → AHLtp preserves limits and colimits as the
corresponding universal constructions are compatible with partial morphisms and the inequation
concerning the pre and post domains.
Item 7 and Item 8 are proved similarly to the proof of Theorem 4.2.1 in [PGE01].

√

Next, we give the formulas over the possible markings of an AHL net. Each atomic expres-
sion λ(a, p) – with p ∈ P , a ∈ Atype(p) and λ ≥ 1 – states that at least λ tokens with value a are
on the place p. The safety property �ϕ states that ϕ holds for all reachable markings.

Definition 5.3 (Safety Properties, Formulas, Translations)

1. The set of static formulas F is given inductively; we have the atoms λ(a, p) ∈ F for p ∈ P and
a ∈ Atype(p). Furthermore (ϕ1 ∈ F =⇒ ¬ϕ1 ∈ F), and (ϕ1 ∈ F , ϕ2 ∈ F =⇒ ϕ1 ∧ ϕ2 ∈ F).

The validity of formulas is given w. r. t. the marking of a net. Let m : P → A⊕
type(p) be a

marking of N then: m |=N λ(a, p) iff λa ≤ m(p), and m |=N ¬ϕ1 iff ¬(m |=N ϕ1), and
m |=N ϕ1 ∧ ϕ2 iff (m |=N ϕ1) ∧ (m |=N ϕ2).

2. Let ϕ be a static formula over N . Then �ϕ is a safety property. The safety property �ϕ
holds in N under m iff ϕ holds in all states reachable from m:

m |=N �ϕ⇐⇒ ∀m′ ∈ [m〉 : m′ |=N ϕ
For the initial marking m̂ we also write N |= �ϕ instead of m̂ |=N �ϕ.

3. The translation Tf of formulae over N1 along a morphism f = (fSPEC , fP , fT , fA) : N1 →
N2 to formulae over N2 is given for atoms by

Tf (λ(a, p)) = λ(fA(a), fP (p))

The translation of formulae is given recursively by Tf (¬ϕ) = ¬Tf (ϕ), Tf (ϕ1∧ϕ2) = Tf (ϕ1)∧
Tf (ϕ2) and Tf (�ϕ) = �Tf (ϕ).

Fact 5.4 (Place preserving morphism preserve safety properties (Thm 3.5 in [PGE01])
A place-preserving morphism q ∈ Qpp with q : N → N ′ preserves safety properties, i.e. given a
safety property �ϕ we have

N |= �ϕ =⇒ N ′ |= �Tq(ϕ)

.

This fact can then be used to formulate the following proof rule: For the transformations N1
(r,q)
=⇒

N3 – a Qpp-transformation – and a safety property-preserving rule (r, q) – a Qpp-rule – we now
have this proof rule:

18



(r, q) is a place-preserving rule; N1 satisfies the safety properties �ϕ

N3 satisfies the safety properties �T (ϕ) as well

This proof rule is valid as we can conclude from N1
(r,q)
=⇒ N3 that there is q : N1 → N3 with

N1 |= �ϕ =⇒ N3 |= �Tq(ϕ).

5.2 Example

The example describes two components modeling that something is done, i.e. data is computed
by getting it from some other component, initialising it, executing something incrementally and
so on. The illustration of an AHL net uses the following conventions: The typing of the places is
depicted by : s where s is some sort of the corresponding specification. The pre- and post-domain
of the transitions are adjacent arcs of a transition and the initial marking is given by tokens. In
case of black tokens, i.e. data elements of an algebra of the specification BLACK, we denote
with • the only data element and omit the arc inscriptions as well as the typing of the places.
In Figure 2 an AHL net component with the corresponding specifications is given: It consists of

SP EXP =
sorts: s2, s3
opns: ...
eqns: ...

SP BOD = BLACK +
sorts: s1, s2, s3
opns: initial : s1→ s2

op1 : s2→ s2
op2 : s2→ s3

eqns: ...

SP IMP = BLACK +
sorts: s1
opns: ...
eqns:

BLACK =
sorts: token
opns: • :→ token
eqns: t1, t2 ∈ Xtoken

t1 = t2

Figure 2: AHL net component C = (EXP C, IMP C,BOD C) with the corresponding algebraic
specifications

the three AHL nets EXP C, IMP C and BOD C. The export morphism EXP C → BOD C
is an inclusion of the places and the undefined mapping of the transition. The import morphism
IMP C → BOD C is an inclusion of the places and the transition. There is a safety property,
i.e. a place invariant, in BOD C, namely that there is always either a black token on place wait
or a token of sort s2 on place exe. This is denoted by ϕ := �(•, wait)xor(y, exe).

19



SP EXP’ =BLACK
sorts: s0, s1
opns: const : → s0

[ ] : s0→ s1
eqns: ...

SP BOD’ = SP IMP’ +
sorts: s0, s1
opns: const : → s0

[ ] : s0→ s1
op0 : s0→ s0

eqns: ...

SP IMP’ = BLACK +
NAT

Figure 3: Second AHL net component C ′ = (EXP C ′, IMP C ′, BOD C ′)

The component C ′ = (EXP C ′, IMP C ′, BOD C ′) models how the data is processed by taking
a constant and applying an operation n times (see Figure 3).

SP BOD C” = BLACK + NAT +
sorts: s0, s1, s2, s3
opns: initial : s1→ s2

op0 : s0→ s1
op1 : s2→ s2
op2 : s2→ s3

eqns: ...

Figure 4: Composition C ′′ = C ◦h C ′ of AHL net components

The composition C ′′ := C ◦h C ′ = (EXP C,BOD C ′′, IMP C ′) uses a t-partial morphism h :
IMP C → EXP C ′, an inclusion of places and a undefined mapping of the transition. The body
BOD C ′′ is a pushout over BOD C ← IMP C → EXP C ′ → BOD C ′. The result of the

20



composition is given in Figure 4.
Next we give the place-preserving rules used for the refinement of the components. We have

rule (r, q) and rule (r′, q′) depicted in Figure 6 and Figure 7, respectively. Rule (r′, q′) changes the
body and the import by adding a place, to which the data token x is copied. Rule (r′, q′) extends
the export and the body with an additional subnet, where the data token x is stored in a log list.

The application of these rules yields the following refinements C
(r,q)
=⇒ D (as depicted in Figure 8)

and C ′ (r′,q′)
=⇒ D′. Component D preserves the safety property ϕ := �(•, wait)xor(y, exe) as (r, q)

is a place-preserving rule and q is an inclusion. Composing the components D and D′ we obtain the
component D′′ := D ◦D′ = (EXPD, IMP ′

D, BOD′′
D) depicted in Figure 5. The other way round,

that is composing first the components C ′′ = C ◦ C ′ as well as the rules (r′′, q′′) = (r, q) ◦ (r′, q′),

and then refining subsequently yields the same result, namely C ′′ ((r′′,q′′)
=⇒ D′′.

SP EXP =BLACK
sorts: s0, s1
opns: [ ] : s0→ s1
eqns: ...

SP BOD = SP IMP’ +
sorts: s0, s1
opns: op0 : s0→ s1
eqns: ...

SP IMP’ = BLACK +
NAT

Figure 5: Result after composition and rule-based refinement: the component D′′

5.3 Overview over other Instantiations

In this section we discuss examples of other specification formalisms fitting into this adhesive HLR
framework for generic components.

Algebraic Specifications.

Algebraic specification modules as defined in [EM90] have been the starting point for Petri net
modules and the transformation-based component concept. So they naturally fit into the presented
approach. In [EM90] algebraic specification modules are given by a parameter specification, an
import and an export specification that both are connected to the body specification by a specifica-
tion morphisms. There are varied module operations as hierarchical composition, union, renaming,
actualization and others. The semantics is proved to be compositional and is a model semantics
based on the model semantics of algebraic specifications. Due to the generalization by specification
frames [EBO92] this theory is available to other variants e.g. [CBEO99, JO99] as well.

21



Figure 6: Rule r

Figure 7: Rule r′

22



Figure 8: Rule-based refinement C
r,p
=⇒ D of AHL net component

23



Graph Transformation Systems.

The transfer of algebraic specification modules as defined by [EM90] to process description tech-
niques is a recent development. It has been started in [GPS99, Sim99, Sim02] where modules for
typed graph transformation systems and local action systems have been investigated. A notion
of cat-modules has been given that is closely related to the generic component concept. Plain
morphisms as used for the mapping of the import to the body map the rules of the corresponding
graph transformation system one by one. Refinement morphisms that map the export to the
body allow mapping one rule to a combination of rules of the target graph transformation system.
Without much doubt this approach can be transferred to other classes of graph transformations
in the double pushout approach.

Automata.

In [Pad05a] we use a version of deterministic input automata where we skip the output function.
Basically, an automaton A = (I, S, δ : I × S ⇀ S) consists of the input alphabet I, the set of
states S and the partial function δ : I × S ⇀ S: For an element of the input alphabet i ∈ I and
a state s ∈ S the transition function δ(i, s) = ⊥ is undefined or δ(i, s) = s′ yields the follower
state s′. A plain morphism f = (fI , fS) : A1 → A2 maps the alphabet fI : I1 → I2 and the set of
states fS : S1 → S2. We use a comma category construction, namely Autp := (Prod ↓ ID), where
Prod : parSet × parSet → parSet is the product functor and ID : parSet → parSet is the
identity on sets with partial functions. It yields directly that Autp has pushouts and pullbacks.
Refinement morphisms allow the refinement of a state by a sub-automaton of the codomain.
The category Autr is given by automata and refinement morphisms. Automata components are
motivated by the interface automata of [AH01]. There the automata are more complex, but the
body automaton is missing. In our approach an automata component AC = (IMP,EXP,BOD)
consists of three automata, namely the import automaton IMP , the export automaton EXP and
the body automaton BOD. The import morphism imp : IMP → BOD is a plain and the export
morphism exp : EXP → BOD is a refinement morphism.

Place/Transition Nets

In [Pad02] Petri net modules - based on place/transition nets – have been introduced indepen-
dently of the categorical framework discussed above. A PT net module MOD = (IMP,EXP,BOD)
consists of three place/transition nets, namely the import net IMP , the export net EXP and
the body net BOD. Two net morphisms m : IMP → BOD and r : EXP → BOD connect
the interfaces to the body. The import morphism m is a plain morphism and describes how and
where the resources in the import interface are used in the body. The export morphism r is a
substitution morphism and describes how the functionality provided by the export interface is
realized in the body. The class of substitution morphism is a generalization of plain morphisms,
where a transition is mapped to a subnet.

6 Conclusion

High-level replacement systems are a categorical generalization of the algebraic approach to graph
transformation systems with double pushouts. They allow formulating the same notions as for
graph transformation systems, but not only for graphs but for objects of arbitrary categories.
The generic concept of components is a categorical framework for modeling components, where
a component consists of an import, an export and the body. The main results in this paper
are the integration of both theories and results for the compatibility of hierarchical composition
with transformation respectively rule-based refinement. To achieve transformations of components
we have to integrate the different morphism classes used for adhesive HLR systems and generic
components. This leads to an adhesive HLR framework for generic components that is a formal
foundation for both component refinement and component evolution.

24



In [Pad05b] the connection from a component technique to the formal description of software
architecture has been discussed. Most approaches used in practice have a component concept with
multiple interfaces. The publications concerning the connector architectures based on the generic
component approach [EPB+04, EBK+05, OP05] present of first step towards this goal. There the
connectors have multiple import interfaces and the components have multiple export interfaces.
The extension of the generic component technique to a family of import and a family of exports
has been recently dealt with [Kle06, KPO06]. Based on components with multiple interfaces,
the correspondence of the architecture graph and composition operations can be given by graph
transformation of the architecture graph. The specification of software components with multiple
require and provide interfaces allows multiple access to a single provide interface. Extending the
component definition in this way requires the extension of the entire component technique, but
rule-based transformation and refinement of components with multiple interfaces is still future
work.

References

[AH01] L. de Alfaro and T.A Henzinger. Interface automata. In ESEC/FSE 01: Proceedings
of the Joint 8th European Software Engineering Conference and 9th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, 2001.

[CBEO99] F. Cornelius, M. Baldamus, H. Ehrig, and F. Orejas. Abstract and behaviour module
specifications. Mathematical Structures in Computer Science, 9:21–62, 1999.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation I : Basic Concepts and Double Pushout Approach.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations, chapter 3. World Scientific, 1997.

[EBK+05] H. Ehrig, B. Braatz, M. Klein, F. Orejas, S. Pérez, and E. Pino. Object-oriented
connector-component architectures. In Proc. FESCA, 2005.

[EBO92] H. Ehrig, M. Baldamus, and F. Orejas. New concepts for amalgamation and exten-
sion in the framework of specification logics. In Proc. WADT-COMPASS-Workshop
Dourdan, 1991, pages 199–221. Springer LNCS 655, 1992.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
2006.

[EHKP91] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concur-
rency in high-level replacement systems. Math. Struct. in Comp. Science, 1:361–404,
1991.

[EHPP04] H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors, Proc.
2nd Int. Conference on Graph Transformation (ICGT’04), volume 3256 of LNCS,
pages 144–160, Rome, Italy, October 2004. Springer.

[EM90] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints, volume 21 of EATCS Monographs on Theoretical Computer
Science. Springer Verlag, Berlin, 1990.

[EOB+02] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A Generic Component
Concept for System Modeling. In Proc. FASE 2002: Formal Aspects of Software
Engineering, volume 2306 of LNCS, pages 32–48. Springer, 2002.

25



[EOB+04] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A component framework
for system modeling based on high-level replacement systems. Software and Systems
Modeling, pages 114–134, 3 2004.

[EPB+04] H. Ehrig, J. Padberg, B. Braatz, M. Klein, F. Orejas, S. Pérez, and E. Pino. A generic
framework for connector architectures based on components and transformations. In
Proc. FESCA’04, satellite of ETAPS’04, Barcelona, ENTCS, volume 108, pages 53–67,
December 2004.

[GPS99] M. Große–Rhode, F. Parisi Presicce, and M. Simeoni. Refinements and Modules for
Typed Graph Transformation Systems. In J. L. Fiadeiro, editor, Workshop on Alge-
braic Development Techniques (WADT’98), at ETAPS’98, Lisbon, April 1998, pages
137–151. Springer LNCS 1589, 1999.

[GT00] V. Gruhn and A. Thiel. Komponentenmodelle: DCOM, JavaBeans, EnterpriseJav-
aBeans, CORBA. Addison-Wesley, 2000.

[JO99] Rosa M. Jiménez and Fernando Orejas. An algebraic framework for higher-order
modules. In FM’99 - Formal Methods, World Congress on Formal Methods in the De-
velopment of Computing Systems, volume 1709 of Lecture Notes in Computer Science,
pages 1778–1797. Springer, 1999.

[Kle06] M. Klein. Transformation-Based Component Architectures General Framework, In-
stantiations and Case Study. PhD thesis, Technische Universität Berlin, Fak. IV,
2006.

[KPO06] M. Klein, J. Padberg, and F. Orejas. Towards multiple access in generic component ar-
chitectures. In Proc. Formal Foundations of Embedded Software and Component-Based
Software Architectures (FESCA 06), Satellite Event of the European Joint Conferences
on Theory and Practice of Software (ETAPS), 2006.

[LS04] S. Lack and P. Sobociński. Adhesive Categories. In Proc. FOSSACS 2004, volume
2987 of LNCS, pages 273–288. Springer, 2004.

[MBE+00] S. Mann, B. Borusan, H. Ehrig, M. Große-Rhode, R. Mackenthun, A. Sünbül, and
H. Weber. Towards a component concept for continuous software engineering. Tech-
nical Report 55/00, FhG-ISST, 2000.

[OP05] Fernando Orejas and Sonia Pérez. Towards architectural connectors for uml. In U. Kre-
owski, H.J.and Montanari, F. Orejas, G. Rozenberg, and G. Taentzer, editors, Formal
Methods in Software and Systems Modeling, volume 3393 of Lecture Notes in Computer
Science, pages 352–369. Springer, 2005.

[Pad99] J. Padberg. Categorical Approach to Horizontal Structuring and Refinement of High-
Level Replacement Systems. Applied Categorical Structures, 7(4):371–403, December
1999.

[Pad02] J. Padberg. Petri net modules. Journal on Integrated Design and Process Technology,
6(4):121–137, 2002.

[Pad05a] Julia Padberg. Integration of the generic component concepts for system modeling
with adhesive HLR systems. EATCS Bulletin, 2005.

[Pad05b] Julia Padberg. Specification and rule-based refinemt of software-components, 2005.
Habiltiation Thesis, Technische Universität Berlin.

[PE05] J. Padberg and H. Ehrig. Petri net modules in the transformation-based component
framework. Journal of Logic and Algebraic Programming, page 35, 2005. accepted.

26



[PER95] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation systems.
Mathematical Structures in Computer Science, 5:217–256, 1995.

[PGE01] J. Padberg, M. Gajewsky, and C. Ermel. Rule-based refinement of high-level nets
preserving safety properties. Science of Computer Programming, 40:97–118, 2001.
www.elsevier.nl/locate/scico.

[Sim99] M. Simeoni. A Categorical Approach to Modularization of Graph Transformation Sys-
tems using Refinements. PhD thesis, Università Roma La Sapienza, 1999.

[Sim02] M. Simeoni. An Abstract Module Concept for Graph Transformation Systems. Elec-
tronic Notes of TCS, 51, 2002. http://www.elsevier.nl/locate/entcs/volume51.html .

[Szy97] C. Szyperski. Component Software – Beyond Object-Oriented Programming. Addison-
Wesley, 1997.

A Technical Details

Fact A.1 (Pushouts in AHLtp) Given Ni = (SPECi, Pi, Ti, Ai, prei, posti, typei) and fi : N0 →
Ni for 0 ≤ i ≤ 2 , then there is a pushout N3 = (SPEC3, P3, T3, A3, pre3, post3, type3) with
gi : Ni → N3 for 0 ≤ i ≤ 2.
Moreover, are plain morphisms stable under pushouts, i.e. f1 plain implies g2 plain.

Proof:
Given Ni = (SPECi, Pi, Ti, Ai, prei, posti, typei) and fi : N0 → Ni for 0 ≤ i ≤ 2 , then the
pushout N3 = (SPEC3, P3, T3, A3, pre3, post3, type3) can be constructed by

• (SPEC1, A1)
(g1,SP EC ,g1,A)−→ (SPEC3, A3)

(g2,SP EC ,g2,A)←− (SPEC2, A2) is pushout of

(SPEC1, A1)
(f1,SP EC ,f1,A)←− (SPEC0, A0)

(f2,SP EC ,f2,A)−→ (SPEC2, A2)
in the category of generalised algebras GALG.

• P1
g1,P−→ P3

g2,P←− P2 is pushout of P1
f1,P←− P0

f2,P←− P2 in the category Set of sets with total
mappings. m3 and Type3 are gives by the induced morphisms.

• T1
g1,T−→ T3

g2,T←− T2 is pushout of T1
f1,T←− T0

f2,T←− T2 in the category parSet of sets with partial
mappings.

• pre3 : T3 → (TOP3(X3)⊗ P3)⊕ is given by pre3(t) = sup((g2,SPEC , g2,P )⊕(pre2(t2)), (g1,SPEC , g1,P )⊕(pre1(t1))) ; for t = g2,T (t2) = g1,T (t1)
(g1,SPEC , g1,P )⊕(pre1(t1)) ; for t /∈ g2,T (T2) and t = g1,T (t1)
(g2,SPEC , g2,P )⊕(pre2(t2)) ; for t /∈ g1,T (T1) and t = g2,T (t2)

pre3 is well-defined as g1,T and g2,T are jointly surjective. post3 analogously.

gi = (gi,SPEC , gi,P , gi,T , gi,A) are well-defined, as
(gi,SPEC , gi,P )⊕(prei(ti)) ≤ sup((g2,SPEC , g2,P )⊕(pre2(g2,P (t2))), (g1,SPEC , g1,P )⊕(pre1(g1,P (t1)))) =
pre3(gi,T (ti)) for 1 ≤ i ≤ 2.
Plain morphisms are preserved: Let f1 : N0 → N1 be plain, then we have for t2 ∈ T2 with
g2,T (t2) /∈ g1,T (T1) directly pre3(g2,T (t2)) = (g2,SPEC , g2,P )⊕(pre2(t2)).
For g2,T (t2) ∈ g1,T (T1) we have some t0 ∈ T0 with f1,T (t0) = t1 and f2,T (t0) = t2, and
(g2,SPEC , g2,P )⊕ ◦ pre2(t2) ≥ (g2,SPEC , g2,P )⊕ ◦ ((f2,SPEC , f2,P )⊕ ◦ pre0(t0))
= (g1,SPEC , g1,P )⊕ ◦ ((f1,SPEC , f1,P )⊕ ◦ pre0(t0)) = (g1,SPEC , g1,P )⊕ ◦ pre1(t1)
Hence, we have: pre3(g2,T (t2)) = sup((g2,SPEC , g2,P )⊕(pre2(g2,P (t2))), (g1,SPEC , g1,P )⊕(pre1(g1,P (t1))))
= (g2,SPEC , g2,P )⊕ ◦ pre2(t2)

Moreover, g2 is total because total morphisms are pushout stable in parSet
√

27


