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Abstract

Adhesive high-level replacement (HLR) systems have been recently established as a suitable categorical
framework for double pushout transformations based on weak adhesive HLR categories. Among different
types of graphs and graph-like structures, various kinds of Petri nets and algebraic high-level (AHL) nets
are interesting instantiations of adhesive HLR systems. AHL nets combine algebraic specifications with
Petri nets to allow the modeling of data, data flow and data changes within the net.
For the development and analysis of reconfigurable systems, not only AHL schemas based on an algebraic
specification and AHL nets using an additional algebra should be considered, but also AHL systems which
additionally include markings of nets.
In this paper, we summarize the results for different kinds of AHL schemas and nets, and extend these results
to AHL systems. The category of markings is introduced, which allows a general construction combining
AHL nets with possible markings leading under certain properties to a weak adhesive HLR category.
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1 Introduction

Petri nets are an important modeling technique to describe discrete distributed sys-
tems. Their nondeterministic firing steps are well-suited for modeling the concurrent
behavior of such systems.

As the adaptation of a system to a changing environment gets more and more
important, Petri nets that can be transformed during runtime have become a sig-
nificant topic in the recent years. Application areas cover e.g. computer supported
cooperative work, multi agent systems, dynamic process mining and mobile net-
works. Moreover, this approach increases the expressiveness of Petri nets and allows
a formal description of dynamic changes.

For the terminology in this paper, a Petri net describes only the structure of
the net, while a Petri system consists of a Petri net and a suitable marking. In
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[6], the concept of reconfigurable place/transition (P/T) systems was introduced
for modeling changes of the net structure while the system is kept running. In
detail, a reconfigurable P/T system consists of a P/T system and a set of rules, so
that not only the follower marking can be computed but also the net structure can
be changed by rule application. So, a new P/T system is obtained that is more
appropriate with respect to some requirements of the environment.

As an extension of Petri nets, algebraic high-level (AHL) nets combine algebraic
specifications with P/T nets [8] to allow the modeling of data, data flow and data
changes within the net. In general, an AHL system denotes an AHL net based on a
specification SP in combination with an SP -algebra A and an initial marking M .
Combining AHL systems with rules leads to reconfigurable AHL systems.

In this paper, we integrate rule-based transformations of AHL systems into the
framework of adhesive high-level replacement (HLR) systems [2,4] that is inspired
by graph transformation systems. Adhesive HLR systems are a suitable categorical
framework for graph transformation in the double pushout approach. They combine
the framework of HLR systems [3] with the framework of adhesive categories [7].
The main concept behind adhesive categories are the so-called van Kampen squares.
These ensure that pushouts along monomorphisms are stable under pullbacks and,
vice versa, that pullbacks are stable under combined pushouts and pullbacks. In the
case of weak adhesive HLR categories, the class of all monomorphisms is replaced
by a subclass M of monomorphisms closed under composition and decomposition,
and in the van Kampen squares certain M-morphisms are required.

The framework of weak adhesive HLR categories is sufficient to show under
some additional assumptions as main results the Local Church-Rosser Theorem,
the Parallelism Theorem, the Concurrency Theorem, the Embedding and Extension
Theorem, and the Local Confluence Theorem, also called Critical Pair Lemma.

For different kinds of Petri nets we already know that the corresponding cate-
gories are weak adhesive HLR categories. For elementary nets, P/T nets and AHL
schemas with a fixed specification this has been shown in [2], for AHL schemas and
nets with suitable algebras in [9], and for P/T systems in [10]. The proof for P/T
systems has been done by showing directly the different properties of a weak ad-
hesive HLR category for P/T nets with markings. Analogously, this could be done
for each kind of AHL system. But the more elegant way is to show that there is a
categorical construction combining AHL nets and their markings, leading to a gen-
eral proof for different kinds of low-level and high-level Petri net systems. Therefore
we introduce the category Markings of markings and show that AHL systems can
be considered as a comma category of AHL nets and markings, leading to a weak
adhesive HLR category if the underlying category of AHL nets is a weak adhesive
HLR category with suitable algebras.

This paper is organized as follows: In Section 2, we introduce the basic notions
of weak adhesive HLR categories and adhesive HLR systems. Known results for
P/T nets, AHL schemas, AHL nets and P/T systems are summarized in Section 3.
In Section 4, the category of markings is defined leading to the weak adhesive HLR
category of AHL systems in Section 5. A small example of a reconfigurable AHL
system is presented in Section 6. At last, in Section 7 the conclusion is given and
future work is described.
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2 Weak Adhesive HLR Categories and Adhesive HLR
Systems

In this section, we introduce weak adhesive HLR categories and adhesive HLR
systems. For a more detailed view we refer to [2].

The intuitive idea of weak adhesive HLR categories are categories with suitable
pushouts and pullbacks which are compatible with each other. More precisely the
definition is based on so-called van Kampen squares.

The idea of a van Kampen square is that of a pushout being stable under pull-
backs, and vice versa that pullbacks are stable under combined pushouts and pull-
backs.

Definition 2.1 (Van Kampen square) A pushout (1) is a van Kampen square,
if for any commutative cube (2) with (1) in the bottom and the back faces being
pullbacks holds: the top face is a pushout if and only if the front faces are pullbacks.
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B′
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C ′

D′
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D

A B

C D
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g′
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n′
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n

g(1)

(2)

Since not even in the category Sets of sets and functions each pushout is a van
Kampen square, for weak adhesive HLR categories only those squares are considered
where m is an M-morphism, and some more morphisms in the cube are required
to be in M.

Definition 2.2 (Weak adhesive HLR category) A category C with a morphism
class M is a weak adhesive HLR category, if

(i) M is a class of monomorphisms closed under isomorphisms, composition (f :
A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M) and decomposition (g ◦ f ∈
M, g ∈M⇒ f ∈M),

(ii) C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks,

(iii) pushouts in C along M-morphisms are weak VK squares.

For a weak VK square, the VK square property holds for all commutative cubes
with m ∈M and (f ∈M or b, c, d ∈M) (see Def. 2.1).

For historical reasons, these categories are called weak adhesive HLR categories.
In [11] and related work, adhesive categories are used as the categorical framework
for deriving process congruences from reaction rules. The step from adhesive to
adhesive HLR categories is justified by the fact that there are some important ex-
amples – such as algebraic specifications and typed attributed graphs – which are not
adhesive categories. However, they are adhesive HLR categories for a suitable sub-
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class M of all monomorphisms. Thus, the main difference between adhesive HLR
categories and adhesive categories is that a distinguished class M of monomor-
phisms is considered instead of all monomorphisms, so that only pushouts along
M-morphisms have to be VK squares. Another important example – the category
PTNets of place/transition nets with the class M of injective morphisms – fails
to be an adhesive HLR category, but is a weak adhesive HLR category with the
restriction to weak van Kampen squares. This justifies the step to weak adhesive
HLR categories.

The categories Sets of sets and functions, Graphs of graphs and graph mor-
phisms, and GraphsTG of typed graphs and typed graph morphisms are weak
adhesive HLR categories for the class M of all monomorphisms. Moreover, an im-
portant example is the category (AGraphsATG,M) of typed attributed graphs
with a type graph ATG and the class M of all injective morphisms with isomor-
phisms on the data part.

Weak adhesive HLR categories are closed under product, slice, coslice, functor,
and comma category constructions. This means that we can construct new weak
adhesive HLR categories from given ones [2,9].

Theorem 2.3 (Construction Theorem) If (C,M1) and (D,M2) are weak ad-
hesive HLR categories, then the following categories are also weak adhesive HLR
categories:

(i) the full subcategory (C′,M′) of C with M′ = M1|C′ if C′ has pushouts and
pullbacks along M′-morphisms which are preserved by the inclusion functor,

(ii) the product category (C×D,M1 ×M2),

(iii) the slice category (C\X,M1∩C\X) and the coslice category (X\C,M1∩X\C)
for any object X in C,

(iv) for every category X the functor category ([X, C],M1-functor trans-
formations), where an M1-functor transformation is a natural transformation
t : F → G where all morphisms tX : F (X)→ G(X) are in M1,

(v) the comma category (ComCat(F,G; I),M) with M = (M1 × M2) ∩
MorComCat(F,G;I) and functors F : C → X, G : D → X, where F pre-
serves pushouts along M1-morphisms and G preserves pullbacks along M2-
morphisms.

Now we are able to generalize graph transformation systems, grammars and
languages in the sense of [1,2].

In general, an adhesive HLR system is based on productions, also called rules,
that describe in an abstract way how objects in this system can be transformed.
An application of a production is called a direct transformation and describes how
an object is actually changed by the production. A sequence of these applications
yields a transformation.

Definition 2.4 (Production and transformation) Given a weak adhesive HLR
category (C,M), a production p = (L l← K

r→ R) (also called rule) consists of
three objects L, K and R called left hand side, gluing object and right hand side
respectively, and morphisms l : K → L, r : K → R with l, r ∈M.
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Given a production p = (L l← K
r→ R) and an object G with a morphism

m : L → G, called match, a direct transformation G
p,m
=⇒ H from G to an object

H is given by the following diagram, where (1) and (2) are pushouts. A sequence
G0 ⇒ G1 ⇒ ... ⇒ Gn of direct transformations is called a transformation and is
denoted as G0

∗⇒ Gn.

L K R

G D H

l r

f g

m k n(1) (2)

Definition 2.5 (Adhesive HLR system, grammar and language) An adhe-
sive HLR system AHS = (C,M, P ) consists of a weak adhesive HLR category
(C,M) and a set of productions P .

An adhesive HLR grammar AHG = (AHS, S) is an adhesive HLR system AHS

together with a distinguished start object S.
The language L of an adhesive HLR grammar AHG = (AHS, S) is defined by

L = {G | ∃ transformation S
∗⇒ G}.

Note that there are two different kinds of systems: adhesive HLR systems, which
consist of a weak adhesive HLR category and some productions, and Petri systems,
which consist of a Petri net together with a suitable marking. Instantiating adhesive
HLR systems with Petri systems leads to reconfigurable Petri systems, i.e. Petri
nets with markings and productions.

For the theory of adhesive HLR systems we refer to [2]. In the following, we
only analyze which kinds of low-level and high-level Petri nets are weak adhesive
HLR categories. To apply the whole general theory of adhesive HLR systems to
these nets, some more properties are necessary which are not handled here.

3 P/T Nets, AHL Schemas, AHL Nets and P/T Sys-
tems as Weak Adhesive HLR Categories

In this section, we review under which conditions different kinds of P/T and AHL
schemas, nets and systems are weak adhesive HLR categories. We only define
the structures and present the results. The corresponding proofs can be found in
[2,9,10].

Definition 3.1 An elementary net is given by EN = (P, T, pre, post) with sets P of
places, T of transitions, and pre- and post-domain functions pre, post : T → P(P ),
where P is the power set functor.

An elementary net morphism fEN : EN → EN ′ is given by fEN = (fP :
P → P ′, fT : T → T ′) compatible with the pre- and post-domain functions, i.e.
pre′ ◦ fT = P(fP ) ◦ pre and post′ ◦ fT = P(fP ) ◦ post.

Elementary nets and elementary net morphisms form the category ElemNets.
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Corollary 3.2 The category (ElemNets,M) is a weak adhesive HLR category,
where M is the class of all injective morphisms [2,9].

Note, that (ElemNets,M) is not an adhesive HLR category as stated in [2],
since the power set functor P only preserves pullbacks along injective morphisms,
but not over general ones.

Definition 3.3 A place/transition net PN = (P, T, pre, post) is given by a set P of
places, a set T of transitions, as well as pre- and post-domain functions pre, post :
T → P⊕, where P⊕ is the free commutative monoid over P .

A place/transition net morphism fPN : PN → PN ′ is given by fPN = (fP :
P → P ′, fT : T → T ′) compatible with the pre- and post-domain functions, i.e.
pre′ ◦ fT = f⊕P ◦ pre and post′ ◦ fT = f⊕P ◦ post.

Place/transition nets and place/transition net morphisms form the category
PTNets.

Corollary 3.4 The category (PTNets,M) is a weak adhesive HLR category,
where M is the class of all injective morphisms [2].

Definition 3.5 A place/transition system PS = (PN, m) is given by a
place/transition net PN = (P, T, pre, post) and a marking m : P → N.

A place/transition system morphism fPS : PS → PS′ is given by a
place/transition net morphism fPN : PN → PN ′ that is marking-preserving, i.e.
∀p ∈ P : m(p) ≤ m′(fPN (p)).

Place/transition systems and place/transition system morphisms form the cat-
egory PTSystems.

Corollary 3.6 The category (PTSystems,M) is a weak adhesive HLR category,
where M is the class of all strict morphisms, i.e. fPS : PS → PS′ ∈ M if fPN is
injective and marking-strict: ∀p ∈ P : m(p) = m′(fPN (p)) [10].

Definition 3.7 An AHL schema over an algebraic specification SP , where
SP = (SIG, E, X) has additional variables X and SIG = (S, OP ), is given
by AC = (P, T, pre, post, cond, type) with sets P of places and T of transitions,
pre, post : T → (TSIG(X) ⊗ P )⊕ as pre- and post-domain functions, cond : T →
Pfin(Eqns(SIG, X)) assigning to each t ∈ T a finite set cond(t) of equations over
SIG and X, and type : P → S a type function. Note that TSIG(X) is the
SIG-term algebra with variables X and (TSIG(X) ⊗ P ) = {(term, p) | term ∈
TSIG(X)type(p), p ∈ P}.

An AHL schema morphism fAC : AC → AC ′ is given by a pair of functions
fAC = (fP : P → P ′, fT : T → T ′) which are compatible with pre, post, cond and
type as shown below.

Pfin(Eqns(SIG, X))

T (TSIG(X)⊗ P )⊕

T ′ (TSIG(X)⊗ P ′)⊕

P

P ′

S

pre

post

pre′

post′

cond

cond′

fT (id⊗fP )⊕

type

type′

fP== =
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Given an algebraic specification SP , AHL schemas over SP and AHL schema
morphisms form the category AHLSchemas(SP).

Corollary 3.8 The category (AHLSchemas(SP),M) is a weak adhesive HLR
category, where M is the class of all injective morphisms [2,9].

Definition 3.9 An AHL net AN = (AC, A) is given by an AHL schema AC over
SP and an SP -algebra A ∈ A(SP), where A(SP) is a subcategory of Algs(SP),
the category of all algebras over SP .

An AHL net morphism fAN : AN → AN ′ is given by a pair fAN = (fAC : AC →
AC ′, fA : A → A′), where fAC is an AHL schema morphism and fA ∈ A(SP) an
SP -homomorphism.

Given an algebraic specification SP , AHL nets over SP and AHL net morphisms
form the category AHLNets(SP).

Corollary 3.10 If (A(SP),M) is a weak adhesive HLR category then the category
(AHLNets(SP),M′) is a weak adhesive HLR category, where M′ is the class of
all morphisms fAN = (fAC , fA) with fAC being injective and fA ∈M [9].

For the algebra part, up to now it is not clear whether or under what conditions
the category Algs(SP) of algebras over an arbitrary specification SP with the class
Minj of injective morphisms is a weak adhesive HLR category. Nevertheless, there
are two possible choices for the category (A(SP),M):

(i) The category (Algs(SP),Miso) with the classMiso of isomorphisms, which is
useful for systems where only the net part but not the algebra part is allowed
to be changed by rule application.

(ii) The category (Algs(SP),Minj) with the class Minj of injective morphisms,
where SP is a graph structure algebra, which means that only unary operations
are allowed.

Definition 3.11 A generalized AHL schema GC = (SP, AC) is given by an alge-
braic specification SP and an AHL schema AC over SP .

A generalized AHL schema morphism f : GC → GC ′ is a tuple fGC = (fSP :
SP → SP ′, fP : P → P ′, fT : T → T ′), where fSP is a specification morphism and
fP , fT are compatible with pre, post, cond and type. f#

SP is the extension of fSP

to terms and equations.

Pfin(Eqns(SIG, X))

Pfin(Eqns(SIG′, X ′))

T (TSIG(X)⊗ P )⊕

T ′ (TSIG′(X ′)⊗ P ′)⊕

P

P ′

S

S′

pre

post

pre′

post′

cond

cond′

fTPfin(f#
SP ) (f#

SP⊗fP )⊕

type

type′

fP fSP,S== =

Generalized AHL schemas and generalized AHL schema morphisms form the cate-
gory AHLSchemas.

Corollary 3.12 The category (AHLSchemas,M) is a weak adhesive HLR cate-
gory, where M is the class of all morphisms fGC = (fSP , fP , fT ) with fSP being
strict injective and fP , fT being injective [9].
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For the definition of generalized AHL nets we need the category Algs of algebras
and generalized algebra homomorphisms, which is defined by

• algebras A ∈ Algs(SP) for a specification SP as objects,
• as morphisms, generalized algebra homomorphisms f : A→ A′ between algebras

A ∈ Algs(SP) and A′ ∈ Algs(SP′), i.e. algebra homomorphisms f : A →
Vh(A′) in Algs(SP) for a specification morphism h : SP → SP ′, where Vh :
Algs(SP′)→ Algs(SP) is the forgetful functor between the algebras.

Definition 3.13 A generalized AHL net GN = (GC, A) is given by a generalized
AHL schema GC over the algebraic specification SP and an SP -algebra A ∈ A,
where A is a subcategory of Algs.

A generalized AHL net morphism fGN : GN → GN ′ is a tuple fGN = (fGC :
GC → GC ′, fGA : A → VfSP

(A′)), where fGC = (fSP , fP , fT ) is a generalized
AHL schema morphism and fGA ∈ A a generalized algebra homomorphism. VfSP

:
Algs(SP′)→ Algs(SP) is the forgetful functor induced by fSP .

Generalized AHL nets and generalized AHL net morphisms form the category
AHLNets.

Corollary 3.14 If (A,M1) is a weak adhesive HLR category of algebras, then the
category (AHLNets,M) is a weak adhesive HLR category, whereM is the class of
all net morphisms fGN = (fGC , fGA) with fGC being strict injective and fGA ∈M1

[9].

As in the case of AHL nets, up to now we do not know whether the category
Algs with the class Minj of injective morphisms is a weak adhesive HLR category
and can be used for the algebra part. Again, we have two possible choices for the
category (A,M1):

(i) The category (Algs,Miso) with the classMiso of isomorphisms, which is useful
for systems where only the net part but not the algebra part is allowed to be
changed by rule application.

(ii) The category (Algs|QTA,Msinj) of quotient term algebras and unique induced
homomorphisms, with the class Msinj of strict injective morphisms.

4 The Category of Markings

In this section, we define the category Markings of markings and show that this
category is a weak adhesive HLR category.

In general, a marking of a net can be seen as a multiset, i.e. an element of
a free commutative monoid – in the case of P/T nets of P⊕, in the case of AHL
nets of (A⊗ P )⊕, where ⊗ means the type-correct product. As a consequence, we
could use the category FCMonoids of free commutative monoids for our markings.
Unfortunately, in many cases the morphisms between P/T or AHL systems should
not be marking-strict, which means that the marking on each place p has to be
equal in both nets, as is the case for morphisms in FCMonoids.

For this reason, we define the category Markings, where the objects are sets
combined with a function to natural numbers defining the quantity of each element
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of the set. For morphisms, we only require a mapping between the sets that preserves
these quantities.

Definition 4.1 (Category Markings) The category Markings consists of

• objects (S, s) with a set S and a function s : S → N,
• morphisms f : (S, s) → (T, t) with a function f : S → T such that ∀s1 ∈ S :

s(s1) ≤ t(f(s1)),
• a composition g ◦ f of f : (S, s) → (T, t), g : (T, t) → (U, u) with ∀si ∈ S :

g ◦ f(s1) = g(f(s1)) as in Sets,
• identities id(S,s) : (S, s)→ (S, s) with id(S,s) = idS as in Sets.

This category is well-defined since the morphisms are basically morphisms in
Sets, and for the composition we have ∀s1 ∈ S : s(s1) ≤ t(f(s1)) ≤ u(g(f(s1))),
which means g ◦ f is a valid Markings-morphism.

Now we shall show that the category of markings with a suitable morphism class
Mstrict of strict morphisms is a weak adhesive HLR category. First we define this
morphism class Mstrict, and then we prove some lemmas which are necessary to
show the desired result.

Definition 4.2 (strict morphism) A morphism f : (S, s)→ (T, t) in Markings
is marking-strict if ∀s1 ∈ S : s(s1) = t(f(s1)).

A morphism f : (S, s) → (T, t) in Markings is strict, if f is injective and
marking-strict. All strict morphisms form the morphism class Mstrict.

The category FCMonoids of free commutative monoids is a subcategory of
Markings, where the morphisms in FCMonoids are exactly the marking-strict
morphisms.

Lemma 4.3 Mstrict is a class of monomorphisms closed under composition and
decomposition.

Proof. Given morphisms f : (S, s) → (T, t), g : (T, t) → (U, u) in Markings, we
have:

(i) If f is strict, then it is injective and we inherit from Sets that it is a monomor-
phism.

(ii) Injective morphisms in Sets are closed under composition and decomposition.
This holds also in Markings.

(iii) If f , g are strict we have ∀s1 ∈ S : s(s1)
f strict

= t(f(s1))
g strict

= u(g(f(s1))),
which means that also g ◦ f is strict.

(iv) If g, g ◦ f are strict we have ∀s1 ∈ S : s(s1)
g◦f strict

= u(g(f(s1)))
g strict

= t(f(s1)),
which means that also f is strict.

2

The next proofs are very similar to the proofs for P/T systems being a weak
adhesive HLR category in [10]. We generalize these proofs to the category of mark-
ings. First we shall show that pushouts alongMstrict-morphisms exist and preserve
Mstrict-morphisms.
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Lemma 4.4 In Markings, pushouts along Mstrict-morphisms exist and preserve
Mstrict, i.e. given morphisms f and m with m strict, then the pushout (PO) exists
and n is also a strict morphism.

(A, a) (B, b)

(C, c) (D, d)

m

n

f g(PO)

Proof. Given f , m with m ∈ Mstrict we construct D as pushout object in Sets,

which means D = (C
�
∪ B)\m(A) with inclusion n : C → D, and g : B → D : b1 ∈

B\m(A) 7→ b1, m(a1) 7→ f(a1). For d1 ∈ D, d is defined by

(1) d1 = b1 ∈ B\m(A): d(b1) = b(b1),

(2) d1 = c1 ∈ C: d(c1) = c(c1).

Obviously, d : D → N is well-defined.
First we shall show that g, n are Markings-morphisms and n is strict.

(i) ∀b1 ∈ B we have:

1. b1 ∈ B\m(A) and b(b1)
(1)
= d(b1) = d(g(b1)) or

2. ∃a1 ∈ A with b1 = m(a1) and b(b1) = b(m(a1)) m strict= a(a1) ≤ c(f(a1))
(2)
=

d(f(a1)) = d(g(m(a1))) = d(g(b1)).
This means g ∈Markings.

(ii) ∀c1 ∈ C we have:

1. c(c1)
(2)
= d(c1) = d(n(c1)).

This means n ∈Markings and n is strict.

It remains to show the pushout property. Given Markings-morphisms h :
(C, c) → (E, e), k : (B, b) → (E, e) with h ◦ f = k ◦m, we have a unique induced
morphism x in Sets with x◦n = h and x◦g = k. We shall show that x ∈Markings,
i.e. ∀d1 ∈ D : d(d1) ≤ e(x(d1)).

(A, a) (B, b)

(C, c) (D, d)

(E, e)

m

n

f g

x

h

k

(PO)

(i) For d1 = b1 ∈ B\m(A) we have d(b1)
(1)
= b(b1) ≤ e(k(b1)) = e(x(g(b1)) =

e(x(b1)).

(ii) For d1 = c1 ∈ C we have d(c1)
(2)
= c(c1) ≤ e(h(c1)) = e(x(n(c1))) = e(x(c1)).

2
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As next property, we shall show that pullbacks along Mstrict-morphisms exist
and preserve Mstrict-morphisms.

Lemma 4.5 In Markings, pullbacks along Mstrict-morphisms exist and preserve
Mstrict, i.e. given morphisms g and n with n strict, then the pullback (PB) exists
and m is also a strict morphism.

(A, a) (B, b)

(C, c) (D, d)

m

n

f g(PB)

Proof. Given g, n with n ∈ Mstrict we construct A as pullback object in Sets,
which means A = g−1(n(C)) with inclusion m : A → B and f : A → C : a 7→
n−1(g(a)). For all a1 ∈ A, a is defined by

(∗) a(a1) = b(m(a1)).

Obviously, a is a well-defined marking. f is a well-defined function since n is
injective. We have to show that f , m are Markings-morphisms and m is strict.

(i) ∀a1 ∈ A we have: a(a1)
(∗)
= b(m(a1)) ≤ d(g(m(a1)) = d(n(f(a1)) n strict=

c(f(a1)).
This means f ∈Markings.

(ii) ∀a1 ∈ A we have: a(a1)
(∗)
= b(m(a1)).

This means m ∈Markings and m is strict.

It remains to show the pullback property. Given Markings-morphisms h :
(E, e) → (C, c), k : (E, e) → (B, b) with n ◦ h = g ◦ k, we have a unique induced
morphism x in Sets with f◦x = h and m◦x = k. We shall show that x ∈Markings,
i.e. ∀e1 ∈ E : e(e1) ≤ a(x(e1)).

(A, a) (B, b)

(C, c) (D, d)

(E, e)

m

n

f g

x

h

k

(PB)

For e1 ∈ E we have e(e1) ≤ b(k(e1)) = b(m(x(e1))) m strict= a(x(e1)). 2

It remains to show the weak VK property for Markings. We know that
(Sets,M) is a weak adhesive HLR category for the classM of injective morphisms
[2], hence pushouts in Sets along injective morphisms are van Kampen squares.
But we have to give an explicit proof for the markings, because a square (1) in
Markings with m, n ∈ Mstrict, which is a pushout in Sets, is not necessarily

11
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pushout in Markings, since we may have d(g(b1)) > b(b1) for some b1 ∈ B\m(A).

(A, a) (B, b)

(C, c) (D, d)

m

n

f g(1)

Lemma 4.6 In Markings, pushouts alongMstrict-morphisms are weak van Kam-
pen squares.

Proof. Given the following commutative cube (2) with m ∈ Mstrict and (f ∈
Mstrict or t, u, v ∈Mstrict), where the bottom face is a pushout and the back faces
are pullbacks, we have to show that the top face is a pushout if and only if the front
faces are pullbacks.

(A′, a′)

(B′, b′)

(A, a)

(B, b)

(C ′, c′)

(D′, d′)

(C, c)

(D, d)

m′

s

f ′

g′

t
m

f

n′

u

v

n
g(2)

”⇒” If the top face is a pushout then the front faces are pullbacks in Sets,
since all squares are pushouts or pullbacks in Sets, respectively, where the weak
VK property holds. For a pullback (1) with m, n ∈ Mstrict, the function a of A

is completely determined by the fact that m ∈ Mstrict as shown in the proof of
Lemma 4.5. Hence a diagram (1) in Markings with m, n ∈ Mstrict is a pullback
in Markings if and only if it is a pullback in Sets. This means, the front faces are
also pullbacks in Markings.

”⇐” If the front faces are pullbacks we know that the top face is a pushout
in Sets. To show that it is also a pushout in Markings we have to verify the
conditions (1) and (2) from the construction in Lemma 4.4.

(1) For b′1 ∈ B′\m′(A′) we have to show that d′(g′(b′1)) = b′(b′1).
If f is strict then also g and g′ are strict, since the bottom face is a pushout

and the right front face is a pullback, and Mstrict is preserved by both pushouts
and pullbacks. This means that b′(b′1) = d′(g′(b′1)).

Otherwise t and v are strict. Since the right back face is a pullback and b′1 ∈
B′\m′(A′) we have t(b′1) ∈ B\m(A). With the bottom face being a pushout we
have by (1) in Lemma 4.4

(∗) d(g(t(b′1)))
(1)
= b(t(b′1)).

It follows that d′(g′(b′1)) v strict= d(v(g′(b′1))) = d(g(t(b′1)))
(∗)
= b(t(b′1)) t strict=

b′(b′1).

12
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(2) For c′1 ∈ C ′ we have to show that d′(n′(c′1)) = c′(c′1).
With m being strict also n and n′ are strict, since the bottom face is a pushout

and the left front face is a pullback, and Mstrict is preserved by both pushouts
and pullbacks. This means that c′(c′1) = d′(n′(c′1)).

2

Theorem 4.7 The category (Markings,Mstrict) is a weak adhesive HLR category.

Proof. By Lemma 4.3, the morphism class Mstrict has the required properties.
Moreover, we have pushouts and pullbacks alongMstrict-morphisms in Markings,
as shown in Lemma 4.4 and Lemma 4.5, respectively. By Lemma 4.6, pushouts
along strict morphisms are weak van Kampen squares. Hence all properties of weak
adhesive HLR categories are fulfilled and (Markings,Mstrict) is a weak adhesive
HLR category. 2

Remark 4.8 If we consider the full subcategory B of Markings consisting of
objects (S, s) with s : S → {0, 1} only, this category can be shown to be a weak
adhesive HLR category as well. With this category, we are able to describe the
markings of elementary nets, where on each place at most one token is allowed.

5 From Nets to Systems

In this section we combine nets with markings and show that under certain condi-
tions the category of the corresponding systems is also a weak adhesive HLR cat-
egory. The term net means any variant of Petri nets, for example place/transition
nets, AHL nets or generalized AHL nets.

The general idea is to define for a net N a marking set M(N) dependent on N ,
where the actual marking is a function m : M(N) → N. For place/transition nets
this marking set is the set P of places, for AHL nets and generalized AHL nets this
marking set is the set (A ⊗ P ). Then the category of the corresponding systems
can be seen as a subcategory of a comma category of nets and markings, where the
marking set is compatible with the net.

Definition 5.1 (System) Given a category Nets of nets, a system S = (N, m) is
given by a net N ∈ Nets and a function m : M(N)→ N, where M : Nets→ Sets
is a functor assigning a marking set to each net N .

For systems S = (N, m) and S′ = (N ′, m′), a system morphism fS : S → S′ is
a net morphism fN : N → N ′ such that M(fN ) : (M(N), m) → (M(N ′), m′) is a
Markings-morphism.

Systems and system morphisms form the category Systems.

Theorem 5.2 Given a weak adhesive HLR category (Nets,M′) of nets with a
marking set functor M : Nets→ Sets that preserves pushouts and pullbacks along
M′-morphisms, then the category (Systems,M) of systems over these nets is a
weak adhesive HLR category, whereM is the class of all morphisms fS = (fN ) with
fN ∈M′ and M(fN ) ∈Mstrict.

Proof. First we define the category C = ComCat(M, V, {1}) with V :
Markings→ Sets, V (T, t) = T, V (f) = f . We can apply Thm. 2.3.(v) using that
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M preserves pushouts along M′ and V preserves pullbacks along Mstrict, which
follows from the construction in the proof of Lemma 4.5. It follows that (C,MC)
with MC = (M′ ×Mstrict)|C is a weak adhesive HLR category.

Now we only consider objects (N, (T, t), op1) ∈ C where op1 : M(N)→ T is an
identity, i.e. M(N) = T . This restriction leads to the full subcategory D of C. By
construction, the category D is isomorphic to the category Systems:

• For an object D = (N, (T, t), op1) ∈ D we have op1 : M(N)→ T is an identity, i.e.
D = (N, (M(N), t : M(N) → N), idM(N)), which is a one-to-one correspondence
to the system (N, t) ∈ Systems.

• For a morphism f = (fN , fM ) : D → D′ with D = (N, (T, t), op1) and D′ =
(N ′, (T ′, t′), op1′) we have D = (N, (M(N), t : M(N) → N), idM(N)) and D′ =
(N ′, (M(N ′), t′ : M(N ′) → N), idM(N ′)), and by the definition of morphisms
in a comma category idM(N ′) ◦ M(fN ) = V (fM ) ◦ idM(N). This means that
M(fN ) = V (fM ), which corresponds to the morphism fS = (fN ) ∈ Systems,
where M(fN ) is a Markings-morphism.

To apply Thm. 2.3.(i), we have to show that D has pushouts and pullbacks along
MD-morphisms with MD = MC |D that are preserved by the inclusion functor.
Given objects (Ni, (M(Ni), mi), op1

i = idM(Ni)) for i = 0, 1, 2 and morphisms fS =
(fN , fM ) : (N0, (M(N0), m0), op1

0) → (N1, (M(N1), m1), op1
1) and gS = (gN , gM ) :

(N0, (M(N0), m0), op1
0) → (N2, (M(N2), m2), op1

2) with fS ∈ MD we can construct
the pushout (1) of fN , gN in Nets with fN ∈M′. Since M preserves pushouts along
M′-morphisms, (2) is a pushout in Sets. By assumption, we have M(fN ) ∈Mstrict.
Now we can use the construction in the proof of Lemma 4.4 to construct a marking
m3 : M(N3)→ N leading to the pushout (3) in Markings. By the construction of
pushouts in comma categories, (N3, (M(N3), m3), op1

3 = idM(N3)) is a pushout in C
and D.

N0 N1

N2 N3

M(N0) M(N1)

M(N2) M(N3)

(M(N0), m0) (M(N1), m1)

(M(N2), m2) (M(N3), m3)

fN

f ′N

gN

g′N

M(fN )

M(f ′N )

M(gN )

M(g′N )

M(fN )

M(f ′N )

M(gN )
M(g′N )(1) (2) (3)

Analogously, this can be done for pullbacks using the fact that M preserves pullbacks
along M′-morphisms and the construction of pullbacks in Markings.

This means that we can apply Thm. 2.3.(i) and (Systems,M) ∼= (D,MD) is
a weak adhesive HLR category. 2

As stated in Cor. 3.6 and already shown in [10], the category PTSystems with
the class M of all strict morphisms is a weak adhesive HLR category. This follows
directly from Thm. 5.2, since (PTNets,M′) is a weak adhesive HLR category
and M : PTNets → Sets with M(P, T, pre, post) = P preserves pushouts and
pullbacks along M′-morphisms because pushouts and pullbacks in PTNets along
injective morphisms are constructed componentwise in Sets. Similarly, using Rem.
4.8, we obtain that elementary systems with the class M of all strict morphisms
form a weak adhesive HLR category.
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Now we can apply Thm. 5.2 to AHL systems and show that AHL systems, with
a suitable choice of algebras andM-morphisms, are a weak adhesive HLR category.

Definition 5.3 Given an algebraic specification SP , an AHL system AS =
(AN, m) is given by an AHL net AN = (P, T, pre, post, cond, type, A) over SP

with A ∈ A(SP), where A(SP) is a subcategory of Algs(SP), and a marking
m : (A⊗ P )→ N.

An AHL system morphism fAS : AS → AS′ is given by an AHL net morphism
fAN = (fAC , fA) : AN → AN ′ with fAC = (fP , fT ) and fA ∈ A(SP) that is
marking-preserving, i.e. ∀(a, p) ∈ A⊗ P : m(a, p) ≤ m′(fA(a), fP (p)).

AHL systems and AHL system morphisms form the category
AHLSystems(SP).

Theorem 5.4 If (AHLNets(SP),M′) is a weak adhesive HLR category and the
functor M : AHLNets(SP)→ Sets, defined by M(P, T, pre, post, cond, type, A) =
A ⊗ P and M(fN ) = fA ⊗ fP for fAN = (fAC , fA) and fAC =
(fP , fT ), preserves pushouts and pullbacks along M′-morphisms, then the category
(AHLSystems(SP),M) is a weak adhesive HLR category, where M is the class
of all strict morphisms, i.e. fAS = (fAC , fA) : AS → AS′ ∈ M if fA ∈ M1,
fAC = (fP , fT ) is injective and fAS is marking-strict, i.e. ∀(a, p) ∈ A ⊗ P :
m(a, p) = m′(fA(a), fP (p)).

Proof. By Cor. 3.10, the category (AHLNets(SP),M′) with a suitable choice of
algebras is a weak adhesive HLR category. Then we can apply Thm. 5.2 to obtain
the result that (AHLSystems(SP),M) is a weak adhesive HLR category. 2

Unfortunately, the condition that M has to preserve pushouts and pullbacks
along M′-morphisms is very strict and up to now only two suitable choices for the
category (AHLNets(SP),M′) are known:

(i) The category (AHLNets(SP),Miso) with the class Miso of isomorphisms.
Given the pushout square (1) along an isomorphism fAN in AHLNets(SP),

also f ′AN is an isomorphism. It follows that (fA⊗fP ) and (f ′A⊗f ′P ) are isomor-
phisms and (2) is a pushout in Sets. This can be done analogously for pull-
backs, therefore M preserves pushouts and pullbacks along Miso-morphisms.

AN0 AN1

AN2 AN3

fAN

f ′AN

gAN g′AN

(A0 ⊗ P0) (A1 ⊗ P1)

(A2 ⊗ P2) (A3 ⊗ P3)

(fA⊗fP )

(f ′A⊗f ′P )

(gA⊗gP ) (g′A⊗g′P )(1) (2)

Note, that not only the algebra homomorphism but also the net morphism
has to be an isomorphism. This means that this morphism class is not useful
for adhesive HLR systems, since only isomorphic productions would be allowed.

(ii) The category (AHLNets(SP, Afin),Minj) of algebraic high-level nets with
a finite, fixed algebra A, with the class Minj of injective morphisms with
identities on the algebra part.

Given the pushout square (1), we have to show that also (2) is a pushout.
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AN0 AN1

AN2 AN3

fAN

f ′AN

gAN g′AN

(A⊗ P0) (A⊗ P1)

(A⊗ P2) (A⊗ P3)

(idA⊗fP )

(idA⊗f ′P )

(idA⊗gP ) (idA⊗g′P )(1) (2)

For s ∈ S, define Ps = {p ∈ P | type(p) = s} and fs = f |Ps for a morphism
f : P → P ′. Then we have for an AHL net AN = (P, T, pre, post, cond, type, A)
that M(AN) = (A⊗ P ) = ]s∈S(As ⊗ Ps) = ]s∈S(]a∈As({a} × Ps)).

Using the weak van Kampen property and the fact that (3) is a pushout,
also (4) is a pushout. For a ∈ As the square (4a) is isomorphic to (4) and thus
also a pushout. Since coproducts of pushout squares are again pushouts, also
(2) = ]s∈S(]a∈As(4a)) is a pushout.

P0 P1

P2 P3

fP

f ′P

gP g′P

P0,s P1,s

P2,s P3,s

fP,s

f ′P,s

gP,s g′P,s

{a} × P0,s {a} × P1,s

{a} × P2,s {a} × P3,s

id×fAN

id×f ′AN

id×gAN id×g′AN(3) (4) (4a)

Analogously this can be done for pullbacks, since coproducts of pullback
squares are again pullbacks in Sets.

Even in the case of algebras without operations and the class M′ of injective
morphisms with isomorphic data part, the marking set functor M does not preserve
pushouts along M′-morphisms, as shown in Fig. 1 with f ∈ M′, where all places
are typed by nat. The square (1) is a pushout in AHLNets(SP), but the square
(2) as the result of applying M to (1) is no pushout in Sets. This is due to the fact
that the product of two pushouts in Sets in general does not yield a pushout.

p

A2,nat = {1, 2}

p

A0,nat = {1}

p q

A1,nat = {1}

p q

A3,nat = {1, 2}

(1)

N2

N0

N3

N1

f ′

f

g g′

M(f ′)

M(f)

M(g) M(g′)(2)

M(N2) =

M(N0) =

M(N3) =

M(N1) =

{(1, p),

(2, p)}

{(1, p)} {(1, p), (1, q)}

{(1, p), (1, q),

(2, p), (2, q)}

Fig. 1. Pushout along M′-morphism f that is not preserved by the marking set functor M

Analogously, we can show that generalized AHL systems form a weak adhesive
HLR category, if the marking set functor M preserves pushouts and pullbacks along
M′-morphisms.
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Definition 5.5 A generalized AHL system GS = (GN,m) is given by a general-
ized AHL net GN = (SP, P, T, pre, post, cond, type, A) with A ∈ A, where A is a
subcategory of Algs, and a marking m : (A⊗ P )→ N.

A generalized AHL system morphism fGS : GS → GS′ is given by a generalized
AHL net morphism fGN = (fGC , fGA) : GN → GN ′ with fGC = (fP , fT ) and fGA ∈
A that is marking-preserving, i.e. ∀(a, p) ∈ A⊗ P : m(a, p) ≤ m′(fA(a), fP (p)).

Generalized AHL systems and generalized AHL system morphisms form the
category AHLSystems.

Theorem 5.6 If (AHLNets,M′) is a weak adhesive HLR category and the functor
M : AHLNets → Sets with M(SP, P, T, pre, post, cond, type, A) = A ⊗ P and
M(fGN , fGA) = fGA ⊗ fP for fGN = (fGC , fGA) and fGC = (fP , fT ) preserves
pushouts and pullbacks alongM′-morphisms, then the category (AHLSystems,M)
is a weak adhesive HLR category, where M is the class of all strict morphisms, i.e.
fGS = (fGC , fGA) : GS → GS′ ∈M if fGA ∈M1, fGC = (fP , fT ) is strict injective
and fGS is marking-strict, i.e. ∀(a, p) ∈ A⊗ P : m(a, p) = m′(fA(a), fP (p)).

Proof. By Cor. 3.14, (AHLNets,M′) with a suitable choice of algebras is a weak
adhesive HLR category. Then we can apply Thm. 5.2 to obtain the result that
(AHLSystems,M) is a weak adhesive HLR category. 2

Analogously to the case of AHLNets(SP), the conditions for M are very rere-
strictive, so only two suitable choices for the category (AHLNets,M′) are known
up to now:

(i) The category (AHLNets,Miso) with the class Miso of isomorphisms, which
is, analogously to the case (AHLNets(SP),Miso), not useful for adhesive
HLR systems.

(ii) The category (AHLNetsiso,Msinj) of algebraic high-level nets with mor-
phisms that are isomorphisms on the algebra part, with the class Minj of
strict injective morphisms.

6 Example for a Reconfigurable AHL System

In this section we present an example for a reconfigurable AHL system, i.e. an AHL
system that can be transformed by rule applications.

Our goal is to model a small library system, where users may enter the reading
hall if they have an access card and do not carry a bag. In the reading hall, they
may read books if they have a library card. For leaving the reading hall they have
to give back all books.

The specification SP with empty set of equations and the algebra A are given
in Fig. 2. We define various items that users may carry and some books in the
reading hall.

A user outside the reading hall is modeled by the net in Fig. 3(a), where the
tokens at the place u are the items she carries around, which can be used by firing
the transition use. A user can also interact with its environment by receiving some
items firing the transition get or by delivering some items firing the transition put.
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SP A

sorts: item Aitem = {accessCard, libraryCard, bag, coin}
book Abook = {Hamlet, MobyDick, Romeo&Juliet}

opns: LC :→ item LCA = libraryCard ∈ Aitem

vars: i : item

b : book

Fig. 2. Specification and algebra for the library example

The reading hall is modeled by a place b as shown in Fig. 3(b) where the tokens at
b are all the available books.

u : item

use

put get

accessCard coin

bag
libraryCard

i i

i i

(a) User net

b : book

Romeo&Juliet
Hamlet

MobyDick

(b) Reading hall net

Fig. 3. Nets for the different parts of the library system

For a concrete example we construct the disjoint unions of the reading hall net
and the user nets (for two different users), which is shown in Fig. 4.

u : item

use

put get

accessCard coin

bag
libraryCard

i i

i i

u : item

use

put get

accessCard coin

libraryCard

i i

i i

b : book

Romeo&Juliet
Hamlet

MobyDick

Fig. 4. Start net for the library system with two users

The movement of the users is modeled by productions, where we use, in addition
to Def. 2.4, productions with negative application conditions. A negative applica-
tion condition forbids a certain structure in the net extending the match. Formally,
given a production p = (L l← K

r→ R) it is an object N and a morphism n : L→ N .
In this case, p can be applied to G via a match m : L → G if G

p,m
=⇒ G′ is a direct

transformation and we do not find a morphism q : N → G such that q ◦ n = m.

N L K R

G D H

q

n l r

f g

m k n(1) (2)
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b : book

u : item

accessCard

b : book

u : item

accessCard

put

get

b : book

u : item

put

get

accessCard

bag

ub : book read

takeback

u : item

accessCard

b

b

LC

LC

b

b
b

bn1 l1 r1i

i

i

i

b : book

Production enter :

N1 L1 K1 R1

b : book

u : item

b : book

u : item

put get

ub : book read

takeback

u : item

i i

b

b

LC

LC

b

b
b

b

l2 r2

b : book

Production leave :

L2 K2 R2

Fig. 5. Productions for entering and leaving the reading hall

u : item

use

put get

accessCard coin

bag
libraryCard

i i

i i

ub : book read

takeback

u : item

use

put get

accessCard coin

libraryCard

i i

b

b

i iLC

LC

b

b
b

b

b : book

Romeo&Juliet
Hamlet

MobyDick

Fig. 6. Library system after the application of the production enter and the firing of take

The productions enter and leave in Fig. 5 handle the use of the reading hall,
where all morphisms are inclusions given by the names of the elements. With
enter, a user may enter the reading hall. In this case, she needs to carry an access
card, modeled by the token accessCard on u, and is not allowed to carry a bag,
which is modeled by a negative application condition. After the application of the
production, if she has a library card she is able to take books by firing the new
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transition take and to read them by firing the transition read. She can no longer
interact with her environment, so we delete the transitions put and get. If she
has given back all books, she may leave the reading hall by applying the inverse
production leave. This restriction does not have to be modeled by a negative
application condition, because due to the pushout construction the production is
only applicable if there is no token at the place ub. In Fig. 6, the application of the
production enter to the right user in Fig. 4 followed by a firing step take is shown.
Now this user may read Moby Dick. The production enter cannot be applied to
the left user, because she does have a bag. But she might use the transition put to
leave the bag and, afterwards, she may go to the reading hall.

7 Conclusion and Future Work

In this paper we have introduced the category of markings for Petri nets, which
gives a general construction for the marking of a net. Using this category, we have
extended different variants of Petri nets to systems, i.e. nets with markings. In par-
ticular this works for place/transition systems, AHL systems and generalized AHL
systems and we have shown that these systems are weak adhesive HLR categories
for a suitable choice of markings andM-morphisms. This means that we can apply
the theory for graph transformations developed in [2] also to different kinds of net
transformations based on AHL schemas, nets, and systems.

There are many different notions of Petri nets, AHL nets etc., which have been
shown to be weak adhesive HLR categories. In Fig. 7, an overview of the available
results for schemas, nets and systems is given.

specification/algebra schemas nets systems

none, black token — Minjective Mstrict

elementary nets — Minjective Minjective

fixed specification,
fixed algebra

Minjective Minjective Mstrict

fixed specification,
general algebra

Minjective Minjective,
(A(SP),M) wAHLR

Minjective,
(A(SP),M′) wAHLR,
M preserves PO, PB

general specification,
general algebra

Mstrict injective Mstrict injective,
(A,M′) wAHLR

Mstrict injective,
(A,M′) wAHLR,
M preserves PO, PB

Fig. 7. Requirements for schemas, nets and systems to be weak adhesive HLR categories

At the moment, the available data structure underlying the AHL nets is re-
stricted to a few, but still interesting cases. More work is needed in the area of
algebras, where the categories Algs(SP) of algebras over a certain specification SP

and Algs of generalized algebras and homomorphisms should be verified to be weak
adhesive HLR categories, likely under some restrictions on the specification or M-
morphisms. The category Algs is equivalent to a Grothendieck category (see [12])
indexed over the category Specs. Grothendieck categories have general pushouts
and pullbacks, if so have the underlying categories, and they have free constructions,
but they have not been shown to be weak adhesive HLR categories. A step towards
this has been made in [5], where also some restrictions to the morphism class M
are discussed which could lead to a suitable weak adhesive HLR category.
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In addition, it should be analyzed if there are other categorical constructions
leading to Petri net systems that can be shown to be weak adhesive HLR categories,
where the very strict conditions on the marking set functor M can be weakened.
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