
Self-Repairing Systems Modeling and Verification using AGG

Antonio Bucchiarone
FBK-IRST, Trento, Italy

via Sommarive 18, 38050
Trento, Italy

bucchiarone@fbk.eu

Patrizio Pelliccione, Charlie Vattani
Dipartimento di Informatica

Università dell’Aquila
L’Aquila, Italy

patrizio.pelliccione@di.univaq.it

Olga Runge
Department of Software Engineering and

Theoretical Computer Science
Technical University of Berlin

olga@cs.tu-berlin.de

Abstract—Self-Repairing (or healing) systems are systems
equipped with a mechanism that monitors the system behaviour
to determine whether it behaves within prefixed parameters.
If a deviation exists, then the system itself is in charge of
adapting its configuration. In this paper we show how to model
self-repairing systems by means of Dynamic Software Archi-
tectures (DSAs). DSAs are formalized as Typed (hyper) Graph
Grammars (TGGs) and this formalization enables verification
of correctness and completeness of self-repairing systems. DSAs
are modeled and verified by using the Attributed Graph
Grammar system (AGG). The overall approach is applied to a
traffic light system case study.

Keywords-Self-repairing systems, dynamic software architec-
tures, healing systems, graph grammars, AGG.

I. INTRODUCTION

Traditional systems are usually designed with a set of
requirements and a precise context that provides all the
resources necessary to run system services in mind. On the
contrary, the intended lifespan of modern software systems
makes requirements and context evolution the norm rather
than the exception. When the requirements and the context
evolve, a software system must be able to face changes in
an effective way with minimal human intervention otherwise
it will soon become obsolete. Software systems must be
designed with run-time evolution in mind and, at the same
time, solutions must be adopted to keep the (user’s perceived
as well as system intrinsic) dependability at a satisfactory
level [1]. Mechanisms for run-time adaptation are needed to
provide good reactions to (system and context) changes.

Dynamic Software Architecture (DSA) [2], [3], [4], [5]
plays a central role in enabling system evolution: it has to
support models at run-time, continuous verification and self-
repairing by providing a suitable infrastructure. When the
changes are initiated and accessed internally, DSAs keep the
name of self-repairing DSAs [6]. Different approaches for
self-repairing DSA have been proposed in literature, e.g., [6],
[7]. Typically, they are bound to particular languages and
models. In this paper we are aimed at understanding the
main notions of DSAs by abstracting away from particular
languages and notions. In other words, we want to give a
uniform and formal representation of DSAs that is abstract
enough to cover most of the features presented in previous

works. In this sense, our work is in line with other researches
(e.g., [4], [8], [9]). The formalization of self-repairing DSAs
that we provide in this paper, obtained by extending the
formalization already presented in [10], enables the veri-
fication of correctness and completeness of self-repairing
specification. More precisely, this allows us to verify that
each desirable configuration can be reached (completeness)
and that for each reachable configuration that is not desirable
there exist repairing productions (correctness).

In this paper we use AGG1 as the framework to model
and verify DSAs. The use of AGG solves many limitations
emerged by using Maude and Alloy [11]. In [10] we use
hypergraph grammars as a formal framework for mapping
the different notions of dynamism. In [11] we presented
two ways to model and analyze DSAs: (i) by using ordinary
typed hypergraph transformation techniques implemented in
Alloy [12], and (ii) by means of a process algebraic presen-
tation of graph transformation implemented in Maude [13].
With the use of AGG we are able to verify completeness
and correctness of self-repairing systems by means of a
unique formalism (i.e., T -typed Hypergraph Grammars) and
a unique modeling and verification tool.

The paper is organized as following: Sect. II sets the
context of the paper and relates this paper with the state of
the art in dynamic software architectures. Section III shows
how to represent self-repairing software architectures as T -
typed hypergraph grammars. Section IV presents the AGG
framework that we used to model and verify self-repairing
systems. We apply the methodology to an existing automated
traffic light system: Sect. V describes the use of AGG for
modeling the case study, while Sect. VI describes the use of
AGG for verifying the system. Finally, Sect. VII concludes
the paper and discusses future works.

II. DYNAMIC SOFTWARE ARCHITECTURES

In the last years several research papers and projects
have had their dynamic system modeling and adaptation as
main topic; furthermore they have provided new paradigms
that extend the classic software architecture notation. For
example Morrison et al in [14] define an Active Architecture

1AGG: http://tfs.cs.tu-berlin.de/agg.



as: “A software architecture that can evolve during execution
by creating, deleting, reconfiguring and moving components,
connectors and their configurations at runtime”. Chatley et
al. in [15] define Plugin architectures where components
(i.e., Plugins) can be added (or deleted) to an existing
system at runtime to extend (or reduce) its functionality, by
preserving desired properties. Bradbury et al. in [8] define
a Self-managing architecture as: “an architecture that not
only implements the change internally but also initiates,
selects, and assesses the change itself without the assistance
of an external user”. Finally, Hirsch et al. in [16] propose
the notion of Mode as a new element of architectural
descriptions with the goal of providing flexible support
for the description and verification of complex adaptable
service oriented systems. Moreover, a variety of definitions
of dynamism for software architecture have been proposed
in Literature. Below we list some of the most prominent
definitions to show the variability of connotations that the
word dynamic acquires:
Programmed [17]: all admissible changes are defined prior
to runtime and are triggered by the system itself;
Self-Reparing [6]: changes are initiated and assessed inter-
nally, i.e., the runtime behavior of the system is monitored
to determine whether a change is needed. In such case, a
reconfiguration is automatically performed;
Ad-hoc [17]: changes are initiated by the user as part of a
software maintenance task, they are defined at run-time and
are not known at design-time;
Constructible [3]: it is a kind of ad-hoc mechanism but all
architectural changes must be described in a given modifi-
cation language, whose primitives constrain the admissible
changes.

In this paper we focus on self-repairing dynamic software
architectures. Researchers have differing views on what
comprises research on self-repairing systems. In [18] the
author proposes a taxonomy for describing the problem
space for these systems and concludes the paper saying
that :“Relevant aspects of self-repairing system approaches
include fault models, system responses, system completeness,
and design context”. Moreover, he specifies that the SA of
a self-repairing system must provide adaptation mechanisms
to make the system “open” so that third-party components
can be added during or after system deployment. Cheng et
al. in [7] introduce a SA-based self-adaptation framework,
called Rainbow, which uses external mechanisms and a SA
model to monitor a managed system, detect problems, deter-
mine a course of action, and carry out the adaptation actions.
In [19] some authors of the Rainbow framework extend it
proposing a new language of adaptation able to capture the
basic ontology, for an adaptation language that holds the
promise of automating human tasks in system management.
Other works have the objective to use architectural styles to
support architecture-based self-adaptation. Baresi et al. [4]
formalize architectural style as a typed graph transformation

system. It consists of a type graph to define architectural
elements and their relationships, a set of constraints to
further restrict the valid models, and a set of graph transfor-
mation rules. Nodes of the type graph define the architectural
elements (i.e., components, connectors, ports, interfaces,
etc.). Edges define the possible relationships among these
elements. Moreover, a concrete architecture is an instance
graph of the type graph. Reconfiguration mechanisms are
modeled using transformation rules that can be applied to
change the SA configuration.

Motivation of the work

In this paper we are aimed at proposing a uniform formal
specification of self-repairing DSAs that is able to cover most
of the features of the languages and models proposed in
Literature. We aim to build a formal specification in order
to be able to perform the verification of correctness and
completeness of self-repairing system specifications. The use
of AGG is strategic since by means of this tool we are able to
use a unique formalism for both modeling and verification.

III. REPRESENTING SELF-REPAIRING SAS AS T -TYPED
HYPERGRAPH GRAMMARS

In this section, building on the formalization presented
in [10], we show how to represent self-repairing software
architectures as T -typed hypergraph grammars. The first
definition that we introduce is the definition of hypergraph.

Definition 1 (Hypergraph): A hypergraph is a triple
H=(NH ,EH ,φH), where:
• NH is the set of nodes;
• EH is the set of hyperedges. A hyperedge e∈EH ,
e=(l,{t1,· · · ,tn}), is a pair composed of l, that is the label
of the hyperedge, and {t1,· · · ,tn}, that is the set of tentacles
of e;
• φH : EH → N+

H × · · · × N
+
H describes the connections

of the graph, where N+
H stands for the non-empty set of

elements of NH .

Given a hypergraph H=(NH ,EH ,φH), let e∈EH be
a hyperedge and t a tentacle of e, we denote with
φH(e)→{{nt11 , · · · , n

t1
k }, . . . , {n

tn
1 , · · · , n

tn
h }} the ordered

set of sets of nodes that are matched by the hyperedge
e by means of the tentacles t1, . . . , tn, respectively. We
denote with φH(e)[ti] the set of nodes {nti1 , · · · , ntir } that
are matched by the hyperedge e by means of the tentacle ti.

In our formalization components and connectors are rep-
resented by hyperedges. A hyperedge is composed of the
component and connector name and of a set of tentacles
that represent the ports of components and connectors. A
node of a hypergraph represents the match between a port
of a component (or connector) and a port of a different
component (or connector). These matches are realized by
means of the connection function φH that associates each



component and connector to an ordered and non empty
sequence of matches.

In our context a hypergraph is well-formed iff for each
tentacle t of each hyperedge e, there exists a function
φH(e)[t]→{n1, · · · , nm} for some n1, · · · , nm.

Architectural styles are defined by means of particular
hypergraphs, in which nodes have also an arity that
constraints the number of times a node can be matched by
the connection function. The purpose of the architectural
style is to describe the types of connectors and components,
and to define the allowed connections among these elements.
A configuration compliant to such style is described by the
notion of Typed Hypergraph, defined in Def. 2.

Definition 2 (Typed Hypergraph): Given a hypergraph T
(called the style), a T -typed hypergraph or configuration is
a pair 〈G, τ〉, where G is the underlying graph and τ is a
function that maps each element of G to its element type in
the style.

A T -typed hypergraph G is well-formed if its connection
function respects the constraints imposed by the arity of each
node (defined into the typed hypergraph T ). With HT we
denote a set of T -typed hypergraphs.

The reconfiguration of a software architecture is described
by a set of rewriting productions. A production pr:HT→HT
is a partial, injective morphism of T -typed hypergraphs
that transforms the left-hand side of the production into
the right-hand side. Then, a dynamic software architecture
is described by a T -typed hypergraph grammar (see Def. 3).

Definition 3 ((T -typed) hypergraph grammar): A (T -
typed) hypergraph grammar G is a tuple 〈T ,Gin,PR〉,
where T is the style, Gin is the initial (T -typed) hypergraph
and PR is a set of productions.

Let G=〈T ,Gin,PR〉 be a (T -typed) hypergraph gram-
mar, and G and H two (T -typed) hypergraphs. With
G⇒prH we denote that G is rewritten in one step to
H by using the production pr. We abbreviate the reduc-
tion sequence G0⇒pr0G1⇒pr1G2⇒pr2 . . .⇒prn

Gn+1 with
G0⇒pr0;pr1,...;prn

Gn+1. Finally, with G⇒+G′ we denote
that there exists a non-empty sequence s∈PR+ of derivation
steps such that G⇒sG

′.
Moreover, given a grammar G=〈T ,Gin,PR〉, we use the

following notions:
• with R(G) we denote the set of reachable configurations,
i.e., all configurations to which the initial configuration Gin
can evolve. Formally,R(G)={G| G is a T -typed hypergraph
∧ Gin⇒+G};
• with DP(G) we denote desirable configurations, i.e., the set
of all (T -typed) hypergraphs that satisfy a desired property
P. Formally, DP(G)={G | G is a T -typed hypergraph ∧
P holds in G}. It is not important for the aim of this paper
to better investigate the nature of the properties P. In future

work we could investigate the use of graphical formalism
for expressing properties, such as [20].

A. Repairing (or healing) dynamism

Repairing systems are equipped with a mechanism that
monitors the system behavior to determine whether it be-
haves within prefixed parameters. If a deviation exists, then
the system is in charge of adapting the configuration [6]. A
dynamic repairing software architecture can be represented
as a T -typed hypergraph grammar GR=〈T ,Gin,PR〉 in
which the set of productions is divided into three different
subsets: PR=PRpgm∪PRenv∪PRrpr. PRpgm contains
productions that describe the normal and ideal behavior of
the architecture, i.e., G′R=〈T ,Gin,PRpgm〉 is a programmed
DSA (already formalized in [10] and [21]). PRenv contains
productions that model the environment or, in other words,
the ways in which the behavior of the architecture may
deviate from the expected one (e.g., loss of communication
messages, communication managed by a non-authorized
connector, etc.). Productions in PRrpr indicate the way in
which an undesirable configuration can be repaired in order
to become a valid one. That is, the left-hand side of any rule
in PRrpr identifies a composition pattern in the system that
is undesirable.

1) Repairing dynamism - Verification aspects: Repairing
dynamism specifications can be checked for correctness and
completeness. Let GR=〈T ,Gin,PR〉 be a T -typed hyper-
graph grammar, then:
• the specification is complete if each desirable configuration
different from Gin can be reached by applying repairing
mechanisms. Formally, for each G∈DP(GR), with G6=Gin,
G∈R(GR).
• the specification is correct if there exist repairing produc-
tions for each reachable configuration that does not belong
to the set of the desirable configurations. Formally, for
each G∈R(GR), if G/∈DP(GR) then ∃q∈PRrpr such that
G⇒qG

′, for some G′∈DP(GR).

B. Self dynamism

Usually, some kind of dynamism (like programmed and
repairing) is also qualified as “self”, meaning that the
changes are initiated by the system itself. In [8] a classifica-
tion of dynamism of DSAs has been proposed. In addition to
external reconfiguration, in which the reconfiguration rule
is selected by an external source, there are two categories
of dynamism:
Autonomous: the system selects one transformation among
the applicable transformations in a non-deterministic way.
This corresponds to the notion of internal choices in process
calculi. Accordingly, we may represent such reductions by
hiding the actual name of the applied rule. That is, G⇒prG

′,
in which pr is autonomous, can be represented as G⇒τG

′,
where τ stands for a hidden change.



Pre-defined: pre-defined selection is a special case of au-
tonomous choice, in which the system selects in a pre-
defined way the appropriate transformation to apply from the
set of available ones. In this case, the choice is completely
deterministic (like a conditional choice if - then - else
of process calculi). This can be mapped into hypergraph
grammars as the definition of priorities in the selection of
productions to be applied. As shown in [22], application
conditions can be used as priorities for restricting the order
in which rules are applied.

Let GS=〈T,Gin,PRext∪PRself 〉 be a grammar, where
PRext stands for the set of all reconfigurations that are
controlled by the environment, while PRself contains all the
autonomous productions. We say GS has (i) self dynamism
if PRext=∅, (ii) external dynamism if Pself =∅, or (iii)
mixed dynamism otherwise. Assuming that all rewriting
steps G⇒prG

′ are written G⇒τG
′ when pr∈PRself , we

define the following sets associated to the grammar GS :
• the set S(GS) of autonomous or self reconfigurations,
i.e., the set of all configurations reachable by applying
autonomous changes is: S(GS) = {G | Gin ⇒τ∗ G};
• the set Ec(GS) of reconfigurations associated to an external
sequence c=p1. . .pn of commands:
Ec(GS)={G|Gin⇒cG, with c=τ∗,p1,τ∗,. . .,τ∗,pn,τ∗}. In
other words, Ec(GS) contains all the configurations reachable
from the initial configuration by applying the sequence c of
external chosen rules interleaved with the application of zero
or more autonomous reconfigurations.

1) Self dynamism - Verification aspects: Clearly, S(GS)
and Ec(GS) are subsets of R(GS). Hence, we can proceed
as in Sect. III-A1, and we can formulate some verification
issues. The completeness and correctness properties can be
specialized as follows:
• the specification is complete - self reconfigurations if each
desirable configuration different from Gin can be reached
by applying autonomous repairing mechanisms. Formally,
for each G∈DP(GR), with G6=Gin, G∈S(GR).
• the specification is complete - external reconfigurations
if each desirable configuration different from Gin can be
reached by applying a sequence of external chosen rules
interleaved with the application of zero or more autonomous
reconfigurations rules. Formally, for each G∈DP(GR), with
G6=Gin, G∈Ec(GR).
• the specification is correct - self reconfigurations if there
exist self repairing productions for each configuration that
does not belong to the set of the desirable configura-
tions. Formally, for each G∈S(GR), if G/∈DP(GR) then
∃q∈PRself such that G⇒qG

′, for some G′∈DP(GR).
• the specification is correct - external reconfigurations if
there exist external repairing productions for each configu-
ration that does not belong to the set of the desirable config-
urations. Formally, for each G∈Ec(GR), if G/∈DP(GR) then
∃q∈PRext such that G⇒qG

′, for some G′∈DP(GR).

IV. ATTRIBUTED GRAPH GRAMMAR (AGG) SYSTEM

AGG is a well established graph transformation envi-
ronment developed at TU Berlin. The AGG environment
is designed as a tool for editing directed, typed and at-
tributed graphs in order to define a graph grammar. This
graph grammar is the input of the graph transformation
engine of AGG that performs transformation steps for user-
selected productions. The AGG language is a rule based
visual language supporting an algebraic approach to graph
transformation. It allows specifying and rapid prototyping
applications with complex, graph structured data.

The application’s behavior is described by graph rules
using an if-then programming style. The application of
a graph rule changes the graph structure. AGG supports
conditional graph transformations. Transformation rules may
specify positive and negative application conditions. A Pos-
itive Application Condition (PAC) indicates the presence
of a given graph structure (i.e., a certain combination of
nodes and edges). A Negative Application Condition (NAC)
indicates the required absence of a graph structure. Addition-
ally, rules may have attribute conditions being Boolean Java
expressions. The control flow is implicitly handled by the
dependency of rule applications. Alternatively, rule applica-
tions may be controlled by graph constraints and explicit
control constructs such as layered graph transformation.

The user interface of AGG for editing graph grammars
consists of graphical editors for graphs and rules as well
as a textual editor for Java expressions integrated into the
visual editors. Moreover, visual interpretation and debugging
are supported. The strength of AGG lies in its several kinds
of validations. The validation tool offers several features,
namely: (i) graph parse, (ii) consistency checking of graphs,
(iii) termination criteria for controlled rule applications, (iv)
critical pair analysis for conflict detection of graph rules in
concurrent transformations, and (v) applicability and non-
applicability check for rule sequences.

In the following we focus on consistency checking of
graphs and critical pair analysis, which are interesting for
our perspectives. Section VI will put in practice AGG by
showing how this tool can be used for checking correctness
and completeness of self-repairing system specifications.

A. Consistency Check of Graphs

AGG provides consistency control mechanisms, which
are able to check if a given graph satisfies certain consis-
tency conditions (constraints) specified for a graph gram-
mar. These consistency conditions are Boolean formulas of
atomic graph constraints which describe basic properties of
graphs as e.g., the existence of certain elements, indepen-
dent of a particular rule. AGG allows us to convert global
consistency conditions into post application conditions for
individual rules [23]. A so-extended rule is applicable to
a consistent graph if and only if the derived graph is
consistent. A graph grammar is consistent if the start graph



satisfies the consistency conditions and the rules preserve
this property. Since a consistency condition is a Boolean
formula the negation of an atomic graph constraint inside
it will express the absence of some graph structure in
a graph G. We will exploit this feature of consistency
conditions in our case study. There are two ways how
to use consistency conditions for checking consistency of
graphs during graph transformation. The first way is to check
consistency conditions on a graph globally. In other words,
they will be checked after each rule application during
graph transformation. If graph consistency is satisfied, the
transformation step is accepted, otherwise it is refused and
another applicable rule is taken for the next step. The second
way is to convert global consistency conditions to the Post
Application Conditions (PACs) for individual rule or for all
rules. This converting will not be done automatically. The
user has to choose which consistency conditions for which
rule(s) should be converted to PACs. Then, they are used
for checking graph consistency after the rule is applied.
Transformation step will be refused when consistency check
failed.

In our case study we do not use converting consistency
conditions into Post Application Conditions for individual
rules but we let to check consistency conditions globally
after each rule application during graph transformation.

B. Critical Pair Analysis

Critical pair analysis (CPA) [24], [25] is the static analy-
sis of potential conflicts and dependencies of transformation
rules based on the notion of independence of graph transfor-
mations i.e., when two transformations are neither causally
dependent nor in conflict.

If two transformations are mutually independent, they can
be applied in any order yielding the same result. This is
a case of parallel independence. In general, there are three
reasons why rule applications can be conflicting: (i) one rule
application deletes a graph object which is in the match of
another rule application; (ii) one rule application generates
graph objects in a way that a graph structure would occur
which is prohibited by a NAC of another rule application;
(iii) one rule application changes attributes being in the
match of another rule application.

Because of the duality between conflicts and dependen-
cies, critical pair analysis can be used to find all potential
dependencies of rules. From the set of all critical pairs we
can extract the nodes and edges which cause conflicts or
dependencies.

Surveying the results of the analysis, the designer has
to decide which dependencies or conflicts really represent
errors. Not every conflict represents an error. If two rules
are meant to be applied alternatively, the conflict simply
reflects this requirement at the object level. Concerning
dependencies, improvements of the model may be proposed
whenever the dependencies defer from the control flow.

An absence of conflict and dependency could either
indicate that rules may be applied concurrently or that the
specification could be enhanced by explicitly modeling the
restrictions that lead to a rather sequential execution. Then,
the results of CPA can give valuable hints for improving the
model both from the presence and the absence of conflicts
and dependencies.

The AGG tool provides a graphical user interface for
generating and browsing through computed critical pairs. It
gives clear and sufficient information about critical pairs and
allows us to consider a critical pair in more detail, i.e., for
each pair, the two rules and all critical overlapping graphs
with corresponding matches are shown.

In general, CPA is time and space expensive. However, the
number of critical pairs can be reduced drastically by the use
of multiplicity constraints. Moreover, the set of critical pairs
can be reduced considerably by defining graph constraints.
Not all kinds of graph constraints can be successfully used
for reduction, because CPA operates: i) on minimal graphs of
critical situation, and ii) in variable attribute context where
not all attribute values and conditions can be evaluated.
AGG allows optional use of graph consistency constraints
for CPA. Sometimes it makes sense to abstain from checking
consistency constraints during critical pair analysis espe-
cially when graph constraints aim to check not only graph
structure but mainly the attribute values of the components.

V. TRAFFIC LIGHT SYSTEM CASE STUDY

In this section we apply the methodology presented in this
paper to an existing automated traffic light system2. The new
traffic light technology is based upon electromagnetic spires
buried some centimeters. Also, it is underneath the asphalt
of the most congested paths. The spires register traffic data
and send them to others components of the system, which
will handle the information. The system helps the infraction
system by making it incontestable. In fact, the Traffic Light
System (TLS) is connected to cameras which record videos
of the violations and automatically send them to the center
of operations. The TLS is responsible for regulating the
traffic lights in a “smart” way. In particular, it provides the
following functionalities:
Switching the traffic light signal: the spires send the
electricity created by the passing of the vehicles to an
Electronic Control Unit (ECU), which registers the medium
speed of the cars, hence the intensity of traffic. The ECU
component sends the data to another ECU component that is
called Supervisor. The Supervisor imparts a cadence
to the green and the red lights of several traffic lights in the
same street. The system gives a priority if more cars are in
line in the same direction.
Management of infractions: each camera is connected to
the Supervisor, which constantly controls the traffic light

2http://www.lasemaforica.com/vista red.htm



signal and the ECU. If a vehicle transits upon the spires while
the street light is red, the Supervisor triggers the camera,
which starts recording. When the light is green, it ignores
the spires and does not trigger the cameras. Contextually
with the infraction event, the camera sends the records to the
video recorder of the center of operations, which stores date,
time and Supervisor ID in order to avoid legal challenges.
Error management: each time there is an error in the
system the supervisor detects it and sends the error type
to the CenterOperations. Errors can be the breaking
down of the components as well as the loss of connection
from one of the components of the TLS with the rest of
the system. The CenterOperations triggers a repairing
procedure to restore system faults. In this scenario the
dynamism is given by the traffic flow. Vehicles join and
leave the system continuously, and there is no way to predict
it, and so we cannot predict the traffic light behavior. In the
following we show the TLS configurations:

• Traffic flow: as the cars get to the cross road, the traffic
flow is stored in the Spire component and sent to the
ECU component. Then, the ECU component forwards
the information to the Supervisor component which
will manage it;

• Switching: switching between green/red light. This is
handled by the Supervisor component;

• Light Check: checks that each cross road has only one
green light turned on. This checking is carried on by
the Supervisor component;

• Broken Camera: the Supervisor component checks
if there is an error signal linked to the Camera
component and sends it to the CenterOperations
component;

• Broken traffic light: if there is a loss of a traffic light
signal, the system handles it in order to repair it, if
possible (obviously some faults are unrecoverable);

• No traffic flow: when there is no traffic flow then every
red traffic light must be turned on, and every green
traffic light must be turned off.

A. TLS Components and Style

This section introduces the components and the style of
the TLS. The architecture of the system is composed by five
components that are shown in Fig. 1.

As described in Sect. III, each component and connector
is represented as a hyperedge where its tentacles represent
ports. For example, the Supervisor component of Fig. 1
has three ports: supCO, supCam and supTL to connect
it to the components CenterOperations, Camera and
TL, respectively. As we can see from the typed graph (or
style) of Fig. 2, the TLS system is composed of only one
CenterOperations component, of one Supervisor,
of two TL components, two Camera components, and two
optional Car components, one for each TL.

Figure 1. Basic Components of TLS

It is important to model how many objects can be con-
nected through an instance of a hyperedge type. AGG allows
the specification of the multiplicity of the hyperedges of the
typed graphs. Expressing a multiplicity at the target end of a
hyperedge type means specifying the number of nodes which
may be connected to the source node across hyperedges of
the given hyperedge type. A multiplicity at the source end
of a hyperedge type is interpreted similarly. For instance,
by referring to Fig. 2, the SupTL tentacle (port) is attached
with the component Supervisor at its source, and with
two connections TL−Supervisor at its target. Each TLSup
hyperedge is attached with the component TL at its source,
and with the connection TL−Supervisor at its target.
Setting multiplicities in AGG has several positive effects
since they pose additional constraints on a hypergraph:
1) the number of NACs for rules might decrease;
2) the number of consistency conditions might decrease;
3) the efficiency of the critical pair analysis might increases.

Figure 2. Style of TLS

Points 1 and 2 are important since those are the instru-
ments that we use to check correctness and completeness of
our grammar and then decreasing the number of NACs and
consistency conditions means decreasing the amount of work
to the programmer. As explained in Sect. IV, AGG enables
attributing nodes and tentacles. This is very useful especially
for expressing consistency conditions of the grammar. In
the TLS, the component TL has three Boolean attributes:
onGreen, onRed and infraction. They express whether a
green/red light is on/off and whether there is an infraction



going on. The ports TLSup and CamSup have also the sig-
nal Boolean attribute. This is used to model whether or not
there is a communication between TL and Supervisor
or between Camera and Supervisor. Figure 3 shows
an example of a style-conformant configuration of the TLS
composed of two traffic lights (i.e., TL). It could represent
the model of a crossroad with two traffic lights.

Figure 3. A configuration of TLS

B. TLS Productions

The set PR of productions of GTLS models the following
system configurations:

• Switching: the system switches between green/red light
based on the traffic flow;

• Light Check: the system checks that each cross road
has only one green light turned on;

• Infraction management: whether there is an infraction
the system has to trigger the camera;

• Loss of traffic light signal: if there is a loss of a traffic
light signal, the system tries to repair it;

• Loss of Camera signal: if there is a loss of Camera
signal, the system tries to repair it.

Figure 4. Rule oneCar of TLS

As shown in Sect. III the set of possible productions is
composed of three subsets: Programmed (PRpgm), Environ-
ment (PRenv) and Repairing (PRrpr). In the following we
describe only one production for each subset and remand
the reader to see the complete case study at the following

link3. The production presented in Fig. 4 shows the situation
in which a Car component is added to the TLS. This
means that the biggest amount of traffic is in that specific
TL. Therefore, the addition of a Car means switching the
TL attribute onGreen from false to true, and the attributes
onRed from true to false. Attributes of the components
in the left hand-side are set to values required for this
situation. This rule cannot be applied when there is another
TL such that onGreen==true. Additionally, the NAC
TLsignalFalse controls the rule application by preventing
that the rule is applied when at least one TL component does
not send a signal. The left hand-side production presented
in Fig. 5 models the situation in which the system changes
its status from a desirable one into an undesirable one.
Here, the system is in a status where the signal emitted
by TL is correctly received and it goes to a status where
the signal from TL is lost. Then, the component TL cannot
communicate with the rest of the system. The right hand-
side instead models the situation in which the system goes
from an undesirable status in which the signal from TL is
lost, to a desirable one, where the signal is re-established.

Figure 5. Rules failureTL and repairTL of TLS

VI. TLS VALIDATION USING AGG
In this section we demonstrate how the analysis feature

of AGG can be used for self-repairing system specifications
in order to check it for correctness and completeness. In
the following we start briefly describing how the TLS is
implemented in AGG. Then we show how AGG is used to
validate the system specification.

A. TLS Implementation in AGG
The TLS is represented by a Typed Attributed Graph

Grammar. In the Type Graph (Style) shown in Fig. 2, each
component of the system is represented by a hyperedge with
a label. Each tentacle, represented by an edge, represents
each single port of communication. Moreover, nodes and
edges are attributed and multiplicity constraints are defined.

The productions of the TLS are Typed Attributed Rules in
AGG. Most rules of the TLS are equipped with one or more
NAC. Attributes, multiplicities, and NACs are very useful,
in addition to control the application of rules, especially for
expressing consistency conditions of the TLS. Finally, we
defined some graph consistency constraints for the grammar.
They specify global properties of the TLS which must be
satisfied to guarantee the validity of the system.

3www.antoniobucchiarone.it/TLSCaseStudy/WICSA09.zip



Figure 6. Graph consistency constraint allGreen of TLS

Figure 6 shows an atomic graph constraint, called
allGreen, which is used in a Boolean constraint, called
oneGreen. oneGreen, in the form of ¬allGreen, is defined
in order to forbid any configuration that has two contempo-
rary TLs such that onGreen=true and onRed=false. The
premise of this graph constraint (and of all other) is given
by an empty graph which is always found in the start and
each transformed graph. Once the conclusion is found, the
Boolean constraint oneGreen fails and then it prevents a
rule application which causes an inconsistent configuration.
Table I summarizes the aspects of TLS formalization and its
corresponding implementation in AGG.

Informal Aspect Formalization AGG Implementation
Comp and Conn Hyperedge Nodes and Edges

Port and Role Hyperedge Tentacles Edge with Node
SA Configuration Hypergraph Directed Graph

Comp/Conn Node Node
Connections

Architectural Style Hypergraph Type Graph
Style-compliant Typed Hypergraph Typed Attributed

SA configuration Graph
SA reconfiguration Partial, injective Partial, injective

morphism of T-typed typed
hypergraphs attributed rules

DSA T-typed hypergraph Typed Attributed
grammar Graph Grammar

Table I
RELATIONS BETWEEN FORMALIZATION AND AGG IMPLEMENTATION

B. Repairing dynamism validation

The formalization of completeness and correctness of a
repairing dynamism specification is explained in Sect. III.

The verification of completeness can be performed in
AGG by means of critical pair analysis. More precisely,
if for each pair of rules (p1, p2) with p1 ∈ PRpgm and
p2 ∈ PRrpr no dependency can be found, then the normal
(programmed) rules do not enable application of repairing
rules. This means, if a repairing rule could be applied, then
the configuration before was incorrect, so any programmed
rules could not be applied, but only repairing. After repairing
rule is applied the configuration will be correct again and
a programmed rule is applicable. The dependency analy-
sis results in Fig. 7 show that the dependency (change -
use attribute) exists for each pair of rules (p1, p2) with
p1 ∈ PRrpr and p2 ∈ PRpgm. When there is no dependency
of a repairing and programmed rules then we have to ask
what will repair such a rule and have to check it. Conflicting

rule pairs in Fig. 8 show that each repairing rule is in conflict
with itself because a repairing rule prevents the applicability
of itself.

Figure 7. Dependency Matrix of TLS in AGG

The verification of correctness can be described in terms
of critical pair analysis as following: for each pair of rules
(p1, p2), with p1∈PRenv and p2∈PRrpr there must exist a
dependency (i.e., change - use attribute). This means that
after application of an environment rule, which destroys
a consistent configuration, an opposite repairing rule is
applicable to restore consistency of this configuration. We
can see these dependences in Fig. 7. Moreover, Fig. 8 shows
that each environment rule is in conflict with itself since
an environment rule prevents applicability of itself. It is
important to note that, each pair (p1, p2) whit p1∈Penv and
p2∈Ppgm are in conflict because of nature of environment.
For example, once the rule failureTL is applied, the signal
of TL component is lost and it cannot communicate with
the rest of the system. The traffic will stop and wait for
the rule repairTL, which repairs invalid configuration and
enables application of normal (programmed) rules.

Figure 8. Conflict Matrix of TLS in AGG

The results of the verification of critical pairs performed
in AGG are shown in Fig. 7 and in Fig. 8. In Fig. 7,
the colored fields represent dependencies, while the colored



fields of the table in Fig. 8 represent the conflicts. The
numbers in the cells mean the number of critical situations
(overlapping graphs) of each rule pair.

As an example of the performed analysis, let us consider
the critical rule pair (failureTL, oneCar). Figure 9 shows
a conflict situation (bold black colored TLSup edge with
the attribute signal=true). The rule failureTL changes the
attribute value from true to false and this impedes the
application of the rule oneCar since it needs this attribute
set to true.

Figure 9. Conflict of rules (failureTL, oneCar)

Figure 10 shows a dependency situation of the rules
(repairTL, oneCar). Rule repairTL changes the attribute
value from false to true and this restores the configuration
in which the rule oneCar is applicable again.

Analyzing critical pairs which represent analogous situa-
tions we can see that all conflicts which are caused by the
environment rules (failureTL, failureCam) will be resolved
by repairing rules (repairTL, repairCam).

Figure 10. Dependency of rules (repairTL, oneCar)

C. Self dynamism verification

The formalization of completeness and correctness in
context of self dynamism of DSA is shown in Sect. III-B. We
recall that S(GS) and Ec(GS) are subsets of R(GS), where
S(GS) are self reconfigurations by applying autonomous
changes, Ec(GS) are reconfigurations by applying an external
sequence of commands, andR(GS) is the set of all reachable
configurations.

In our case study the TLS non-deterministically selects
a rule to be applied. Therefore, the set S(GS) is the set
of all configurations reachable by applying autonomous
changes. Following, it can be associated to our TLS grammar
which defines self dynamism with autonomous repairing
mechanism. The set Ec(GS) is empty. The verification
of correctness of the S(GS) using critical pair analysis
can be reduced to check if for each pair (p1, p2) whit
p1∈PRpgm and p2∈PRrpr no dependencies exist. Consid-
ering the critical pairs for TLS in Fig. 7, we do not find
any dependency rule pair with the first rule from the set
PRpgm ({oneCar,. . .,infractionOff}) and the second from
the set PRrpr ({repairTL, repairCam}). In other words,
each production of self reconfiguration does not produce
configurations that need to be repaired.

The verification of completeness in the context of self
dynamism is similar to the verification of completeness per-
formed for repairing dynamism, as described in Sect. VI-B.

VII. CONCLUSION

In this paper we have presented a way to model self-
repairing systems using Dynamic Software Architectures
(DSAs) formalized as T -typed hypergraph grammars and
implemented in a unique framework called AGG. AGG
has been used to verify correctness and completeness of
these models in an easy way. Future work concerns the
extension of the modeling approach to model and analyze
hierarchical DSAs that have as basic elements more complex
and structured components. We plan to use hierarchical
hypergraphs [26] in which each hyperedge can represent
relations among components. Moreover we have in mind
to consider also timing aspects in our formalization. In
this paper we have not taken into account the behavior
of components and connectors. As future work we will
investigate mechanisms to support the adaptation of the
system behavior. This research line will build on previous
results: (i) [27] that presents an approach to efficiently (and
still maintaining the required properties) manage the whole
reconfiguration of the system when one or more components
need to be updated; (ii) [28] that proposes a theoretical
assume-guarantee framework that allows one to efficiently
define under which conditions adaptation can be performed
by still preserving the desired invariant.



ACKNOWLEDGMENTS

This work is partly supported by the Italian PRIN d-ASAP
and from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube) projects.

REFERENCES

[1] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, and
R. de Lemos et al., “Software Engineering for Self-Adaptive
Systems: A Research Road Map,” in Software Engineering
for Self-Adaptive Systems, ser. Dagstuhl Seminar Proceedings,
no. 08031, 2008.

[2] R. Allen, R. Douence, and D. Garlan, “Specifying and ana-
lyzing dynamic software architectures,” in FASE’98, 1998.

[3] J. Andersson, “Issues in dynamic software architectures,” in
Int. Software Architecture Workshop, 2000, pp. 111–114.

[4] L. Baresi, R. Heckel, S. Thone, and D. Varro, “Style-based
refinement of dynamic software architectures,” in WICSA’04.
Washington, DC, USA: IEEE Computer Society, 2004.

[5] M. Hadj Kacem, M. Jmaiel, A. Hadj Kacem, and K. Drira,
“Evaluation and comparison of adl based approaches for
the description of dynamic of software architectures,” in
ICEIS’05. USA: INSTICC Press, 2005, pp. 189–195.

[6] D. Garlan and B. Schmerl, “Model-based adaptation for self-
healing systems,” in WOSS ’02. ACM, 2002, pp. 27–32.

[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation
with reusable infrastructure,” Computer, vol. 37, no. 10, pp.
46–54, 2004.

[8] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger, “A
survey of self-management in dynamic software architecture
specifications,” in WOSS ’04. ACM, 2004, pp. 28–33.

[9] M. Wermelinger, “Towards a chemical model for software
architecture reconfiguration,” in CDS ’98. IEEE Computer
Society, 1998, p. 111.

[10] R. Bruni, A. Bucchiarone, S. Gnesi, and H. Melgratti,
“Modelling dynamic software architectures using typed graph
grammars,” ENTCS, vol. 213, no. 1, pp. 39–53, 2008.

[11] R. Bruni, A. Bucchiarone, S. Gnesi, D. Hirsch, and
A. Lluch Lafuente, “Graph-based design and analysis of dy-
namic software architectures.” Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 37–56.

[12] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott, All About Maude - A High-
Performance Logical Framework: How to Specify, Program,
and Verify Systems in Rewriting Logic. LNCS, 2007.

[14] R. Morrison, D. Balasubramaniam, F. Oquendo, B. Warboys,
and R. M. Greenwood, “An active architecture approach to
dynamic systems co-evolution,” in ECSA, 2007, pp. 2–10.

[15] R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel,
“Predictable dynamic plugin systems,” in FASE, 2004.

[16] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel, “Modes for
software architectures.” in EWSA’06, 2006.

[17] M. Endler, “A language for implementing generic dynamic
reconfigurations of distributed programs,” in BSCN’94, 1994.

[18] P. Koopman, “Elements of the self-healing system problem
space,” in WADS03, 2003.

[19] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based
self-adaptation in the presence of multiple objectives,” in
SEAMS’06. New York, NY, USA: ACM, 2006, pp. 2–8.

[20] M. Autili, P. Inverardi, and P. Pelliccione, “Graphical Sce-
narios for Specifying Temporal Properties: an Automated
Approach,” Automated Software Engineering (ASE), vol. 14,
no. 3, pp. 293–340, September 2007.

[21] A. Bucchiarone, “Dynamic software architectures for global
computing systems,” Ph.D. dissertation, IMT Institute for
Advanced Studies, Lucca, Italy, 2008.

[22] A. Habel, R. Heckel, and G. Taentzer, “Graph grammars with
negative application conditions,” Fundamenta Informaticae,
vol. 26, pp. 287–313, 1996.

[23] R. Heckel and A. Wagner, “Ensuring consistency of condi-
tional graph rewriting - a constructive approach,” Electr. Notes
Theor. Comput. Sci., vol. 2, 1995.

[24] J. H. Hausmann, R. Heckel, and G. Taentzer, “Detection
of conflicting functional requirements in a use case-driven
approach,” in ICSE 2002. ACM Press, 2002, pp. 105–115.

[25] L. Lambers, H. Ehrig, and F. Orejas, “Efficient conflict
detection in graph transformation systems by essential critical
pairs,” Electron. Notes Theor. Comput. Sci., vol. 211, pp. 17–
26, 2008.

[26] B. H. F. Drewes and D. Plump, “Hierarchical graph transfor-
mation,” J. Comput. Syst. Sci., vol. 64, pp. 249–283, 2002.

[27] P. Pelliccione, M. Tivoli, A. Bucchiarone, and A. Polini, “An
architectural approach to the correct and automatic assem-
bly of evolving component-based systems,” J. Syst. Softw.,
vol. 81, no. 12, pp. 2237–2251, 2008.

[28] P. Inverardi, P. Pelliccione, and M. Tivoli, “Towards
an assume-guarantee theory for adaptable systems,” in
SEAMS2009, 2009.


