
DOI 10.1007/s00165-009-0127-6
BCS © 2009
Formal Aspects of Computing

Formal Aspects
of Computing

Consistent integration of models based on views
of meta models
Hartmut Ehrig, Karsten Ehrig, Claudia Ermel and Ulrike Prange
Institut für Softwaretechnik und Theoretische Informatik, Technische Universität Berlin, Sekr. FR6-1, Franklinstr. 28-29,
10587 Berlin, Germany. E-mail: claudia.ermel@tu-berlin.de

Abstract. The complexity of large system models in software engineering nowadays is mastered by using different
views. View-based modelling aims at creating small, partial models, each one of them describing some aspect of
the system. Existing formal techniques supporting view-based visual modelling are based on typed attributed
graphs, where views are related by typed attributed graph morphisms. Such morphisms up to now require a meta
model given by a fixed type graph, as well as a fixed data signature and domain. This is in general not adequate for
view-oriented modeling where only parts of the complete meta model are known and necessary when modelling a
partial view of the system. The aim of this paper is to extend the framework of typed attributed graph morphisms
to generalized typed attributed graph morphisms, short GAG-morphisms, which involve changes of the type
graph, data signature, and domain. This allows the modeller to formulate type hierarchies and views of visual
languages defined by GAG-morphisms between type graphs, short GATG-morphisms. In this paper, we study
the interaction and integration of views, and the restriction of views along type hierarchies. In the main result,
we present suitable conditions for the integration and decomposition of consistent view models (Theorem 4.1)
and extend these conditions to view models defined over meta models with constraints (Theorem 5.1). As a
running example, we use a visual domain-specific modelling language to model coarse-grained IT components
and their connectors in decentralized IT infrastructures. Using constraints, we formulate connection properties
as invariants.

Keywords: Meta-modelling, Views of visual languages, Generalized typed attributed graph morphisms, View
interaction, View integration

1. Introduction

In recent years, the complexity of large system models in software engineering is mastered by using differ-
ent views or viewpoints. View-based modeling rather aims at creating small, partial models, each one of them
describing some aspect of the system instead of building complex monolithic specifications. Visual techniques
nowadays form an important part of the overall software development methodology. Usually, visual notations

Correspondence and offprint requests to: C. Ermel, E-mail: claudia.ermel@tu-berlin.de

H. Ehrig et al.

like the UML [OMG07], Petri nets or other kinds of graphs are used in order to specify static or dynamic
system aspects. Hence, the syntax definition of visual modeling languages is an important basis for the imple-
mentation of tools supporting visual modeling (e.g. visual editor generation) and for model-based system
verification.

Two main approaches to visual language (VL) definition can be distinguished: grammar-based approaches or
meta-modeling. Using graph grammars and graph transformation [EEPT06], multidimensional representations
are described by graphs. Graph rules are used to manipulate the graph representation of a language element.
Meta-modeling (see e.g. [MOF06]) is also graph-based, but uses constraints instead of a grammar to define a
visual language. The advantage of meta-modeling is that UML users, who probably have basic UML knowledge,
do not need to learn a new external notation to be able to deal with syntax definitions. Graph grammars are
more constructive, i.e. closer to the implementation, and provide a formal basis for visualizing, validating and
verifying system properties.

For the application of graph transformation techniques to VL modeling, typed attributed graph transfor-
mation systems and grammars [EEPT06] have proven to be an adequate formalism. A VL is modeled by a type
graph capturing the definition of the underlying visual alphabet, i.e. the symbols and relations which are available.
Sentences or models of the VL are given by graphs typed over (i.e. conforming to) the type graph. Such a VL
type graph corresponds closely to a meta model. In order to restrict the set of valid visual models, a syntax graph
grammar may be defined, consisting of a set of language-generating graph transformation rules, typed over the
abstract syntax part of the VL type graph.

In this paper, we extend the graph transformation framework in order to allow an adequate specification
of different views and their relations. In the literature, approaches already exist to model views as morphisms
between typed attributed graphs [EEHT97]. Up to now such morphisms require a fixed type graph, as well as a
fixed data signature and domain. This is in general not adequate for view-oriented modeling where only parts
of the complete type graph and signature are known and necessary when modeling a partial view of the system.
Hence, in this paper we develop the notion of generalized attributed graph morphisms (GAG-morphisms) which
allows the modeler to change the type graph, data signature and domain. GAG-morphisms are the basis for more
flexible, view-oriented modeling since views are independent of each other, now also with respect to the data type
definition.

For view-oriented modeling, mechanisms are needed to integrate different views to a full system model. In
order to integrate two or more views, their intended correspondences have to be specified. Here, typed graphs
and the underlying categorical constructions support an integration concept which goes much further than an
integration merely based on the use of common names. In this paper, we define type hierarchies and views based
on GAG-morphisms, and study the interaction and integration of views, as well as the restriction of views along
type hierarchies, the notion of view consistency, and the integration and decomposition of models based on
consistent views.

As a running example we use a visual domain-specific modeling language to model coarse-grained IT com-
ponents and their connectors in decentralized IT infrastructures. An infrastructure model has to provide the
basis to handle structural security issues, like firewall placements, of such distributed IT components. In order
to provide support to model, build, administrate, monitor and control such a local IT landscape, we present a
formal, visual domain-specific language family based on attributed type graph hierarchies and views. A simplified
visual language for this purpose using typed graphs without attributes was first introduced in [BBE07], serving as
a basis to transform domain-specific IT infrastructure models to a Reo coordination model [Arb04] for further
analysis.

The paper is structured as follows: Sect. 2 defines the category GAGraphs of typed attributed graphs and
GAG-morphisms, and introduces the sample VL for IT infrastructures. On this basis, views are defined in Sect. 3,
and the view relations interaction and integration are given by categorical constructions. Moreover, the interplay
of type hierarchies of VLs and views is considered. Section 4 studies models of visual languages and models of
views (view-models) and states as main result conditions for the consistency, integration and decomposition of
view-models. Type hierarchies and views with constraints are studied in Sect. 5, an extension which is not included
in our conference version [EEEP08]. In Sect. 6, related work is presented and compared to our approach. We
conclude and discuss future work in Sect. 7.

Consistent integration of models

2. Visual language definition by typed attributed graphs

We use the meta-model approach in combination with typed attributed graphs to define visual languages. A
meta-model is given by an attributed type graph ATG together with structural constraints, and the correspond-
ing visual language VL is given by all attributed graphs typed over ATG which satisfy the constraints. In the
following, we introduce the necessary definitions for typed attributed graphs.

The definition of attributed graphs is based on E-graphs, which give a structure for graphs with data elements.

An E-graph G � (VG ,VD ,EG ,ENA,EEA,(sourcej , targetj)j∈{G,NA,EA})
has two different kinds of nodes, namely graph nodes VG and data nodes
VD , and different kinds of edges, namely graph edges EG and, for the
attribution, node attribute edges ENA and edge attribute edges EEA, with
corresponding source and target functions according to the signature on
the right.

As presented in [EEPT06], attributed graphs are defined as E-graphs combined with a DSIG-algebra, i.e. an
algebra over a data signature DSIG . In this signature, we distinguish a set of attribute value sorts. The corre-
sponding carrier sets in the DSIG-algebra can be used for attribution. In addition to attributed graph morphisms
in [EEPT06], generalized attributed graph morphisms are mappings of attributed graphs with possibly different
data signatures.

Definition 2.1 (Attributed graph and generalized attributed graph morphism) An attributed graph AG �
(G,DSIG,D) consists of

• an E-graph G � (VG ,VD ,EG ,ENA,EEA, (sourcej , targetj)j∈{G,NA,EA}),
• a data signature DSIG � (S ,SD ,OP) with attribute value sorts SD ⊆ S , and

• a DSIG-algebra D such that
�∪

s∈SD

Ds � VD .

Given attributed graphs AG i � (G i ,DSIG i ,D i) for i � 1, 2, a generalized attributed graph morphism (GAG-
morphism) f � (fG , fS , fD) : AG1 → AG2 is given by

• an E-graph morphism fG : G1 → G2,
• a signature morphism fS : DSIG1 → DSIG2, and
• a generalized homomorphism fD : D1 → D2, which is a DSIG1-morphism fD : D1 → VfS (D2) with

fD � (fD,s1 : D1
s1

→ D2
fS (s1))s1∈S 1

with the following compatibility property: fS (S 1
D) ⊆ S 2

D and the diagram on
the right commutes for all s1 ∈ S 1

D , where the vertical (curling) arrows are
inclusions.
A GAG-morphism f � (fG , fS , fD) is called

• injective, if fG , fS , fD are injective,
• signature preserving, if fS is isomorphic,
• persistent, if fD is isomorphic.

Attributed graphs with generalized attributed graph morphisms form the category GAGraphs.

Note that AG-morphisms in [EEPT06] correspond to signature preserving GAG-morphisms. For the typing,
we use a distinguished attributed type graph ATG . According to [EEPT06], attributed type graphs and typed
attributed graphs are now defined using GAG-morphisms presented above.

Definition 2.2 (Typed attributed graph and typed attributed graph morphism) An attributed type graph ATG �
(TG,DSIG,ZDSIG) is an attributed graph where ZDSIG is the final DSIG-algebra, i.e. ZDSIG,s � {s} for all

s ∈ S , and VD � �∪s∈SD
ZDSIG,s � SD .

H. Ehrig et al.

Given an attributed type graph ATG , a typed attributed graph TAG � (AG, t) (over ATG) is given by an
attributed graph AG and a GAG-morphism t : AG → ATG .

Given an attributed type graph ATG and typed attributed graphs TAG i � (AG i , t : AG i → ATG) over ATG
for i � 1, 2, a typed attributed graph morphism f : TAG1 → TAG2 is given by a GAG-morphism f : AG1 → AG2

such that t2 ◦ f � t1.
Given an attributed type graph ATG , typed attributed graphs over ATG and typed attributed graph mor-

phisms form the category GAGraphsATG.

As a special case of GAG-morphisms we obtain generalized attributed type graph morphisms based on
attributed type graphs.

Definition 2.3 (Generalized attributed type graph morphism) Given attributed type graphs ATG i �
(TG i ,DSIG i ,ZDSIGi) for i � 1, 2, a generalized attributed type graph morphism (GATG-morphism)
f � (fG , fS , fD) : ATG1 → ATG2 is given by

• an E-graph morphism fG : TG1 → TG2,
• a signature morphism fS : DSIG1 → DSIG2, and
• a generalized homomorphism fD : ZDSIG1 → ZDSIG2 , which is uniquely determined by fD,s1 (s1) � fS (s1) for

all s1 ∈ S 1.

A GATG-morphism f is also a GAG-morphism since the compatibility property is automatically satisfied
because fG,VD

(s1) � fS (s1) for all s1 ∈ S 1
D and fD , fG,VD

are uniquely determined by fS . Moreover, if f is a
GATG-morphism then f is persistent.

Now we are able to define visual languages. In this section, we consider only visual languages over attributed
type graphs, without any constraints. We deal with visual language based on meta models with constraints in
Sect. 5.

Definition 2.4 (Visual language) Given an attributed type graph ATG , the visual language VL of ATG consists
of all typed attributed graphs (AG, t : AG → ATG) typed over ATG , i.e. VL is the object class of the category
GAGraphsATG.

Example 2.1 (VL for network infrastructures) Figure 1 shows at the top the attributed type graph ATGDSL which
represents a meta-meta model (or schema) for domain-specific languages for IT infrastructures. The DSL schema
defines that all its instances (domain-specific languages) consist of node types for components, connections and
interfaces. In the center of Fig. 1, the attributed type graph ATGNetwork defines a simple modeling language for
network infrastructures which has component types for personal computers (PC), application servers (AS), and
databases (DB). Interfaces are refined into HTTP-client and HTTP-server ports, as well as database client and
server ports. Connections may be secure (i.e. with firewall) or insecure, which is modeled by the new boolean
attribute secure.

There is a generalized attributed type graph morphism h from ATGNetwork to ATGDSL, indicated by equal
numbering of mapped nodes. Note that in order to be able to define the signature morphism fS and the DSIG-
morphism fD for any GAG-morphisms f : ATG1 → ATG2 between different type graphs, we assume that each
node type in ATG2 has at least one sort “*”, and one attribute attr : ∗, where all sorts and attributes from ATG1
can be mapped to which are not already defined in ATG2. Thus we can have new attributes, sorts and methods
at the more detailed type level ATG1 which need not be defined already in ATG2. For our sample GAG-mor-
phism h in Fig. 1, this is the case for the new attribute secure : Bool of the type Connection in ATGNetwork . The
new sort Bool is mapped by the signature morphism to the sort “*”, and the attribute secure is mapped by the
DSIG-morphism to the constant attr .

At the bottom of Fig. 1, a sample computer network is depicted as graph GNetwork which is an element of
the visual Network language since GNetwork is typed over ATGNetwork : (GNetwork , t : G → ATGNetwork) ∈
VLNetwork . Obviously, all graphs G in VLNetwork are also in VLDSL, since every (G, t : G → ATGNetwork) is
also typed over ATGDSL by the composition of typing morphisms: (G, h ◦ t : G → ATGDSL) ∈ VLDSL.

3. Type hierarchies and views of visual languages and meta models

In this section, we study type hierarchies and views of visual languages based on morphisms in GAGraphs,
which allow to change not only the graph structure but also the data signature and data type. Note that in this

Consistent integration of models

Fig. 1. Example 2.1: Domain-specific languages for IT infrastructures

section, we only consider the attributed type graphs and their relations, but not yet models over them. This is
done in the next section.

A restriction of a visual language to a specific subpart of the language is called a view.

Definition 3.1 (View) A view of a visual language VL over an attributed type graph ATG—also called view of
the meta model ATG—is given by an injective GATG-morphism v1 : ATG1 → ATG .

For the interaction and integration of views we need the categorical constructions of pullbacks and pushouts
in GAGraphs. Proofs for the pushout and pullback construction lemmas are given in [EEEP09]. Pullbacks are
a kind of generalized intersection of objects over a common object.

Fact 3.1 (Pullback construction in GAGraphs) Given GAG-morphisms f : AG2 → AG3 and g : AG1 → AG3

then the pullback in GAGraphs is constructed componentwise in the G-, S - and D-components. Moreover,
pullbacks preserve injective, signature preserving, and persistent morphisms.

Proof. See [EEEP09]. �

Pushouts generalize the gluing of objects, i.e. a pushout emerges from the gluing of two objects along a
common sub-object using the amalgamation of data types in the sense of [EM85].

Fact 3.2 (Pushouts in GAGraphs over persistent morphisms) Given persistent morphisms f ′ : AG0 → AG1

and g ′ : AG0 → AG2 in GAGraphs then the pushout (1) in GAGraphs is constructed componentwise
in the G- and S -components, with attribute value sorts S 3

D � gs (S 1
D) ∪ fS (S 2

D), and in the D-component by
amalgamation as D3 � D1 +D0 D2. Moreover, pushouts preserve injective, signature preserving, and persistent
morphisms.

H. Ehrig et al.

Proof. See [EEEP09]. �

Remark Moreover, we show in [EEEP09] that the category (GAGraphs,M) with the class M of all injective, per-

sistent, and signature preserving morphisms and also the corresponding typed variant (GAGraphsATG,
M−→)

are adhesive HLR categories. This allows us to apply main parts of the theory for typed attributed graph transfor-
mations developed on the basis of the categories (AGraphs,M) and (AGraphsATG,M), respectively, also to
the generalized case. The main difference is that graphs in GAGraphsATG allow for the typing t : AG → ATG
a change of the data type signature.

We are now able to define the interaction and integration of views based on the concepts of pullbacks and
pushouts. Roughly speaking, the interaction is the intersection, and the integration is the union of views.

Definition 3.2 (Interaction and integration of views) Given views (ATG1, v1) and (ATG2, v2) over ATG the inter-
action (ATG0, i1, i2) is given by the following pullback (1) in GAGraphs, where (ATG0, v0) with v0 � v1 ◦ i1 �
v2 ◦ i2 is a view over ATG and also called subview of (ATG1, v1) and (ATG2, v2).

The integration of views (ATG1, v1) and (ATG2, v2) with interaction (ATG0, i1, i2) is given by the above pu-
shout (2) in GAGraphs. Due to the universal pushout property there is a unique injective GATG-morphism
v3 : ATG3 → ATG such that (ATG3, v3) is a view over ATG .

ATG is covered by views (ATGi , vi) with i � 1, 2 if v1 and v2 are jointly surjective.

There is a close relationship between covering by views and view integration.

Fact 3.3 (Integration of views) If ATG is covered by views (ATGi , vi) for i � 1, 2 then the integration ATG3 is
equal to ATG up to isomorphism.

Proof. According to Definition 3.2, there is a unique morphism v3 with v3 ◦ w1 � v1 and v3 ◦ w2 � v2. This
morphism is injective in the G- and S -components due to general properties of graph and signature morphisms,
and v3 is injective in the D-component as a general property of GATG-morphisms. Surjectivity of v3 follows from
joint surjectivity of v1 and v2. �

Example 3.1 (Interaction and integration of views on IT networks) Figure 2 shows two views (ATGComponents , v1)
and (ATGConnections , v2) of the visual language over ATGDSL (see Fig. 1). The type graph ATGComponents con-
sists of a node type for Computer linked to a node type for Port, whereas the type graph ATGConnections contains
a node type Channel which is linked to a node type ChEnd. The view embedding v1 maps Computer to Component
and Port to Interface, and v2 maps Channel to Connection and ChEnd to Interface. Edges are mapped accordingly.
The interaction (ATGinteraction , i1, i2) is constructed as pullback (1) in GAGraphs which is the intersection of
v1 and v2 with suitable renaming. Given the interaction, the integration of the views (ATGComponents , v1) and
ATGConnections , v2 over (ATGInteraction , i1, i2) can be constructed as pushout (2) in GAGraphs, resulting in the
type graph (ATGIntegration). According to Fact 3.3, (ATGIntegration) is isomorphic to ATGDSL, since ATGDSL

is covered by (ATGComponents , v1) and (ATGConnections , v2).

In order to support stepwise language development, visual languages can be structured hierarchically: one
attributed type graph ATG may specify the abstract concepts a set of visual languages VLi have in common, and
different type graphs ATGi for these visual languages refine the types in ATG by specifying multiple concrete
subtypes for them. The type hierarchy relation is formalized by GATG-morphisms hi from ATGi to ATG . The
morphism h : ATGNetwork → ATGDSL depicted in Fig. 1 is such a type hierarchy morphism. The next step is to
define the restriction of views along type hierarchies by pullbacks.

Consistent integration of models

Fig. 2. Example 3.1: Interaction and integration of two views on ATGDSL

Definition 3.3 (Type hierarchy and restriction of views) A type hierarchy of visual languages VL and VL′ given
by attributed type graphs ATG and ATG ′, respectively, is a GATG-morphism h : ATG ′ → ATG .

Given a type hierarchy morphism h : ATG ′ → ATG and a view
(ATG1, v1) over ATG then the restriction (ATG ′

1, v
′
1) of this view

along h is defined by the pullback (1) in GAGraphs.
The restriction (ATG ′

1, v
′
1) is a view overATG ′ because pullbacks

preserve injectivity.

Fact 3.4 (Hierarchy and covering views) Given a hierarchy mor-
phism h : ATG ′ → ATG and views (ATGi , vi) for i � 1, 2 covering
ATG , then the restrictions (ATG ′

i , v
′
i) along h are covering ATG ′.

Proof. In the diagram to the right, v1 and v2 being jointly surjective
implies that also v ′

1 and v ′
2 are jointly surjective because (1) and (2)

are componentwise pullbacks. �

Example 3.2 (Hierarchy and covering views) The morphism h : ATGNetwork → ATGDSL in Fig. 1 is a type
hierarchy morphism. Moreover, we have two views (ATGComponents , v1) and (ATGConnections , v2) on ATGDSL,
shown in Fig. 2, which are covering ATGDSL. Figure 3 shows the restrictions v ′

1 and v ′
2 of the views along the

hierarchy morphism h which are covering ATGNetwork due to Fact 3.4.

4. Models and view-models of visual languages

In this section, we study models of visual languages and models of views of visual languages, called view-models,
and we present our main result on the integration and decomposition of models.

Definition 4.1 (Model) Given a meta-model of a visual language VL by an attributed type graph ATG , then a
model of VL is a typed attributed graph AG , typed over ATG with a GAG-morphism t : AG → ATG .

The model (AG, t) is called signature-conform if t is signature-preserving.

Similar to the restriction of views at the type level we now define the restriction of models at the model level.

Definition 4.2 (Restriction) Given a view f : ATG1 → ATG , i.e. an injective GATG-mor-
phism, and an ATG-model (AG, t) then the restriction (AG1, t1) of (AG, t) to the view
(ATG1, f) is defined by the pullback (1), written f <(AG, t) � (AG1, t1).

H. Ehrig et al.

Fig. 3. Example 3.2: Restriction of two views along hierarchy morphism h

The construction f <(AG, t) is called backward typing and can be extended to a functor f <(AG, t) :
GAGraphsATG → GAGraphsATG1

, as opposed to the extension of view models defined by forward typing
f >(AG1, t1) � (AG1, f ◦ t1).

In order to state the main result on integration and decomposition of models, we have to define the notions
of consistency and integration for models. Roughly, models AG1 and AG2 of type ATG1 and ATG2, respectively,
are consistent if they agree on the interaction type ATG0. In this case, there is an integrated model AG such that
the restrictions of AG to ATG1 and to ATG2 are equal to the given models AG1 and AG2, respectively.

Definition 4.3 (Consistency and integration) Given views
(ATGi , vi) for i � 1, 2 of ATG with interaction (ATG0, i1, i2)
defined by the pullback in the bottom face of the following cube,
then the models (AGi , ti) of the views (ATGi , vi) are called
consistent if there is a model (AG0, t0) of ATG0 such that the back
faces are pullbacks, i.e. i<

1 (AG1, t1) � (AG0, t0) � i<
2 (AG2, t2).

A model (AG, t) of ATG is called integration (or amalgamation)
of consistent (AG1, t1) and (AG2, t2) via (AG0, t0) if the front faces
of the above cube are pullbacks, i.e. v<

1 (AG, t) � (AG1, t1) and
v<

2 (AG, t) � (AG2, t2), and the top face commutes.

Example 4.1 (Inconsistent models) Consider the view models AG1 and AG2 in Fig. 4. These models are inconsis-
tent since the squares (1) and (2) are pullbacks corresponding to the back squares of the cube in Definition 4.3,
but the resulting pullback objects AG0 and AG ′

0 are different (and non-isomorphic), so we have i<
1 (AG1, t1) �

(AG0, t0) 	� i<
2 (AG2, t2) � (AG ′

0, t
′
0). In this case, there is no integration (AG, t) s.t. v<

1 (AG, t) � (AG1, t1) and
v<

2 (AG, t) � (AG2, t2).

Consistent integration of models

Fig. 4. Example 4.1: Inconsistent view models

Theorem 4.1 (Integration and decomposition of models) Let ATG be covered by the views (ATGi , vi) for
i � 1, 2.

Integration. If (AGi , ti) are consistent models of (ATGi , vi) via (AG0, t0) then there is up to isomorphism a
unique integration (AG, t) of (AGi , ti) via (AG0, t0).

Decomposition. Vice versa, each model (AG, t) of ATG can be decomposed uniquely up to isomorphism
into view-models (AGi , ti) with i � 1, 2 such that (AG, t) is the integration of (AG1, t1) and (AG2, t2) via
(AG0, t0).

Bijective Correspondence. Integration and decomposition are inverse to each other up to isomorphism.

Proof. Integration. Since ATG is covered by (ATGi , vi) for i � 1, 2 it is also the integration of these views by
Fact 3.3. This means that the bottom pullback in the cube in Definition 4.3 is already a pushout in GAGraphs
with injective and persistent morphisms. Now assume that (AGi , ti) with i � 1, 2 are consistent models. This
means that the back faces of the cube in Definition 4.3 are pullbacks with injective and persistent j1 and j2. This
allows to construct AG in the top face as pushout in GAGraphs leading to a unique t such that the front
faces commute. According to a suitable van Kampen property (see [EEEP09]), the front faces are pullbacks such
that (AG, t) is the integration of (AGi , ti) for i � 1, 2 via (AG0, t0). In order to show the uniqueness let also
(AG ′, t ′ : AG ′ → ATG) be an integration of (AGi , ti) for i � 1, 2 via (AG0, t0). Then the front faces are pullbacks
with (AG ′, t ′) and the top face commutes. Now the van Kampen property in the opposite direction implies that
the top face is a pushout in GAGraphs. This implies that (AG, t) and (AG ′, t ′) are equal up to isomorphism.

Decomposition. Vice versa, given a model (AG, t) of ATG we construct the front and one of the back faces as
pullbacks such that the remaining back face also becomes a pullback and the top face commutes. This shows that
(AG1, t1) and (AG2, t2) are consistent w.r.t (AG0, t0), and, similar to the previous step, (AG, t) is the integration
of both via (AG0, t0). The decomposition is unique up to isomorphism because the pullbacks in the front faces
are unique up to isomorphism.

Bijective Correspondence. Uniqueness of integration and decomposition as shown above implies that both
constructions are inverse to each other up to isomorphism. �
Example 4.2 (Integration and decomposition of models) The graph GNetwork from Fig. 1 is a model, typed over
ATGNetwork . From the two views ATG ′

Components and ATG ′
Connections given in Fig. 3 we can construct two

consistent view models GComponents and GConnections in Fig. 5 according to the Decomposition in Theorem 4.1
construct the corresponding interaction model Ginteraction (which contains all interface nodes which are present
both in GComponents and GConnections) such that GNetwork is the integration of GComponents and GConnections via
Ginteraction . Vice versa, starting with consistent models GComponents and GConnections , via Ginteraction we obtain
GNetwork as the integration.

H. Ehrig et al.

Fig. 5. Example 4.2: Integration and decomposition of view models

5. Type hierarchies and views with constraints

In this section, we extend the definition of a visual language VL given by an attributed type graph ATG by a set
of graph constraints PC which pose further restrictions on the set of valid visual models in a natural, visual way.
A visual language definition given by a type graph and a set of graph constraints corresponds closely to a meta
model according to the MOF approach [MOF06], together with a set of OCL constraints [OCL03].

Definition 5.1 (Graph constraint) Let ATG be an attributed type graph. A constraint c �
((P , tP)

a−→ (C , tC)) is given by typed attributed graphs (P , tP) and (C , tC) typed over
ATG , where we omit the typing morphisms if they are not necessary, i.e. write c � (P a−→
C), and a typed attributed graph morphism a : P → C . A model G typed over ATG
fulfills a constraint c � (P a−→ C) if for all typed attributed graph morphisms p : P → G
there exists an injective q : C → G such that q ◦ a � p.

Definition 5.2 (Visual language with constraints) A visual language over a type graph ATG and a set of constraints
PC is defined by VL � {G ∈ GAGraphsATG | G |� c ∀ c ∈ PC }.

The following facts concern the satisfaction of constraints in view models which are extended or restricted to
different type graphs:

Definition 5.3 (Forward translation of constraints) Given a GATG-morphism f : ATG1 → ATG2 and a con-
straint c1 � ((P , tP)

a−→ (C , tC)) over ATG1, the forward translated constraint f >(c1) � c2 over ATG2 is given
by c2 � ((P , f ◦ tP)

a−→ (C , f ◦ tC)). For a set PC1 of constraints over ATG1, we define f >(PC1) � {f >(c1) |
c1 ∈ PC1}.

Fact 5.1 states that a forward translated constraint is satisfied by an extended view model whenever the
originally typed constraint is satisfied by the original view model, and vice versa.

Consistent integration of models

Fact 5.1 Given a view (ATG1, v1) over ATG2, a constraint c1 ∈ PC1 typed over ATG1, and a typed attributed
graph G1 typed over ATG1, then we have:

G1 |� c1 ⇔ v>
1 (G1) |� v>

1 (c1),

where v>
1 (G1) and v>

1 (c1) are the corresponding forward translations over ATG2.

Proof. For c1 � ((P , tP)
a−→ (C , tC)) we have v>

1 (c1) � ((P , v1 ◦ tP)
a−→ (C , v1 ◦ tC)), and v>

1 (G1, tG1) �
(G1, v1 ◦ tG1).

“⇒” We have to show that for each injective p : P → G1 in
GAGraphsATG2

there is an injective q : C → G1 in
GAGraphsATG2

with q ◦ a � p. Given an injective p : P → G1
in GAGraphsATG2

we have p : P → G1 in GAGraphs with
v1 ◦ tP � v1 ◦ tG1 ◦p. Since v1 is injective it follows that tP � tG1 ◦p,
i.e. p is also an GAGraphsATG1

-morphism. Since G1 |� c1 there
exists an injective q : C → G1 with q ◦a � p in GAGraphsATG1

,
i.e. tG1 ◦ q � tC . Hence v1 ◦ tG1 ◦ q � v1 ◦ tC and q is the required
GAGraphsATG2

-morphism.

“⇐” We have to show that for each injective p : P → G1 in GAGraphsATG1
there is an injective q : C → G1

in GAGraphsATG1
with q ◦ a � p. Given an injective p : P → G1 in GAGraphsATG1

we have
p : P → G1 in GAGraphs with tP � tG1 ◦p. With v1◦tP � v1◦tG1 ◦p, p is also a GAGraphsATG2

-mor-
phism. Since v>

1 (G1) |� v>
1 (c1) there exists an injective q : C → G1 with q ◦ a � p in GAGraphsATG2

,
i.e. v1 ◦ tG1 ◦ q � v1 ◦ tC . Since v1 is injective it follows that tG1 ◦ q � tC , hence q is the required
GAGraphsATG1

-morphism. �
Example 5.1 Consider the constraint “An application server always has two HTTP-server ports”, shown in
Fig. 6 in the upper right corner as constraint c � ((P , tP)

a−→ (C , tC)). This constraint is typed originally
over ATGComponents , and it is satisfied for the ATGComponents -typed instance graph AG . The forward trans-
lation of constraint c is given by the constraint c′ � ((P , v ◦ tP)

a−→ (C , v ◦ tC)), typed over ATGNetwork .
Obviously, constraint c′ is satisfied for graph AG , which is also typed over ATGNetwork by typing morphism

AG v◦t−→ ATGNetwork .

Fact 5.2 states that a forward translated constraint is satisfied by a model whenever the original constraint is
satisfied by the corresponding restricted view model, and vice versa.

Fact 5.2 Given a view (ATG1, v1) over ATG2, a constraint c1 ∈ PC1 typed over ATG1, and a typed attributed
graph G2 typed over ATG2, then we have:

G2 |� v>
1 (c1) ⇔ v<

1 (G2) |� c1,

where v>
1 (c1) is the forward translation of c1 and v<

1 (G2) is the backward translation of G2.

Proof. For c1 � ((P , tP)
a−→ (C , tC)) we have v>

1 (c1) � ((P , v1 ◦ tP)
a−→ (C , v1 ◦ tC)), and v<

1 (G2, tG2) �
(G1, tG1) with pullback (1).

“⇒” We have to show that for each injective p1 : P → G1
in GAGraphsATG1

there is an injective q1 : C → G1
in GAGraphsATG1

with q1 ◦ a � p1. Given an injective
p1 : P → G1 in GAGraphsATG1

, with v1 being injective
and (1) being a pullback also g and hence g ◦p1 are injective.
Thus we have that tG2 ◦ g ◦ p1 � v1 ◦ tG1 ◦ p1 � v1 ◦ tP and
since G2 |� v>

1 (c1) there exists an injective q2 : C → G2 with
q2◦a � g◦p1 inGAGraphsATG2

, i.e. tG2 ◦q2 � v1◦tC . Now
pullback (1) implies a unique q1 : C → G1 with tG1 ◦q1 � tC
and g ◦ q1 � q2. The latter implies that q1 is injective by
decomposition of monomorphisms. Hence q1 is the required
GAGraphsATG1

-morphism.

H. Ehrig et al.

Fig. 6. Example 5.1: Forward translation of constraints

“⇐” We have to show that for each injective p2 : P → G2 in GAGraphsATG2
there is an injective q2 : C → G2

in GAGraphsATG2
with q2 ◦ a � p2. Given an injective p2 : P → G2 in GAGraphsATG2

we have
tG2 ◦ p2 � v1 ◦ tP . Pullback (1) implies a unique p1 : P → G1 with tG1 ◦ p1 � tP and g ◦ p1 � p2. The
latter implies that p1 is injective by decomposition of monomorphisms. Since G1 |� c1 there exists an
injective q1 : C → G1 with q1 ◦ a � p1 in GAGraphsATG1

, i.e. tG1 ◦ q1 � tC . It follows that g ◦ q1
is injective. Thus we have that tG2 ◦ g ◦ q1 � v1 ◦ tG1 ◦ q1 � v1 ◦ tC . Hence q2 � g ◦ q1 is the required
GAGraphsATG2

-morphism with q2 ◦ a � g ◦ q1 ◦ a � g ◦ p1 � p2. �
Example 5.2 In Fig. 7, the constraint c is originally typed over ATGComponents . Its forward translation c′ �
((P , v ◦ tP)

a−→ (C , v ◦ tC)) is typed over ATGNetwork , and it is satisfied for the ATGNetwork -typed instance
model AGNetwork . The view model of AGNetwork over the view ATGComponents

v−→ ATGNetwork is obtained by
constructing the pullback (PB) and yields as pullback object the ATGComponents -typed model AGC which was
shown explicitly in Fig. 6. Moreover, from Example 5.1 we know that the constraint c is satisfied by AGC .

Fact 5.3 considers the satisfaction of sets of constraints by extended and restricted view models. We find that
constraint implication preserves visual language extensions and reflects visual language restrictions.

Fact 5.3 Given attributed type graphsATG1 andATG2, constraintsPC1 andPC2 overATG1 andATG2 leading to
visual languages VL1 and VL2, respectively, and a view (ATG1, v1) over ATG2, then we have the following results:

1. (VL extension) If v>
1 (PC1) ⇒ PC2 then v>

1 (G1) ∈ VL2 for all G1 ∈ VL1, i.e. v>
1 : VL1 → VL2.

2. (VL restriction) If PC2 ⇒ v>
1 (PC1) then v<

1 (G2) ∈ VL1 for all G2 ∈ VL2, i,e, v<
1 : VL2 → VL1.

Proof. 1. Given G1 ∈ VL1 this means that G1 |� PC1. Now Fact 5.1 implies that v>
1 (G1) |� v>

1 (PC1) and if
v>

1 (PC1) ⇒ PC2 also v>
1 (G1) |� PC2, i.e. v>

1 (G1) ∈ VL2.
2. Given G2 ∈ VL2 this means that G2 |� PC2, and if PC2 ⇒ v>

1 (PC1) also G2 |� v>
1 (PC1). Now Fact 5.2

implies that v<
1 (G2) |� PC1, i.e. v<

1 (G2) ∈ VL1. �

Consistent integration of models

Fig. 7. Example 5.2: Backward translation of constraints

Fig. 8. Example 5.3: Constraint implication preserves forward-translated languages
Example 5.3

1. Consider again the constraint “An application server always has two HTTP-server ports”, shown in Fig. 8
in the upper right corner as constraint c1 � ((P1, tP1)

a−→ (C1, tC1)). As shown in Example 5.1, the for-
ward translation of constraint c1, given by the constraint c′

1 � ((P , v ◦ tP1)
a−→ (C , v ◦ tC1)), is typed over

ATGNetwork and is satisfied for graph AGC . Obviously, constraint c′
1 does not imply constraint c2 which

requires that every database server is connected via two DB server interface nodes to a database connection.
This constraint is not satisfied by the forward-translated model AGC . Hence, model AGC does not belong
to the visual language defined by the type graph ATGNetwork and a set of constraints PC2 with c2 ∈ PC2.

2. In Fig. 9, the constraint c2, typed over ATGNetwork is satisfied for model AG ′
Network , but it does not imply the

satifaction of constraint c1 (a forward-translated constraint, originally typed over ATGComponents), since

H. Ehrig et al.

Fig. 9. Example 5.3: Constraint implication reflects backward-translated languages

c1 is not satisfied for model AG ′
Network . The view model v<(AG ′

Network) of model AG ′
Network over the

view ATGComponents
v−→ ATGNetwork is obtained by constructing the pullback (PB). The pullback object

v<(AG ′
Network) is typed over ATGComponents and looks like AG ′

Network without the node :DB Conn and its
adjacent edges. Since the view model v<(AG ′

Network) does not satisfy the original constraint c1 typed over
ATGComponents , it does not belong to the visual language defined by type graph ATGComponents and a set of
constraints PC1 including c1.

A view with constraints is consequently defined in Definition 5.4 as a view the (forward-translated) constraints
of which are implied by the constraints of the original type graph. A VL is covered by views with constraints
when its type graph is covered by the view type graphs, and additionally, its set of constraints consists of the
union of the (forward translated) constraints of the views.

Definition 5.4 (View with constraints) Given attributed type graphs ATG1 and ATG2, constraints PC1 and PC2
over ATG1 and ATG2, respectively, and a view (ATG1, v1) over ATG2, then (ATG1,PC1, v1) is a view with
constraints if PC2 ⇒ v>

1 (PC1).
(ATG,PC) is covered by views with constraints (ATG1,PC1, v1) and (ATG2,PC2, v2) if ATG is covered by

(ATG1, v1) and (ATG2, v2), and PC � v>
1 (PC1) ∪ v>

2 (PC2).

Theorem 5.1 now extends Theorem 4.1 to views with constraints and states the condition for integration and
decomposition of views with constraints.

Theorem 5.1 (Integration and decomposition with constraints) Let (ATG,PC) be covered by the views
(ATGi ,PCi , vi) for i � 1, 2. If (AGi , ti) |� PCi are consistent models of (ATGi , vi) via (AG0, t0) then we
have for the integration (AG, t) that AG |� PC .

Vice versa, for the decomposition of (AG, t) into view-models (AGi , ti) with i � 1, 2 it holds that AGi |� PCi .

Proof. Given the integration (AG, t) we have that v<
1 (AG, t) � (AG1, t1) |� PC1. Now Fact 5.2 shows that this is

equivalent to the fact that AG |� v>
1 (PC1). Analogously we have that AG |� v>

2 (PC1), and altogether AG |� PC
because PC � v>

1 (PC1) ∪ v>
2 (PC2) by Definition 5.4.

Vice versa, AG |� PC implies AG |� v>
i (PCi) for i � 1, 2 and hence AGi � v<

i (AG) |� PCi by Fact 5.2.
�

Consistent integration of models

Fig. 10. Example 5.4: Integration and decomposition with constraints

Example 5.4 The integration/decomposition diagram in Fig. 10 equals the diagram in Example 4.2 but is
extended now by two constraints c1 and c2 which define views with constraints (ATGComponents ,PCComp, v1) and
(ATGConnections ,PCConn , v2). The consistent view models GComponents and GConnections , as shown in Fig. 5,
satisfy the respective constraints. It can be easily checked that the integration GNetwork (see Fig. 5) satisfies the
forward-translated constraints v>

1 (PCComp) and v>
2 (PCConn). Vice versa, starting with model GNetwork , we can

decompose it into the two view-models (GComponents , t1) and (GConnections , t2) such that each view-model satisfies
the respective constraints.

6. Related work

From a theoretical point of view, the concepts and results in this paper are closely related to the abstract frame-
work of institutions, introduced by Goguen and Burstall [GB84] as general framework for data type specifica-
tions. An institution INST � (SIG, Mod, Sen, |�) consists of a category SIG of signatures, a contravariant
functor Mod : SIGop → CAT assigning to each signature SIG a category Mod(SIG) of models, a func-
tor Sen : SIG → Sets defining a set Sen(SIG) of sentences over SIG, and a satisfaction relation |�, where
(M , ϕ) ∈|�, written M |� ϕ, means that model M satisfies sentence ϕ. The most prominent classical example is
the institution EQSIG � (SIG,Alg,Eqns, |�) of equational signatures, where SIG is the category of algebraic
signatures, Alg(SIG) the category of SIG-algebras and SIG-homomorphisms, Eqns(SIG) the set of equations
over SIG, and A |� e means that algebra A satisfies equation e. In our paper, the concepts are defining an
institution ATG � (ATGraphs, Mod, Constr, |�) of attributed type graphs, where ATGraphs is the category
GAGraphs restricted to attributed type graphs, Mod(ATG) is the category GAGraphsATG of attributed
graphs AG typed over ATG, Constr(ATG) is the set of graph constraints of ATG-typed graphs, and AG |� c
means that attributed graph AG satisfies constraint c. Fact 5.1 in our paper corresponds to the well-known satis-
faction condition for institutions, and our main Theorem 5.1 means that the institution ATG has amalgamation
based on pushouts of attributed type graphs with constraints.

Viewpoint-oriented software development is well-known in the literature [GEMT00, GMT99, EEHT97],
however identifying, expressing, and reasoning about meaningful relationships between view models is hard
[NFK03]. Up to now existing formal techniques for visual modeling of views and distributed systems by graph
transformation support the definition of non-hierarchical views which require a common fixed data signature
[EEPT06, GDdL05]. This is in general not adequate for view-oriented modeling where only parts of the complete
type graph and signature are known and necessary when modeling a view of the system. Moreover, hierarchical
relations between views could not be defined on the typing and data type level resulting in a lack of composition
and decomposition techniques for view integration, verification, and analysis.

In [AdLG07] domain specific languages are defined using graphical and textual views based on the meta-
modeling approach used in the AToM 3 tool. In this approach the language designer starts with the common
(integrated) meta-model and selects parts of the meta-model as different diagram views. So a common abstract
meta-model is missing allowing to define hierarchical relations between the models.

H. Ehrig et al.

In [RGH08] abstract graph views are defined, abstracting from specification details allowing a convenient
usage of modules. To fulfill this purpose, reference relations have been introduced for the definition of mapping
between view elements and abstract model elements (e.g. the database). Given this relations, there are different
semantics for modifying view objects which are not studied yet in full detail. In comparison with the presented
approach, generalized attributed graph morphisms have a unique formal semantics on the one hand and they
provide the flexibility to define hierarchical relations on the other hand.

As a related approach xlinkit [NCEF07] provides rule-based link generation in web content management sys-
tems. In this approach semantics are defined using first order logic allowing automatic link generation to manage
large document repositories. According to its purpose, this approach is limited to XML documents using XPath
and XLink and thus requires an XML based storage format for models.

For related work concerning (nested) graph constraints we refer to [EEPT06, EEHP06, HP05].
Recently, the Query/View/Transformation Specification (QVT), Version 1.0 has been released by the OMG

[QVT08]. Here, views are perceived as complex queries to select model parts. Despite its name, the main appli-
cation area for QVT is model-to-model transformation. Queries and views are seen as special transformations.
Transforming views at different meta-model levels, and ensuring consistency of views and view models for such
transformations is not yet an issue of the QVT standard and tools.

QVT transformations are based on MOF meta-models and OCL [OCL03], a textual specification language
providing constraint and object query expressions on meta-models that cannot be otherwise be expressed by
diagrammatic notation. The combination of meta-models and OCL is closely related to our approach based on
type graphs and graph constraints. In fact, the relationship has been discussed in our previous paper [WTEK06],
where we identified a set of OCL constraints which can be translated to graph constraints. The combination of
graph transformation rules for VL definition and graph constraints is as expressive as a meta-model with OCL
constraints. This was shown e.g. in [BKPPT00], where a graph-based semantics for OCL is proposed by translat-
ing OCL constraints into expressions over graph rules. Vice versa, Cabot et al. present an approach to analyze
graph transformation rules based on an intermediate OCL representation [CCGdL08]. Here, rules are translated
to OCL with the purpose of verifying their correctness and allowing for interoperability with standards-based
model-driven development tools.

7. Conclusion

In this paper we have studied the interaction and integration of views and the restriction of views along type
hierarchies. The main result shows under which condition models of these views can be composed to a unique
integrated model. The condition is called consistency of view models which means roughly that the models agree
on the interaction type of the views. Vice versa, each model can be decomposed up to isomorphism into consistent
models of given views. The paper is based on an extended version of typed attributed graph morphisms which
allow changes of the type graph including those of data signatures and domains. In Theorem 1 we have considered
visual languages based on meta-models given by attributed type graphs without constraints. In Theorem 2 we
have shown that the main result can be extended to visual languages including constraints. Full proofs of all
technical lemmas used in this paper and some extended results are given in our technical report [EEEP09].

An important consequence of our work is that we provide the ability to rapidly compose “small” visual lan-
guages both at the view (type graph) level and at the view-model level, thus laying the formal basis for multi-view
modeling environments. Hence, rather than a “one modeling language does all” approach, we favor a confed-
eration of small, relatively orthogonal visual languages for different system aspects. Future work is planned to
investigate the interplay of views and models with behaviour, which is related to the field of merging behavioural
models [BCE06, UC04].

The concept of type hierarchies should allow a language designer to adapt language definitions by performing
model transformations at an abstract hierarchy level and “inheriting” the transformation results at the more con-
crete levels of the hierarchy. Work is in progress to analyze model transformations for hierarchically structured
visual languages.

Future work is planned to implement our formal approach by extending our graph transformation engine
AGG [AGG09], a tool supporting visual modeling and analysis of typed, attributed graph transformation sys-
tems. Type graphs with inheritance model the underlying structure of the visual language used. The extension
will offer means for structuring type graphs by hierarchies to enable language designers to compose/decompose
visual languages at different abstraction levels. We will extend the underlying notion of typed attributed graph

Consistent integration of models

morphisms in AGG to the more general notion of GAG-morphisms and provide algorithms for checking the
consistency conditions for integration and decomposition of view models.

References

[AdLG07] Andrés FP, de Lara J, Guerra E (2007) Domain specific languages with graphical and textual views. In: Schürr A, Nagl M,
Zündorf A (eds) Third international symposium of application of graph transformation with industrial relevance (AG-
TIVE’07). Lecture notes in computer science, vol 5088. Springer, Berlin, pp 79–94

[AGG09] TFS-Group (2009) TU Berlin. AGG. http://tfs.cs.tu-berlin.de/agg
[Arb04] Arbab F (2004) Reo: a channel-based coordination model for component composition. Math Struct Comput Sci 14(3):329–366
[BBE07] Braatz B, Brandt C, Engel T, Hermann F, Ehrig H (2007) An approach using formally well-founded domain languages for

secure scoarse-grained IT system modelling in a real-world banking scenario. In: Proceedings of the Australasian conference
on information systems (ACIS’07)

[BCE06] Brunet G, Chechik M, Easterbrook S, Nejati S, Niu N, Sabetzadeh M (2006) A manifesto for model merging. In: Proceedings
of the workshop on global integrated model management (GaMMa’06). ACM Press, New York, pp 4–12

[BKPPT00] Bottoni P, Koch M, Parisi-Presicce F, Taentzer G (2000) Consistency checking and visualization of OCL constraints. In: UML
2000—the unified modeling language. Lecture notes in computer science, vol 1939. Springer, Berlin

[CCGdL08] Cabot J, Clarisó R, Guerra E, de Lara J (2008) Analysing graph transformation rules through OCL. In: International con-
ference on theory and practice of model transformations. Lecture notes in computer science, vol 5063. Springer, Berlin,
pp 229–244

[EEEP08] Ehrig H, Ehrig K, Ermel C, Prange U (2008) Consistent integration of models based on views of visual languages. In: Fi-
adeiro JL, Inverardi P (eds) Proceedings of the fundamental approaches to software engineering (FASE’08). Lecture notes in
computer science, vol 4961. Springer, Berlin, pp 62–76

[EEEP09] Ehrig H, Ehrig K, Ermel C, Prange U (2009) Generalized typed attributed graph transformation systems based on mor-
phisms changing type graphs and data signatures. Technical Report TR 2009-08, Fak. IV, Technische Universität Berlin, 2009.
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009

[EEHP06] Ehrig H, Ehrig K, Habel A, Pennemann K-H (2006) Theory of constraints and application conditions: from graphs to
high-level structures. Fundam Inf 74(1):135–166

[EEHT97] Engels G, Ehrig H, Heckel R, Taentzer G (1997) A combined reference model- and view-based approach to system specifica-
tion. Int J Softw Knowl Eng 7(4):457–477

[EEPT06] Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of algebraic graph transformation. EATCS monographs in
theoretical computer science. Springer, Berlin

[EM85] Ehrig H, Mahr B (1985) Fundamentals of algebraic specification 1: Equations and initial semantics. EATCS monographs on
theoretical computer science, vol 6. Springer, Berlin

[GB84] Goguen JA, Burstall RM (1984) Introducing institutions. In: Proceedings of the Carnegie Mellon workshop on logic of
programs. Springer, Berlin, pp 221–256

[GDdL05] Guerra E, Diaz P, de Lara J (2005) A formal approach to the generation of visual language environments supporting multiple
views. In: Proceedings IEEE symposium on visual languages and human-centric computing (VL/HCC’05). IEEE Computer
Society, Dallas, Texas, USA, September 2005

[GEMT00] Goedicke M, Enders B, Meyer T, Taentzer G (2000) ViewPoint-oriented software development: tool support for integrating
multiple perspectives by distributed graph transformation. In: Conference on tools and algorithms for the construction and
analysis of systems, Berlin, Germany. Lecture notes in computer science, vol 1785. Springer, Berlin, pp 43–47

[GMT99] Goedicke M, Meyer T, Taentzer G (1999) ViewPoint-oriented Software development by distributed graph transformation:
towards a basis for living with inconsistencies. In: Proceedings of the 4th IEEE international symposium on requirements
engineering (RE’99), 7–11 June 1999, University of Limerick, Ireland. IEEE Computer Society

[HP05] Habel A, Pennemann K-H (2005) Nested constraints and application conditions for high-level structures. In: Kreowski H-J,
Montanari U, Orejas F, Rozenberg G, Taentzer G (eds) Formal methods in software and systems modeling. Lecture notes in
computer science, vol 3393. Springer, Berlin, pp 294–308

[MOF06] Object Management Group (2006) Meta-Object Facility (MOF), Version 2.0. http://www.omg.org/technology/documents/
formal/mof.htm

[NCEF07] Nentwich Ch, Capra L, Emmerich W, Finkelstein A (2007) xlinkit: a consistency checking and smart link generation service.
In: Department of Computer Science, editor, University College London, 2007

[NFK03] Nuseibeh B, Finkelstein A, Kramer J (2003) Viewpoints: meaningful relationships are difficult. In: Proceedings of the inter-
national conference on software engineering (ICSE). IEEE Computer Society

[OCL03] Object Management Group (2003) UML 2.0 OCL Specification. http://www.omg.org/docs/ptc/03-10-14.pdf
[OMG07] Object Management Group (2007) Unified modeling language: superstructure—Version 2.1.1. formal/07-02-05, http://www.

omg.org/technology/documents/formal/uml.htm
[QVT08] Object Management Group (2008) Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Version 1.0

formal/08-04-03. http://www.omg.org/spec/QVT/1.0/
[RGH08] Ranger U, Gruber K, Holze M (2008) Defining abstract graph views as module interfaces. In: Schürr A, Nagl M, Zündorf A

(eds) Third international symposium of application of graph transformation with industrial relevance (AGTIVE’07), Lecture
notes in computer science. Springer, Berlin, pp 117–133

http://tfs.cs.tu-berlin.de/agg
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/spec/QVT/1.0/

H. Ehrig et al.

[UC04] Uchitel S, Chechik M (2004) Merging partial behavioural models. In: Proceedings of the 12th intrenational ACM SIGSOFT
symposium on foundations of software engineering. ACM Press, New York, pp 43–52

[WTEK06] Winkelmann J, Taentzer G, Ehrig K, Küster J (2006) Translation of restricted OCL constraints into graph constraints for
generating meta model instances by graph grammars. In: Varro D, Bruni R (eds) Proceedings of the graph transformation and
visual modeling techniques (GT-VMT’06), ENTCS. Elsevier, Amsterdam

Received 16 October 2008
Accepted in revised form 12 August 2009 by J.L. Fiadeiro, P. Inverardi and T.S.E. Maibaum

	1 Introduction
	2 Visual language definition by typed attributed graphs
	3 Type hierarchies and views of visual languages and meta models
	4 Models and view-models of visual languages
	5 Type hierarchies and views with constraints
	6 Related work
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

