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Abstract. E-government services usually process large amounts of con-
fidential data. Therefore, security requirements for the communication
between components have to be adhered in a strict way. Hence, it is
of main interest that developers can analyze their modularized models
of actual systems and that they can detect critical patterns. For this
purpose, we present a general and formal framework for critical pattern
detection and user-driven correction as well as possibilities for automatic
analysis and verification at meta-model level. The technique is based on
the formal theory of graph transformation, which we extend to transfor-
mations of type graphs with inheritance within a type graph hierarchy.
We apply the framework to specify relevant security requirements.
The extended theory is shown to fulfil the conditions of a weak adhesive
HLR category allowing us to transfer analysis techniques and results
shown for this abstract framework of graph transformation. In particular,
we discuss how confluence analysis and parallelization can be used to
enable parallel critical pattern detection and elimination.

1 Introduction

Software systems for e-government services have to provide a platform, where
internal and external users can input and process large amounts of confidential
data. Therefore it is important that considerable efforts are made to secure such
data. To improve the security of software systems, recent research has identified
that security analysis should be integrated into software engineering techniques
and security should be considered from the early stages of the software systems
development process [2]. Existing security modelling frameworks such as the
UML profile UMLsec [3] support the design of security-sensitive systems by offer-
ing stereotypes to describe policies of system parts like communication channels
or subsystems. Models then can be analyzed to check the satisfaction of security
policies, such as access control conditions. Common techniques to elicit secu-
rity requirements are based on use case modeling and goal-oriented approaches
[4]. The problem is that these techniques are better suited for the elicitation
of functional requirements. Security requirements being non-functional require-
ments are closely related to system architecture design and frequently require



architectural changes as reactions to detected critical patterns. Moreover, the
UMLsec profile specifies only core security requirements and has to be refined
for more specific application fields like secure e-government services.

In order to be able to specify flexible architectural changes as reactions to
detected critical patterns in the design of e-government systems, we propose
in this paper a dynamic, general modelling approach based on typed graph
transformation for critical pattern detection and elimination.

Public administration is based on a strict hierarchical structure of e-govern-
ment networks. We reflect this fundamental design paradigm in our modelling
approach by supporting hierarchies along a chain of meta-model layers. The
common approach of meta-modelling uses UML class diagrams equipped with
OCL constraints to model a domain-specific language’s (DSL’s) abstract syn-
tax in a declarative way (see e.g. the MOF approach by the OMG [5]). Graph
grammars [6] are a more constructive alternative, based on a formal categorical
framework which can also be used for formal analysis and verification. A DSL
here is modelled by a type graph capturing the definition of the underlying sym-
bol and relation types. Instances of a DSL are given by graphs typed over (i.e.
conforming to) the type graph, and can be further restricted by defining rule-
based instance generation operations. A DSL type graph corresponds closely to
a meta-model, i.e. also inheritance relations are used1. Hence, the main techni-
cal contribution of this paper lies in solving the challenge of transformation of
graphs with inheritance hierarchies.

As running example, we consider an e-government system application which
is based on a standard given by the E-Government Manual of the Federal Office
for Information Security in Germany. In particular, we here focus on Chapter
IV [8]. There are four main zones in the architecture of an e-government system
(depicted in Fig. 1), one client zone for the external view and three security
zones, which are under control of the corresponding government institution.
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Fig. 1. Scenario: structure of E-Government networks

1 Note that the type graphs used for network modelling in our previous paper [7] did
not yet allow the use of inheritance.



E-government services are installed on web servers in zone one, which can
access actual applications of the public agency in zone two, but they are not
directly connected to confidential data. Hiding these data in zone three improves
the security against external attacks. If the data was stored in zone two already,
an intrusion on a web server could directly enable scans of the data file system
and further more critical changes.

In the following sections we discuss how this standard structure of an e-
government network can be refined, customized and analyzed on the basis of
formal type graph transformation with inheritance. Transformations and analy-
sis are performed on the type graph of the e-government network visualized in
Fig. 1. The overall model consists of a hierarchy of models with several meta-
levels, all formalized by type graphs. Type graphs with inheritance and typed
graph transformation have been introduced already in [6, 9] but without trans-
formation of the meta-levels including inheritance. The new formal approach in
this paper concerns a generalization of typed graph transformation to the trans-
formation of type graphs with inheritance. The key concepts thus are graphs
with inheritance, called I-graphs, and I-graph morphisms based on clan mor-
phisms [9], coming up with a new category IGraphs, which is shown to fulfil the
requirements of weak adhesive HLR categories [6]. This allows us to make use
of formal techniques for confluence and dependency analysis to analyze critical
pattern detection and elimination in the e-government network model.

Graphs with inheritance could also be transformed by encoding the graphs to
plain graphs with the help of a special edge type for the inheritance relation and
performing standard graph transformation on them. But this leads to several
problems. All inheritance paths have to be translated to direct edges, and after
performing a transformation step the resulting graph would have to be extended
by the edges which form the transitive closure of the inheritance relation. Fur-
thermore, extending matching to inheritance hierarchies, as considered in this
paper, is not possible if inheritance is encoded by special edges in plain graphs.

The paper is structured as follows: In Sec. 2 we show how type graph rules
and transformations including the handling of inheritance can be used to model
network configurations for secure client-server architectures for e-government
networks [8]. Thereafter, we define the basic formal constructions for transform-
ing type graphs with inheritance and show important properties in Sec. 3, which
will then be used in Sec. 4 for analyzing the e-government network model. Sec. 5
discusses related work, and Sec. 6 concludes the paper. Our technical report [22]
contains the full proofs for the presented results.

2 Modelling E-Government Networks

In this section we show how type graph transformations including the handling
of inheritance can be applied for developing and maintaining meta-models for
e-governments networks [8].

Example 1 (Type Graphs for Network Configurations). Graph GEGov in the
lower left corner of Fig. 2 is an instance-level graph typed over the type graph



TGEGov for network configurations in the area of e-government. Graph GEGov is
shown in concrete syntax in the lower right corner of Fig. 2 and describes a client,
which is connected to services of the e-government institution. TGEGov itself is
typed over the more abstract type graph TGWeb which models domain specific
languages of client-server architectures. Type mappings like TGEGov → TGWeb

are denoted by the type name following the respective node or edge name after
the colon, e.g. the node “PC:Client” in TGEGov is mapped to the node “Client”
in TGWeb.
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Fig. 2. Instance Graph GEGov and Type Graph Hierarchy TGEGov → TGWeb

The main idea of graph transformation is the rule-based modification of
graphs, which represent the abstract syntax of models. While standard graph
transformation [6] considers transformations of instances typed over a given type
graph only, we present an extension in Sec. 3 to deal with more general transfor-
mations including transformations of type graphs with inheritance, which may
be typed over a type graph of the next meta level.

The core of a graph transformation rule p = (L l←− K
r−→ R) as defined

in [6] is a triple of graphs (L, K,R), called left-hand side, interface and right-
hand side, and two injective graph morphisms L←l− K and K −r→ R. Interface K
contains the graph objects which are not changed by the rule and hence occur
both in L and in R. Applying rule p to a graph G means to find a match m of L in



G and to replace this matched part m(L) in G by the corresponding right-hand
side R of the rule, thus leading to a graph transformation step G

p,m
=⇒ H.

Note that a rule may only be applied if the gluing condition is satisfied, i.e.
the rule application must not leave dangling edges, and for two objects which
are identified by m, the rule must not preserve one of them and delete the other
one. Furthermore, a rule p may be extended by a set of positive or negative
application conditions (PACs and NACs) [10, 6]. Intuitively, a NAC forbids the
presence of a certain pattern in graph G, while a PAC requires it.
A match L

m−→ G satisfies a NAC with the in-
jective NAC morphism n : L → NAC, if there is
no injective graph morphism NAC

q−→ G with
q ◦ n = m (where “◦” denotes composition of

NAC

q
|

GGG

##GGG
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m
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morphisms), as shown in the diagram to the right. Analogously, a PAC is sat-
isfied if there exists such an injective graph morphism PAC

q−→ G. Our notion
of graph transformation is called double-pushout approach (DPO) since both
squares in the diagram are pushouts in the category of graphs, where D is the
intermediate graph after removing m(L) in G and in (PO2) H is constructed as
gluing of D and R along K.

The following examples show how changes of type graphs with inheritance,
like TGWeb and TGEGov in Fig. 2, can be defined in a formal and concise way.

Example 2 (Rules for Editing Network Meta-Models). Fig. 3 and the top line
of Fig. 4 show some typical editing rules, typed over TGWeb, where numbers
specify the rule morphisms. Interface K contains the numbered elements in L
only and is not shown explicitly in Fig. 3. The first two rules insert new nodes
and connections. Note that rule “createCS()” can be applied to any pair of nodes,
because the node types are specified abstractly. Rule “setUpdateConnection()”
contains a NAC and defines the controlled extension of connections, i.e. a pair
of links of types “ConSetup” and “DataFlow”, starting at a server node in zone
3. A new connection for requesting server updates can be established, but only
if there is no incoming connection via the same server, because this would ease
an attack from an external Internet connection.

L R
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Fig. 3. Rules for Editing Type Graph TGE−Gov



Finally, rule “insertSupertype()” given by the top line in Fig. 4 specifies a
sample refactoring operation, where a new super type node is created having
three nodes of type “Serv III” as specializations.

Example 3 (EGov Type Graph Transformation Step). Fig. 4 shows a graph trans-
formation step, where rule “insertSupertype()” is applied to graph G1, a part of
graph TGEGov from Fig. 2, resulting in the transformed graph G2.
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Fig. 4. Type Graph Transformation Step of rule insertSupertype()

The result of applying the rule to the complete type graph TGEGov yields
the type graph TGEGov2 as shown in Fig. 5.
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Fig. 5. Resulting Type Graph TGEGov2 as update of TGEGov

The examples show how transformations of type graphs with inheritance
in e-government networks can be defined in a concise way. After presenting the
underlying formalization in the next section we continue the example in Sec. 4 to
show the relevant features of the approach for ensuring security in e-government
networks.

3 Transformation of Graphs with Inheritance

Graph transformation with node type inheritance [6, 9] provides main aspects of
inheritance, in particular inheritance of attributes and edge types from parent



node types to children node types. In this section we lift transformations from the
instance level to the meta levels in order to support a formal basis for editing and
analyzing meta-models, i.e. type graphs with inheritance within the framework of
graph transformation. Recall further that meta-modelling is captured by graph
transformation using the concept of type graph hierarchy [7, 11].

Note that we use the algebraic notion of graphs, where a graph G = (V,E, s, t)
is given by a set of nodes V , a set of edges E and functions s, t : E → V
specifying source and target nodes for each edge. A graph morphism f : G1 →
G2 is a pair of mappings (fV : V1 → V2, fE : E1 → E2) compatible with
source and target functions, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE . In
order to improve readability of the paper we present our inheritance concepts
first for graphs without attribution, but in [22] we show how all concepts and
results can be extended to attributed graphs. Note that the following notion of
I-graphs slightly differs from [6] by using a relation for capturing the inheritance
information (instead of a separate graph with distinguished abstract nodes) in
order to simplify further constructions.

Definition 1 (I-Graph). Graph with Inheritance, short I-Graph, is given by
GI = (G, I). It consists of graph G and inheritance relation I ⊆ GV ×GV , where
for v ∈ GV clanI(v) = {v′ ∈ GV | (v′, v) ∈ I∗} with I∗ being the reflexive and
transitive closure of I.

Remark 1. According to [6, 9] as well as MOF [5] and UML [12] we do not require
that the inheritance relation is cycle free.

I-graph morphisms - not considered in [6] - are based on clan-morphisms [6]
taking into account inheritance.

Definition 2 (Clan-Morphism). Given graph G1 and I-graph GI2 = (G2, I2)
a pair of mappings f = (fV , fE) : G1 → G2 is called clan-morphism, written
f : G1→ GI 2, if ∀ e1 ∈ G1E :

fV ◦ sG1(e1) ∈ clanI2(sG2 ◦ fE(e1)) ∧ fV ◦ tG1(e1) ∈ clanI2(tG2 ◦ fE(e1)).

I-graphs and I-graph morphisms define the category IGraphs.

Definition 3 (Category IGraphs). Given I-graphs GI 1 = (G1, I1) and GI 2 =
(G2, I2), an I-graph morphism f : GI 1 → GI 2 is given by a clan-morphism
f : G1→ GI 2, which is I-compatible, i.e. (v, w) ∈ I1 implies (f(v), f(w)) ∈ I2∗.
The composition of I-graph morphisms f : GI 1 → GI 2 and g : GI 2 → GI 3
is defined by g ◦ f : GI 1 → GI 3 with (g ◦ f)V = gV ◦ fV : G1V → G3V

and (g ◦ f)E = gE ◦ fE : G1E → G3E . The category of I-graphs and I-graph
morphisms is denoted by IGraphs.

Example 4 (I-graph Morphism). The following example shows I-graph mor-
phism f : GI 0 → GI 1 where grey numbers indicate the mappings. According
to I-compatibility the identification of nodes v4 and v5 contained in GI 0 is pos-
sible, because (v45, v45) ∈ I1∗. Furthermore, inheritance between v1 and v2 of
GI 0 can be refined into several steps as shown by node v11 in GI 1. The clan



morphism f can additionally map edges to edges between nodes of super types
as shown by e3.

e3v2
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v4

e3
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v3

v45

v11

1
1

2

2

3

3

4

4,5

5

6
6

Remark 2. 1. I-compatibility is equivalent to
(v, w) ∈ I1∗ implies (fV (v), fV (w)) ∈ I2∗.

2. Given I-graph morphisms f and g then: g ◦ f : GI 1 → GI 3 is an I-graph
morphism, because I-compatibility of f and g implies that of g ◦ f and
we can show for all e1 ∈ G1E : (g ◦ f)V ◦ sG1(e1) = gV ◦ fV ◦ sG1(e1) ∈
clanI3(sG3 ◦ (g ◦ f)E(e1)).

3. Each clan-morphism f : G1→ GI 2 is also an I-graph morphism f : GI 1→
GI 2 with GI 1 = (G1, I1) and I1 = ∅, because in this case I-compatibility
is trivial. This implies also that the composition of a clan-morphism f :
G1 → GI 2 with an I-graph morphism g : GI 2 → GI 3 is a clan morphism
g ◦ f : G1→ GI 3.

In order to enable automatic critical pattern detection and user driven transfor-
mation for meta-models we lift graph transformation from the instance level to
all meta levels within the abstract framework of weak adhesive HLR categories
[6]. This way we can apply the well-known results for the abstract framework,
e.g. analysis and correction can be parallelized and distributed to meta-model
parts in case of several e-government networks.

For defining a weak adhesive HLR category we need to distinguish a suitable
class M fulfilling certain properties. We propose the class MS−refl of subtype-
reflecting morphisms, because on the one hand DPO-rules based on these mor-
phisms are powerful enough to generate all kinds of cycle-free inheritance graphs
on the meta-model level and on the other hand (IGraphs,MS−refl) can be
shown to be a weak adhesive HLR category with componentwise construction
of pushouts and pullbacks. Note that this fails to be true for the class M of all
injective I-graph morphisms.

The notion of subtype reflection, short S-reflection, defines the condition that
for each node n in the image of a morphism f it holds that all subtypes of n are
in the image of f as well. We will need this condition for the proof of Thm. 1.

Definition 4 (S-reflecting Morphism). An S-reflecting morphism f1 :
GI 0 → GI 1 is an I-graph morphism f1 : GI 0→ GI 1, where f1 is an injec-
tive graph morphism and has the S-reflection property: ∀ (v11, v1) ∈ I1∗, v0 ∈
GI 0V : v1 = f1V (v0)⇒ ∃ v01 ∈ GI 0V : f1V (v01) = v11 ∧ (v01, v0) ∈ I0∗.

All rules in Figures 3 and 4 are S-reflecting, i.e. their rule morphisms are
S-reflecting. Note that standard graph transformation rules, i.e. rules without
inheritance, can be interpreted as S-reflecting rules by adding empty inheritance



relations to their graphs. According to Thm. 1 and Thm. 2 in [22] pushouts and
pullbacks along S-reflecting I-graph morphisms can be constructed componen-
twise and the class MS−refl is closed under pushouts and pullbacks. Therefore,
DPO transformations of S-reflecting rules are well defined and can be con-
structed componentwise in IGraphs. Furthermore theses properties are part
of the conditions for weak adhesive HLR categories and in fact, the category
(IGraphs,MS−refl) is a weak adhesive HLR category (see Remark 3 below).

Theorem 1 ((IGraphs,MS−refl) is Weak Adhesive HLR Category). The
category IGraphs of graphs with inheritance together with the class MS−refl

of S-reflecting morphisms is a weak adhesive HLR category.

Remark 3 (Weak adhesive HLR category). According to the definition of weak
adhesive HLR categories (see Definition 4.13 in [6]) (IGraphs,MS−refl) has this
property if

1. MS−refl is a class of monomorphisms closed under isomorphisms, composi-
tion and decomposition

2. IGraphs has pushouts and pullbacks alongMS−refl -morphisms andMS−refl

is closed under pushouts and pullbacks
3. (IGraphs,MS−refl) has the weak VK -property, i. e. given a cube as below,

where the bottom face is a pushout with f1 ∈ MS−refl and the back faces
are pullbacks and one of the following two cases is satisfied, then we have:
top square is pushout ⇔ front squares are pullbacks.
case 1 Also f2 ∈MS−refl .
case 2 Also l1, l2, l3 ∈MS−refl .

We can conclude for each direction of
the equivalence by item 2 in case 1: also
g1, g2, h1, h2, k1, k2 ∈ MS−refl and in
case 2: also g2, h1, k2, l0 ∈MS−refl .

GI 4 h1 //

l0

��

h2
zzuuuu

GI 5

l1

��

k1zzuuuu

GI 6 k2 //

l2

��

GI 7
l3

��

GI 0
f1 //

f2

zzuuuu
GI 1

g1zzuuuu

GI 2 g2 // GI 3

Proof (see [22]).

Corollary 1 (Results for (IGraphs,MS−refl)). The following results for graph
transformation based on (IGraphs,MS−refl) are valid:

– Local Church Rosser Theorem for pairwise analysis of sequential and parallel
independence (Thm. 5.12 in [6])

– Parallelism Theorem for applying independent rules and transformations in
parallel (Thm. 5.18 in [6])

– Concurrency Theorem for applying E-related dependent rules simultane-
ously (Thm. 5.23 in [6])

– Embedding and Extension Theorem for transferring transformations and
analysis results to more complex scenarios (Thms. 6.14 and 6.16 in [6])

– Local Confluence Theorem and Completeness of critical pairs for analyzing
conflicts and for showing local Confluence (Thm. 6.28 and Lemma 6.22 in
[6])



Proof (Idea). These results are shown in [6] for weak adhesive HLR categories
with some additional properties (see Remark 6 in [22]) and are valid for (IGraphs,
MS−refl) by Thm. 1.

Before we show how the results in Corollary 1 can be applied in our scenario
of e-government networks let us discuss other approaches which may avoid to
work in the category IGraphs. The intuitive semantics of an I-graph GI is
the graph GI defined by closure or flattening of the inheritance relation I (see
Def. 6 in [22]) as considered already for type graphs with inheritance in [6]. The
inheritance closure is a cofree construction (see Thm. 7 in [22]) leading to a cofree
functor from IGraphs to Graphs. This implies that pullbacks are preserved,
but as shown in Example 5 in [22] - pushouts are not preserved in general.
For this reason, transformations with inheritance cannot easily be reduced to
standard graph transformation by flattening (see more details in [22]).

4 Analysis of E-Government Network Meta-Models

During each phase of system design critical patterns may occur, which can imply
unwanted behaviour and possibilities for a loss of security. The earlier they can
be detected and the earlier they can be corrected the lower is the risk of a system
containing critical parts in its implementation. This motivates to apply analysis
techniques as early and as abstract as during the meta-model development. This
section shows how critical patterns can be specified and automatically elimi-
nated. In order to explain our approach we first describe a specific attack to
an e-government system. Even though the cause of this attack is hard to detect
on the implementation level the elimination of a suitable critical pattern in the
meta-model ensures that this attack cannot occur. For the attack we assume
that an intruder got access to the web server already.

GEGov3

PC:Client WebS:Srv_I AS:Srv_II

p_c:ConSetup

p_d:DataFlow encrypted:DataFlow

a_c1:ConSetuppersonalCS:ConSetup

a_d1:DataFlow

TGEGov3

Z3:Srv_III

AS2:Srv_II
plain:DataFlow

generalCS:ConSetup

1:p_c

6:plain
Roxen:WebSDell:PC Tax:AS2

2:p_d

5:generalCS

4:encrypted
3:personalCS

...

...

type

Fig. 6. Configuration for possible attack

Example 5 (Intrusion Attack). Fig. 6 shows a meta-model TGEGov3 and an in-
stance GEGov3 with clan morphism type. There are two types for possible con-
nection setups from server “Roxen” to server “Tax”, because of the inheritance



relation between “AS2” and “AS” in TGEGov3. Assume that the application
server “Tax” in GEGov3 processes both confidential requests for receiving and
updating personal information for tax declaration via secure encrypted data
channel “4:encrypted” and requests for general information regarding dates, laws
and submission address for preparing a tax declaration via unencrypted channel
“6:plain”. The following sequence describes the intrusion:

– A user requests general information, stays connected and performs a log-in
to request in addition also personal information.

– Because of high load of channel 4 a scheduling algorithm on web server
“Roxen” decides to transfer some personal data via channel 6.

– The user receives the data, which is not encrypted during the communication.
– The intruder with access to the web server may now observe the insecure

communication and intercept some confidential data.

A successful interception of the response is hidden. Even if misuse of confi-
dential data for another service is detected at a later stage, locating the error is
hard. Even though the channels were initially assigned correctly according to the
kind of data the intrusion happened, because of a side affect of the scheduling
algorithm, which is hidden to the model. Hence, possibilities for side effects on
the implementation basis should be minimized.
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2:Node1:Node

5:DataFlow

3:Node
:ConSetup

:DataFlow

R 4:ConSetup
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5:DataFlow
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:ConSetup
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2:Srv_III

:DataFlow

:DataFlow

:DataFlow

Fig. 7. Checking rules for analysis

Rule “deleteRedundantConnection()” in Fig. 7 can detect the critical pattern
of web servers that can communicate via different types of connections simulta-
neously. A valid match of the rule states a detection and the developer of the
model may apply the rule for automatic correction causing the deletion of the
more specific connection type. This deletion of edges “generalCS” and “plain” in
TGEGov3 implies in particular that instance GEGov3 is not typed correctly any
more, because the edges 5 and 6 cannot be mapped type consistently.



A further rule for analysis and correction is given by “deleteDirectCS()” in
Fig. 7. The positive application condition PAC requires a possible connection
setup via a proxy node, while the left hand side L already matches a direct con-
nection setup link between a server of zone I and a server of zone III. This situa-
tion may easily occur, if verbal requirements for the model are realized directly.
Since communication shall only be possible between neighbouring zones this
pattern is critical and has to be corrected by applying rule “deleteDirectCS()”.
Note especially that the pattern is very flexible, because the proxy node is of
the general type “Node”.

In the following we show how we can apply the well-known results for adhesive
HLR systems (see Cor. 1).

PC:Client WebS:Srv_I AS:Srv_II

p_c:ConSetup

p_d:DataFlow

w_d2:DataFlow
a_c1:ConSetupw_c2:ConSetup
a_d1:DataFlow

TGEGov4

Z3:Srv_III

w_d3:DataFlow

w_c3:ConSetup... DBS:Srv_III

w_d1:DataFlow

w_c1:ConSetup

Fig. 8. Conflict situation for rules deleteDirectCS() and deleteRedundantConnection()

Example 6 (Critical Pair). Fig. 8 shows graph TGEGov4, which demonstrates a
conflict situation for the rules “deleteDirectCS()” and “deleteRedundantConnec-
tion()” (see Fig. 7). Both rules can be applied to this graph and the matches are
indicated by dark respectively light grey marked regions, where the first match
is a proper clan-morphism. Both matches overlap on edges “w c3” and “w d3”
that will be deleted by the rule applications. Thus, these rule applications are
parallel dependent and there is a conflict of deciding which one to apply. This
leads to a critical pair.

If in other situations the rule applications overlap only in their interfaces
they are parallel independent and according to the Local Church Rosser and
Parallelism Theorem (see Corollary 1) we can apply the rules in any order or in
parallel.

According to the general result on completeness of critical pairs (see Corol-
lary 1) there is a critical pair for each possible conflict. Hence, it suffices to
calculate all critical pairs using tool support, which is available for standard
graph transformation already [1]. If all critical pairs are strictly confluent we
can apply the Local Confluence Theorem (see Corollary 1) in order to show that
different applications of the analysis rules lead to the same result. Otherwise the
aim is to group the analysis rules, such that there is no critical pair between
two of the same group. In this way the analysis in each group can be applied in
parallel using one parallel rule according to the Parallelism Theorem.



In practical situations meta-models are more complex, which results in a
higher amount of node and edge types. Since critical patterns do normally con-
tain only few nodes and edges it is quite usual that several rules are independent
from each other and can be put in the same independence group. Therefore,
our approach scales up for complex systems, where an automatic critical pattern
detection and elimination is highly desirable. Note in particular that pure criti-
cal pattern detection without correction will never involve conflicts, since there
is no deletion. For this reason it can be parallelized and distributed without
calculating critical pairs.

Altogether we can use the results in Corollary 1 for parallel critical pattern
detection and analyze how far different orders of the elimination of these patterns
lead to the same result.

5 Related Work

In this paper we consider rule-based meta-model transformations in order to
change meta-models in a way that makes them adhere to security requirements.
This includes refactoring steps, such as inserting supertype nodes. Usually, model
refactorings are performed at instance model level. Various approaches exist us-
ing graph transformation to provide a formal specification of model refactorings
[13–16]. It has the advantage of defining refactorings in a generic way, while
still being able to provide tool support in commonly accepted modeling environ-
ments such as EMF [17]. In addition, the theory of graph transformation allows
the modeller to formally reason about dependencies between different types of
refactorings. Synchronized rules are applied in parallel to keep coherence be-
tween models. Considering the special case where exactly two parts (one model
diagram and the program or two model diagrams) are related, the triple graph
grammar (TGG) approach by Schürr et al. [18] is used frequently.

Our transformation approach at meta-model level is most useful during meta-
model development to ensure security requirements before instance graphs are
created. An interesting line of research is the co-evolution of meta-models of
higher levels and the corresponding meta-models at lower levels, down to in-
stance models. Changing one meta level may cause implications for model up-
dates of lower levels to keep them consistent (migration problem). A promising
approach for automatic migration of instances is described in [19], where meta-
model changes are transferred to lower levels by pullback constructions using
non-injective morphisms. In this case, the rule morphisms K −l→ L for the meta
level transformations have to be non-injective. This leads to non-functional be-
haviour of DPO rewriting. In [20], SqPO rewriting is introduced, which is an
extension of DPO rewriting taking into account this problem.

6 Conclusion

The formal basis for type graphs with inheritance was presented already in [21,
6, 9] and the semantics given by the closure construction coincides with the one



of the inheritance concept of the meta-modelling language MOF [5]. For this
reason, the presented extension of the theory to transformations of type graphs
with inheritance enables DSL modellers to define modifications of meta-models
which contain inheritance information. Apart from the presented case study of
e-government network security, a wide range of meta-model based application
domains are conceivable, in particular hierarchical and integrated systems of
meta-models.

The paper showed that graphs with inheritance together with the introduced
class of S-reflecting morphisms forms a weak adhesive category. Hence, the in-
troduced formalization of transformations of meta-models allows modellers to
apply various techniques for analysis of the meta-modelling process, due to the
fact that well-known results for confluence analysis and conflict detection ex-
ist for weak adhesive HLR systems [6]. For instance, in the case of the sample
scenario, when the necessary meta-model changes of several modellers conflict
each other, the formal techniques for merging and conflict detection support a
consistent synchronization. And in the case of local changes of parts or views of
the model, the changes can be embedded into the overall model if the consis-
tency condition of the Embedding Theorem is fulfilled. Note that the presented
approach is suited also in other application domains for checking formally the
fulfillment of security requirements during design phase.

Future work on the theoretical formalization will include an analysis of the
gluing condition and characterization of critical pairs for transformations of
graphs with inheritance. Moreover, the migration problem discussed in Sec. 5
is an important problem when meta-models have to be modified where instance
models exist which have to be kept consistent. The SqPO rewriting approach
[20] seems to be a good candidate for future extensions of the presented theory
in the context of model migration. Finally the critical pair analysis of the tool
AGG shall be extended to the case of graphs with inheritance.
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