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Abstract. Triple graph grammars (TGGs) are a formal and intuitive
concept for the specification of model transformations. Their main ad-
vantage is an automatic derivation of operational rules for bidirectional
model transformations, which simplifies specification and enhances us-
ability as well as consistency.

In this paper we continue previous work on the formal definition of
model transformations based on triple graph rules with negative appli-
cation conditions (NACs). The new notion of partial source consistency
enables us to construct consistent model transformations on-the-fly in-
stead of analyzing consistency of completed model transformations.

We show the crucial properties termination, correctness and complete-
ness (including NAC-consistency) for the model transformations result-
ing from our construction. Moreover, we define parallel independence
for model transformation steps which allows us to perform partial-order
reduction in order to improve efficiency. The results are applicable to
several relevant model transformations and in particular to our example
transformation from class diagrams to database models.
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1 Introduction

Model transformations based on triple graph grammars (TGGs) have been in-
troduced by Schürr in [1]. TGGs are grammars that generate languages of graph
triples, consisting of a source graph GS and a target graph GT , together with
a correspondence graph GC “between” them. From a TGG, operational rules
can be derived which define various model integration tasks, such as consis-
tency checking, consistency recovery and bidirectional model transformation.
Since 1994, several extensions of the original TGG definitions have been pub-
lished [2,3,4], and various kinds of applications have been presented [5,6,7].

For source-to-target model transformation, so-called forward transformation,
we derive rules which take the source graph as input and produce a corresponding
target graph. Major properties expected to be fulfilled for model transformations
are termination, correctness and completeness.
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In a previous series of papers we focused on the formal definition of TGGs
and the analysis of model transformation properties: in [8], we showed how to
analyze bi-directional model transformations based on TGGs with respect to
information preservation, which is based on a decomposition and composition
result for triple graph grammar sequences. Moreover, completeness and correct-
ness of model transformations have been studied on this basis in [9]. In [10],
the formal results were extended to TGGs with negative application conditions
(NACs), a key concept for many model transformations (see [2]). In contrast to
the presented algorithm in [2] we use the concept of source consistency, where
the the transformation is controlled by a parsing of the source model, and we
introduced NAC consistency as an extension. In this way we could extend several
important results to the case of TGGs with NACs. Model transformations based
on triple rules with NACs were also analyzed in [11] for a restricted class of
triple rules with distinct kernel elements. For this restricted class of triple graph
grammars local confluence and termination can be analyzed and thus, model
transformations can be checked for functional behavior.

As shown in [12] and [10] the notion of source consistency ensures correct-
ness and completeness of model transformations based on triple graph grammars
with and without NACs. However, source consistency does not directly guide the
construction of the model transformation, because it has to be checked for the
complete forward sequence. This means that possible forward sequences have to
be constructed until one is found to be source consistent. Additionally, termina-
tion of this search is not guaranteed in general.

It is the main contribution of this paper to introduce a construction tech-
nique for correct and complete model transformation sequences on-the-fly, i.e.
correctness and completeness properties of a model transformation need not
to be analyzed after completion, but are ensured by construction. In our con-
struction, we check source consistency while creating the forward sequences and
define suitable conditions for termination. Thus, re-computations of model trans-
formations may be avoided. Moreover, we present a characterization of parallel
independence of forward transformation steps and use this notion for an opti-
mization of efficiency based on partial order reduction [13]. Summing up, the
paper provides the basis for efficient implementations of model transformation
tools that ensure termination, correctness and completeness.

The paper is structured as follows: Sec. 2 reviews the definition of triple
graph grammars with NACs from [10]. In Sec. 3 we introduce an on-the-fly
construction of source consistent forward transformation sequences, generalizing
the notion of source consistency to partial source consistency. The on-the-fly
construction is analyzed in Sec. 4 regarding correctness and completeness of the
model transformations, and termination of the construction. Moreover, parallel
independence of forward transformation steps is defined and used to find switch
equivalent model transformation sequences by performing an optimization based
on partial order reduction. Sec. 5 discusses related work, and Sec. 6 concludes
the paper. Our technical report [14] contains full definitions for Sec. 2 and full
proofs for the presented results in Secs. 3 and 4.
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2 Review of Triple Graph Grammars with NACs

Triple graph grammars [1] are a well known approach for bidirectional model
transformations. Models are defined as pairs of source and target graphs, which
are connected via a correspondence graph together with its embeddings into
these graphs. In [3], Königs and Schürr formalize the basic concepts of triple
graph grammars in a set-theoretical way, which is generalized and extended by
Ehrig et al. in [8] to typed, attributed graphs. In this section, we briefly review
triple graph grammars with negative application conditions (NACs) [2,10].

A triple graph G =(GS ←sG−− GC −tG−→ GT ) consists of three graphs GS , GC ,
and GT , called source, correspondence, and target graphs, together with two
graph morphisms sG : GC → GS and tG : GC → GT . A triple graph morphism
m = (mS , mC , mT ) : G→ H consists of three graph morphisms mS : GS → HS ,
mC : GC → HC and mT : GT → HT such that mS ◦ sG = sH ◦ mC and
mT ◦ tG = tH ◦mC . A typed triple graph G is typed over a triple graph TG by
a triple graph morphism typeG : G→ TG .

colsattrsparent
:CT

:AC

next

Class
name: String

Attr
name: String
type: String

Column
name: String
type: String

next

Table
name: String

Fig. 1. Triple Type Graph for CD2RDBM

Example 1. Fig. 1 shows the type graph TG of the triple graph grammar GG for
our example model transformation from class diagrams to database models. The
source component of TG defines the structure of class diagrams while in its tar-
get component the structure of relational database models is specified. Classes
correspond to tables and attributes to columns. Throughout the example, orig-
inating from [2] and [8], elements are arranged left, center, and right according
to the component types source, correspondence and target. Morphisms starting
at a correspondence part are given by dashed arrows. Note that the case study
is equipped with attribution, which is based on the concept of E-graphs [15].

Triple rules synchronously build
up source and target graphs
as well as their correspondence
graphs, i.e. they are non-deleting.
A triple rule tr is an injective

(LS

trS ��

L LC
sL��

trC
��

tL �� LT )
trT ��

(RSR

tr ��
RC

sR

��
tR

�� RT )

L

m
��

� � tr �� R

n
��

(PO)

G
� �

t
�� H

triple graph morphism tr = (trS , trC , trT ) : L→ R and w.l.o.g. we assume tr
to be an inclusion. Given a triple rule tr : L→ R, an injective m : L → G, a
triple graph transformation step (TGT-step) G =

tr,m,n
====⇒ H from G to a triple

graph H is given by a pushout of triple graphs with comatch n : R → H and
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transformation inclusion t : G ↪→ H . A sequence of triple graph transformation
steps is called triple (graph) transformation sequence, short: TGT-sequence.
Furthermore, a triple graph grammar TGG = (S,TG ,TR) consists of a triple
start graph S, triple type graph TG and a set TR of triple rules.
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Fig. 2. Rules for the Model Tranformation Class2Table

Example 2 (Triple Rules). The top line of Fig. 2 shows two triple rules in short
notation. Left and right hand side of a rule are depicted in one triple graph.
Elements, which are created by the rule, are labeled with green ”++” and marked
by green line coloring. Rule ”Class2Table” synchronously creates a class in a class
diagram with its corresponding table in the relational database. Accordingly,
subclasses are connected to the tables of its super classes. The further rules
contain NACs which we introduce next.

The extension of the results of this paper to the case with attributes is straight
forward, because all results can be shown in the framework of weak adhesive HLR
categories [15]. According to [10] we present negative application conditions for
triple rules. In most case studies of model transformations source-target NACs
are sufficient and we regard them as the standard case.

Definition 1 (Negative Application Conditions). Given a triple rule tr =
(L → R), a general negative application condition (NAC) (N, n) consists of a
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triple graph N and an injective triple graph morphism n : L→ N . A NAC with
n = (nS , idLC , idLT ) is called source NAC and a NAC with n = (idLS , idLC , nT )
is called target NAC. This means that source-target NACs, i.e. either source or
target NACs, prohibit the existence of certain structures either in the source or
in the target part only.

A match m : L → G is NAC consistent if there is no injective q : N → G
such that q ◦ n = m. A triple transformation G

∗⇒ H is NAC consistent if all
matches are NAC consistent.

(LS

trS ��
∅��

��

�� ∅)
��

(RS
∅�� �� ∅)

source rule trS

(∅
��

∅��

��

�� LT )
trT ��

(∅ ∅�� �� RT )
target rule trT

(RS

id ��
LC

trS◦sL��

trC ��

tL �� LT )
trT��

(RS RC
sR�� tR �� RT )
forward rule trF

Operational rules for model transformations are automatically derived from the
set of triple rules TR. From each rule tr of TR we derive a forward rule trF

for forward transformation sequences and a source rule trS for the construction
resp. parsing of a model of the source language. Analogously, we derive a target
rule trT for models of the target language and backward rules trB, which are
not presented explicitly. Furthermore, trS contains all source NACs of tr and
trF as well as trT contain all target NACs of tr. TRS , TRT and TRF denote
the sets of all source, target resp. forward rules derived from TR.

A set of triple rules TR with NACs and start graph ∅ generates a visual
language VL of integrated models, i.e. models with elements in the source, target
and correspondence component. Source language V LS and target language VLT

are derived by projection to the triple components, i.e. V LS = projS(V L) and
V LT = projT (V L). The set V LS0 of models that can be generated resp. parsed
by the set of all source rules TRS is possibly larger than VLS and we have
VLS ⊆ VLS0 = {GS |∅ =⇒∗ (GS ← ∅ → ∅) via TRS}. Analogously, we have
V LT ⊆ V LT0 = {GT |∅ =⇒∗ (GT ← ∅→ ∅) via TRT }.
Example 3 (Triple Rules with NACs). Examples for triple rules with NACs and
derived rules are given in Fig. 2. NACs are indicated by red frames with la-
bels “NAC” and they control the construction of attribute lists in the source
part and corresponding column lists in the target part. The first attribute of
a class is either created by the rule “Attr2Column” or by “Attr2NextColumn”
while rule “NextAttr2NextColumn” extends an existing list of attributes. Lists
of columns are initialized by rule “Attr2Column” only, because there is no in-
heritance structure in data base tables, and they are extended by the other two
rules. The source rule trS and forward rule trF of tr =“Attr2Column” are shown
in the right part of Fig. 2, where trS contains the source NAC (NAC1) and trF

the target NAC (NAC2) of tr . Forward transformations using the derived rules
according to Section 3 process the attribute lists in the natural order, i.e. starting
with the root element of a list.

As introduced in [8,10] we are now able to define model transformations based
on source consistent forward transformations G0 =⇒∗ Gn via (tr1,F , . . . , trn,F ),
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short G0 =
tr∗

F==⇒ Gn. Source consistency of G0 =
tr∗

F==⇒ Gn means that there is a

source sequence ∅ =
tr∗

S==⇒ G0 such that the sequence ∅ =
tr∗

S==⇒ G0 =
tr∗

F==⇒ Gn is
match consistent, i.e. the S-component of each match mi,F of tr i,F (i = 1..n) is
uniquely determined by the comatch ni,S of tr i,S , where tr i,S and tr i,F are source
and forward rules of the same triple rules tr i. Altogether the forward sequence
G0 =

tr∗
F==⇒ Gn is controlled by the corresponding source sequence ∅ =

tr∗
S==⇒ G0,

which is unique in the case of match consistency.

Definition 2 (Model Transformation based on Forward Rules). A model

transformation sequence (GS , G0 =
tr∗

F==⇒ Gn, GT ) consists of a source graph GS, a
target graph GT , and a NAC- as well as source consistent forward TGT-sequence
G0 =

tr∗
F==⇒ Gn with GS = proj S(G0) and GT = proj T (Gn).

A model transformation MT : VLS0 � VLT0 is defined by all model transfor-
mation sequences (GS , G0 =

tr∗
F==⇒ Gn, GT ) with GS ∈ VLS0 and GT ∈ VLT0.

Finally, let us note that we have shown in [8,10] that each TGT-sequence
G0 =tr

∗
=⇒ Gn with NACs can be decomposed into a match consistent TGT-

sequence ∅ =
tr∗

S==⇒ G0 =
tr∗

F==⇒ Gn with NACs and vice versa, which is the basis for
correctness and completeness of model transformations in Sec. 4.

3 On-the-Fly Construction of Model Transformations

In order to construct a model transformation sequence (GS , G0 =
tr∗

F==⇒ Gn, GT )
according to Def. 2 from a given GS there have been two alternatives up to now
[8,10]: Either we construct a parsing sequence ∅ =

tr∗
S==⇒ G0 first and then try to

extend it to a match consistent sequence ∅ =
tr∗

S==⇒ G0 =
tr∗

F==⇒ Gn, or we construct

directly a forward sequence G0 =
tr∗

F==⇒ Gn and check afterwards, whether it is
source consistent. This means that many candidates of forward transformation
sequences may have to be constructed before a source consistent one is found.

We present an on-the-fly check of source consistency using the new notion of
partial source consistency. The construction proceeds stepwise and constructs
partial source consistent forward sequences. For each step the possible matches
of model transformation rules are filtered, such that sequences that will not lead
to a source consistent one are rejected as soon as possible. Simultaneously, the
corresponding source sequences of the forward sequences are constructed on-
the-fly leading to complete source sequences for the complete forward sequences.
Intuitively, this can be seen as an on-the-fly parsing of the source model.

Partial source consistency of a forward sequence, which is necessary for a
complete model transformation, requires a corresponding source sequence such
that both sequences are partially match consistent. This means that the matches
of the forward sequence are controlled by an automatic parsing of the source
model, given by inverting the source sequence. We incrementally extend partially
source consistent sequences and can derive complete source consistent sequences
ensuring that all elements of the source model are translated exactly once.
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Definition 3 (Partial Match and Source Consistency). Let TR be a set
of triple rules with source and target NACs and let TRF be the derived set of
forward rules with target NACs. A NAC-consistent sequence

∅ = G00 =
tr∗

S==⇒ Gn0 ↪−gn−→ G0 =
tr∗

F==⇒ Gn

defined by pushout diagrams (1) and (3) for i = 1 . . . n with GC
0 = ∅, GT

0 = ∅

and inclusion gn : Gn0 ↪→ G0 is called partially match consistent, if diagram
(2) commutes for all i, which means that the source component of the forward
match mi,F is determined by the comatch ni,S of the corresponding step of the
source sequence with gi = gn ◦ tn,S . . . ti−1,S.

Li,S
� � tri,S ��

mi,S ��

Ri,S

ni,S��(1)

� � �� Li,F

(2) mi,F ��

� � tri,F �� Ri,F

ni,F��(3)

Gi−1,0
� �

ti,S

�� Gi,0
� �

gi

�� G0
� � �� Gi−1

� �

ti,F

�� Gi

A NAC-consistent forward sequence G0 =
tr∗

F==⇒ Gn is partially source consis-

tent, if there is a source sequence ∅ = G00 =
tr∗

S==⇒ Gn0 with inclusion Gn0 ↪−gn−→ G0

such that G00 =
tr∗

S==⇒ Gn0 ↪−gn−→ G0 =
tr∗

F==⇒ Gn is partially match consistent.

Remark 1
1. If gn = idG0 , partial match consistency coincides with match consistency.
2. For n = 0 the partially match consistent sequence is given by g0 : G00 ↪→ G0.

Example 4 (Partial Match and Source Consistency). Let us consider a sequence
starting with triple graph G0 (depicted in the center of Fig. 3) which represents
a class diagram consisting of one class with two linked attributes. G0 will be
mapped to a corresponding table with two linked columns. Note that for this
example, we assume the triple rules shown in Fig. 2, but first without NACs.

Fig. 3. Step 1 of the partially match-consistent sequence

In the first step (i = 1), shown in Fig. 3, we apply rule tr1,S = Class2TableS

to the empty start graph G00 yielding the source graph G10 which contains
one class. Obviously, G10 is included in G0. Hence, diagram (2) commutes for
step 1. The corresponding forward rule tr1,F = Class2TableF is applied to G0

and maps the class node to a table node, resulting in G1. For step i = 2 (not
depicted), we apply the source rule tr2,S = Attr2ColumnS to graph G10 which
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adds an attribute and links it to the class. The result graph is G20. Again, G20 is
included in G0, which is included in G1. The corresponding forward rule tr2,F =
Attr2ColumnF is applied to G1, resulting in G2, where the upper attribute of
the class now is mapped to a column of the table.

In the third step (i = 3), shown in Fig. 4, we apply the same source rule once
more, i.e. tr3,S = Attr2ColumnS , and add a second attribute to G20, resulting
in source graph G30. This graph is included in G0, which in turn is included
in G2. Diagram (2) commutes for step 3. The application of the corresponding
forward rule tr3,F = Attr2ColumnF at the co-match of tr3,S yields G3, where
now also the second attribute is mapped to a column of the table.

Fig. 4. Step 3 of the partially match-consistent sequence

Since for each considered step, diagram (2) of Def. 3 commutes, we conclude

that sequence ∅ = G00
tr1,S=⇒ G10

tr2,S=⇒ G20
tr3,S=⇒ G30 ↪−gn−→ G0

tr1,F=⇒ G1
tr2,F=⇒

G2
tr3,F=⇒ G3 is partially match consistent. Hence, the forward sequence G0

tr1,F=⇒
G1

tr2,F=⇒ G2
tr3,F=⇒ G3 is partially source consistent. Note that the forward se-

quence, although being partially source consistent, cannot be extended to a
complete source consistent sequence. The reason is that after the third step,
we do not find a new partially source consistent match for some tr4,F . We will
analyze in Ex. 6 what went wrong and how NACs in triple rules can help to
improve the construction of valid source consistent sequences.

In order to provide an improved construction of source consistent forward se-
quences we characterize valid matches by introducing the following notion of
forward consistent matches. The formal condition of a forward consistent match
is given by a pullback diagram where both matches satisfy the corresponding
NACs. Intuitively, it specifies that the effective elements of the forward rule are
matched for the first time in the forward sequence (see Interpretation 1 below).

Definition 4 (Forward Consistent Match). Given a partially match con-

sistent sequence ∅ = G00 =
tr∗

S==⇒ Gn−1,0 ↪−gn−→ G0 =
tr∗

F==⇒ Gn−1 then a match mn,F :
Ln,F → Gn−1 for trn,F : Ln,F → Rn,F is called
forward consistent if there is a source match
mn,S such that diagram (1) is a pullback and
the matches mn,F and mn,S satisfy the corre-
sponding target and source NACs, respectively.

Ln,S
� � ��

mn,S

��

Rn,S
� � �� Ln,F

(1) mn,F

��
Gn−1,0

� �

gn−1
�� G0

� � �� Gn−1
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Interpretation 1. The pullback property of (1) means that the intersection of
the match mn,F (Ln,F ) and the source graph Gn−1,0 constructed so far is equal
to mn,F (Ln,S), the match restricted to Ln,S, i.e. we have

(2) : mn,F (Ln,F ) ∩Gn−1,0 = mn,F (Ln,F ).

This condition can be checked easily and mn,S : Ln,S → Gn−1,0 is uniquely
defined by restriction of mn,F : Ln,F → Gn−1. Furthermore, as a direct conse-
quence of (2) we have

(3) : mn,F (Ln,F \ Ln,S) ∩Gn−1,0 = ∅.

On the one hand, the source elements of Ln,F \Ln,S - called effective elements -
are the elements to be transformed by the next step of the forward transformation
sequence. On the other hand, Gn−1,0 contains all elements that were matched
by the preceding forward steps, because matches of the forward sequence coin-
cide on the source part with comatches of the source sequence. Hence, condition
(3) means that the effective elements were not matched before, i.e. they do not
belong to Gn−1,0.

Example 5 (Forward Consistent Match). In the partial match consistent se-
quence from Ex. 4, all forward rule matches are forward consistent. Consider
for example the situation in step 3, shown in Fig. 5, where all mappings have
been indicated explicitly by equal numbers. We can see that L3,F ∩G20 = L3,S ,
which implies that Diagram (1) from Def. 4 is a pullback. Analogously, the
matches from forward rules in steps 1 and 2 are also forward consistent.

Fig. 5. Forward consistent match from step 3

In the following improved construction of model transformations, we check the
matches to be forward consistent. This allows us to filter the available matches
to those which can lead to correct model transformations while those matches
that cannot lead to correct model transformations are rejected.

Theorem 1 (On-the-Fly Construction of Model Transformations).
Given a triple graph G0 with GC

0 = GT
0 = ∅, execute the following steps:

1. Start with G00 = ∅ and g0 : G00 ↪→ G0.
2. For n > 0 and an already computed partially source consistent sequence

s = 〈G0 =
tr∗

F==⇒ Gn−1 〉 with ∅ = G00 =
tr∗

S==⇒ Gn−1,0 and embedding gn−1 :
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Gn−1,0 ↪→ G0 find a (not yet considered) forward consistent match for some

trn,F leading to a partially source consistent sequence G0 =
tr∗

F==⇒ Gn−1 =
trn,F===⇒

Gn with G00 =
tr∗

S==⇒ Gn−1,0 =
trn,S===⇒ Gn0 and embedding gn : Gn0 ↪→ G0. If

there is no such match, s cannot be extended to a source consistent sequence.
Repeat until gn = idG0 or no new forward consistent matches can be found.

3. If the procedure terminates with gn = idG0 , then G0 =
tr∗

F==⇒ Gn is source

consistent leading to a model transformation sequence (GS , G0 =
tr∗

F==⇒ Gn, GT )
with GS and GT being the source and target models of G0 and Gn.

The on-the-fly construction does not restrict the choice of a suitable n, trn,F ,
and match in Step 2. Hence, different search algorithms are possible, e.g.

– Depth First: If we increase n after every iteration, and only decrease n by 1
if no more new forward consistent matches can be found, a depth-first search
is performed.

– Breadth First: If we increase n only after all forward consistent matches for
n are considered, the construction performs a breadth-first search.

Depending on the type of the model transformation, other search strategies may
be reasonable. In Sec. 4, we show how to make the construction more efficient
by analyzing independent transformations.

t5:cols

s9:parent

c2:
AC

s8:next

s1:Class
name=

s5:Attr
name= _
type=Integer

t2:Column
name= -
type=String

t7:next

s4:Class
name=

s3:Attr
name=
type=String

s2:Attr
name= -
type=String

s7:attrs

s6:attrs
s10:attrs

c3:
AC

c5:
AC

c1:
CT

t1:Table
name=

t3:Column
name=
type=String

t4:Column
name= _
type=Integer

c4:
CT

t6:cols
t8:cols

t9:next

Fig. 6. G5 of Forward Sequence

Example 6 (On-the-Fly Construction). Let us assume we have found already
the partial match consistent sequence from Ex. 4 by depth-first search. All
forward rule matches found so far are forward consistent. But after the third
rule application step (i = 3), we do not find a new partial source consistent
match for some tr4,F . We cannot extend the sequence to a source consis-
tent one, because there is no triple rule for inserting a next link between
two existing attributes. The mistake we made was to use the wrong rule
Attr2ColumnS for the insertion of the second attribute. If we had used rule
NextAttr2NextColumnS instead, we would have constructed a sequence which
could be extended to a source consistent sequence. If a sequence cannot be
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extended to a source-consistent one, we have two choices: either, we have to
try to apply a different rule in a previous step, or we restrict the applicability
of our triple rules, e.g. by adding negative application conditions. Here, we
can use the NACs in Fig. 2, which ensure that only one attribute-adding
rule is applicable in each step. An example for a source-consistent sequence,
constructed by partially source consistent sequences according to Thm. 1, is
the model transformation (GS = G0,S , G0 =

tr∗
F==⇒ G5, GT = G5,T ), where G5

(shown in Fig. 6) is generated by the forward sequence G0 =Class2Table=======⇒ G1

=Attr2Col=====⇒ G2 =Subclass2Table=========⇒ G3 =NextAttr2NextCol============⇒ G4 =Attr2NextCol=========⇒ G5, and

G0 is generated by the corresponding source sequence ∅ =
tr∗

S==⇒ G0. All elements
in Fig. 6 are labeled with numbers. The following table specifies the matches
and the created objects for each transformation step. Note that we cannot
accidentally apply the rule Class2TableF at subclasses, because in this case
the transformation will not become source consistent - the edge of the type
“parent” will be missing.

Source Sequence Elements Forward Sequence Elements
Step Matched Created Matched Created

1 s1 s1 c1,t1
2 s1 s2,s7 s1,s2,s7,c1,t1 c2,t2,t5
3 s1 s4,s9 s1,c1,t1,s4,s9 c4
4 s1,s2,s7 s3,s8 s1-s3,s6-s8,c1,t1,t2,t5 c3,t3,t6,t7
5 s4 s5,s10 s4,s5,s10,c4,t1,t3,t6 c5,t4,t8,t9

4 Analysis and Improvement of the Construction

In this section, we analyze the on-the-fly construction in Thm. 1 regarding cor-
rectness, completeness, and termination of the model transformations and show
how to improve efficiency by parallel independence, which allows partial order
reduction.

The on-the-fly construction is correct, which means that if it terminates both
the source and target models of the resulting model transformations are valid
models of the source and target languages, respectively. Moreover, it is also
complete, which means that for any source model the procedure can find a
model transformation sequence leading to a corresponding target model.

Theorem 2 (Correctness and Completeness)

– Correctness: If the on-the-fly construction terminates with gn = idG0 , then

the resulting model transformation (GS , G0 =
tr∗

F==⇒ Gn, GT ) is correct, i.e.
GS ∈ V LS and GT ∈ V LT .

– Completeness: For each GS ∈ V LS there exists GT ∈ V LT with a model
transformation (GS , G0 =

tr∗
F==⇒ Gn, GT ), which can be obtained by the on-the-

fly construction.
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Remark 2. Dually, for each GT ∈ V LT there exists GS ∈ V LS where the cor-
responding model transformation can be obtained dually by partially target
consistent sequences.

In general, the termination of the on-the-fly construction cannot be guaranteed.
But for the case that all source rules create new elements also the termination
of the on-the-fly construction is ensured.

Theorem 3 (Termination). The on-the-fly construction of a triple graph G0

with GC
0 = GT

0 = ∅ terminates if all source rules tri,S are creating, i.e. Ri,S \
Li,S �= ∅.

Example 7 (Termination). The on-the-fly construction of triple graph G5 in
Ex. 6 terminates because all of the used source rules in the source sequence
are creating, which can be seen in the left column of the table.

In the following, we describe how to improve efficiency by analyzing parallel
independence of extensions. Two partially match consistent sequences which
differ only in the last rule application are parallel independent if the last rule
applications are parallel independent both for the source and forward sequence,
and, in addition, if the embeddings into the given graph G0 are compatible.

Definition 5 (Parallel Independence of Partially Match Consistent
Extensions). Two partially match consistent sequences

∅ = G00 =
tr∗

S==⇒ Gn0 =
tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr1,F===⇒ Gn+1 and

∅ = G00 =
tr∗

S==⇒ Gn0 =
tr2,S===⇒ G′

n+1,0 ↪−g
′
n+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr2,F===⇒ G′
n+1

are parallel independent if Gn0 =
tr1,S===⇒ Gn+1,0 and Gn0 =

tr2,S===⇒ G′
n+1,0 as well

as Gn =
tr1,F===⇒ Gn+1 and Gn =

tr2,F===⇒ G′
n+1 are parallel independent leading to the

diagram (1S) and (1F ), and diagram (2) is a pullback.

Gn0

tr1,S ��

tr2,S

��

Gn+1,0

(1S) tr2,S

��
G′

n+1,0 tr1,S

�� Gn+2,0

Gn

tr1,F ��

tr2,F

��

Gn+1

(1F ) tr2,F

��
G′

n+1 tr1,F

�� Gn+2

Gn0
� � t1,S ��

� �
t2,S

��

Gn+1,0

(2)

� �

gn+1

��
G′

n+1,0
� �

g′
n+1

�� G0

In the case of parallel independence of the extensions, both extensions can be
extended both in the source and forward sequences leading to two longer partially
match consistent sequences which are switch-equivalent.

Theorem 4 (Partial Match Consistency with Parallel Independence).

If ∅ = G00 =
tr∗

S==⇒ Gn0 =
tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr1,F===⇒ Gn+1 and

∅ = G00 =
tr∗

S==⇒ Gn0 =
tr2,S===⇒ G′

n+1,0 ↪−g
′
n+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr2,F===⇒ G′
n+1 are parallel

independent then the following upper and lower sequences are partially match
consistent and called switch equivalent.
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Gn+1,0
tr2,S

�����
�

���
�

Gn+1
tr2,F

�����
�

���
�

∅ = G00

tr∗
S �� Gn0

tr1,S 		����
����

tr2,S
�����

�
���

�
Gn+2,0

� � �� G0

tr∗
F �� Gn

tr1,F 

����
����

tr2,F
��

���
�

���
�

Gn+2

G′
n+1,0

tr1,S

������
����

G′
n+1

tr1,F

		����
����

Example 8 (Parallel Independence). Consider the sequence of rule applications
in Ex. 6. Here, we may switch step 2 and step 3 without changing the result
G5 since the sequences ∅ = G00 =Class2TableS========⇒ G10 =Attribute2ColumnS============⇒ G2,0 ↪−g2−→
G0 =Class2TableF========⇒ G1 =Attribute2ColumnF=============⇒ G2 and ∅ = G00 =Class2TableS========⇒ G′

10

=Subclass2TableS==========⇒ G′
2,0 ↪−g

′
2−→ G0 =Class2TableF========⇒ G1 =Subclass2TableF==========⇒ G′

2 are parallel
independent.

We can analyze parallel independence on-the-fly for the forward steps which are
applicable to the current intermediate triple graph. Based on the induced par-
tial order of dependencies between the forward steps we can apply several tech-
niques of partial order reduction in order to improve efficiency. This means that
we can neglect remaining switch-equivalent sequences, if one of them has been
constructed. This improves efficiency of corresponding depth-first and breadth-
first algorithms. For an overview of various approaches concerning partial order
reduction see [13], where also benchmarks show that these techniques can dra-
matically reduce complexity.

5 Related Work and Evaluation of Our Approach

Since 1994, several extensions of the original TGG definitions have been pub-
lished [2,3,4], and various kinds of applications have been presented [5,6,7]. For
an extensive overview see [2]. A new extension of TGGs towards declarative,
pattern-based model transformation is presented in [16], where triple rules are
derived from triple graph constraints.

Furthermore, Kindler and Wagner [7] discuss that several applications of
model transformations based on TGGs require an efficient strategy for finding
a correct transformation sequence because of the non-deterministic character of
the matching of forward rules. A new strategy for controlling the construction
of a model transformation was given in [2], where elements of the source model
are distinguished for each step of the model transformation whether they were
translated so far. In this paper we have formalized this separation by specifying
which elements were matched so far and we call the new matched elements in
an intermediate model transformation step effective elements (see Def. 4).

As stated in Sec. 1 this paper extends concepts and results of our previous
papers [8,11,9,10]. In the following we explain how our approach complies with
the design principles of the “Grand Research Challenge of the Triple Graph
Grammar Community”, which was formulated by Schürr et al. in [2]:

1. Correctness: Model transformations shall be correct in the way that when-
ever the algorithm translates a source model GS into a target model GT then
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there has to be a triple graph G = (GS ← GC → GT ) ∈ VL. This property
is shown in Thm. 2 for an algorithm based on our construction in Thm. 1.

2. Completeness and Termination: Completeness means that the algorithm
translates each model GS ∈ VLS . This property subsumes Termination.
Both properties are ensured for our construction by Thm. 2 and Thm. 3 if
triple rules are creating on the source part.

3. Efficiency: Model transformations shall have polynomial space and time
complexity with exponent k the maximal number of elements of a rule. Our
construction does not guarantee this requirement in general. But note that
the algorithm in [2] only meets this condition because it avoids backtracking
by aborting a translation when the chosen sequence of model transforma-
tion steps does not lead to a target model, even if there may be a possible
sequence. Therefore, completeness is not achieved in [2]. By Thm. 4 we are
able to perform partial order reduction, which has shown to provide massive
power for the reduction of complexity (see e.g. [13]).

4. Expressiveness: Features that are urgently needed for solving practical prob-
lems like NACs and attribute conditions shall be captured. Both, NACs and
attributes are handled by our approach. It remains open, whether our restric-
tion to source-target NACs rules out some interesting practical applications.

6 Conclusion and Future Work

In this paper we have given a new formal construction of model transforma-
tions based on triple graph grammars including crucial properties like NAC-
consistency, correctness, completeness and a sufficient condition for termination.
In contrast to previous formal constructions in [1,8,10] the new construction
avoids a parsing of the source graph beforehand or afterwards, but allows to
construct simultaneously NAC-consistent forward and source transformation se-
quences leading to an on-the-fly construction of model transformations. Moreover,
we have shown correctness and completeness of this on-the-fly construction and
termination for triple rules with non-identical source part. Currently, these con-
structions are being implemented by us based on Mathematica libraries [17].

Finally, we studied parallel independence of model transformation steps, which
allows us to perform partial-order reduction in order to improve efficiency of the
construction. We have not analyzed local confluence in this paper, which - to-
gether with termination - leads to functional behaviour of the model transforma-
tion. We are confident that our concept of parallel independence can be extended
to study critical pairs and local confluence for model transformation sequences
based on existing approaches for graph transformation systems [15] including tool
support by AGG [18]. Furthermore, additional correctness criteria shall be de-
veloped for the case that source and target languages VLS and VLT are defined
independently of the triple graph language VL generated by the TGG .

References
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