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Abstract

In the framework of adhesive transformation systems with Negative Application Con-
ditions (NACs), we show how the problem of computing the set of equivalent derivations
to a given one can be reduced to the analysis of the reachability graph of a generated
Place/Transition Petri net. This net encodes the dependencies among rule applications of
the derivation, including the inhibiting effects of the NACs. We show the effectiveness of
this approach by comparing the cost of a brute force-approach with the cost of the presented
analysis applied to a derivation of a simple system, showing a significant improvement in
speed.

1 Introduction

Given a workflow of a system, it is often interesting to know whether the workflow can be rear-
ranged, by executing the tasks in a different order, which might be more convenient for the user or
preferable from an efficiency point of view. If the workflow is modelled by a Petri net, represent-
ing a deterministic process, these questions can be fairly easily answered: processes incorporate a
notion of concurrency that can be exploited to rearrange the tasks, while still respecting causal-
ity. We are here considering workflow models with two further dimensions, which considerably
complicate the problem: first, we work in the general setting of adhesive categories where we can
model systems with an evolving topology, such as graph transformation systems, in contrast to
systems with a static structure like Petri nets. Second, we take into account Negative Application
Conditions (NACs) that are used to ensure the “absence” of forbidden structures when executing a
transformation step: NACs significantly improve the expressive power of specification formalisms
based on transformation rules, and as a matter of fact they are widely used in non-trivial applica-
tions. The presence of NACs leads to more complex interdependencies of tasks. Both dimensions
are needed e.g. for the analysis of workflows in mobile ad-hoc networks.

For this purpose, in the framework of the double-pushout (DPO) approach, we introduce a
notion of permutation equivalence on derivations with NACs, which is coarser and more adequate
than the obvious generalisation of the traditional switch equivalence. Next from a given derivation
der with NACs via a standard colimit construction we build a deterministic process, formalised
as a subobject transformation system, and we show that “legal derivations” in such process are
one-to-one with (isomorphic classes of) derivations which are permutation equivalent to der.

Based on this process construction we then present a transformation into a standard P/T
Petri net, which includes a complete account of the inhibiting effects of the NACs. The main
result shows that complete firing sequences of this net are one-to-one with legal derivations of

1



the process. Finally, for a given derivation of a simple example system with NACs, we perform
a detailed complexity analysis of the cost of identifying all permutation equivalent derivations
using the reduction to a Petri net and its reachability graph, and compare it with a brute force
approach computing all shift-equivalent derivations first, and then filtering out the ones which
do not respect the NACs. We obtain a significant improvement in speed, which shows that
the proposed technique can be efficient for many applications which involve the generation of
permutation-equivalent derivations. Furthermore, the constructed P/T Petri net can be used to
derive specific permutations without generating the complete set first. In the context of workflow
analysis, both goals are of central interest for the modelling of a system.

The structure of the paper is as follows. Sec. 2 reviews the main concepts of transforma-
tion systems over an adhesive category, permutation equivalence for derivations and the process
construction based on subobject transformation systems, elaborating on the results of [9]. The
construction of the process skeleton given by a Petri net is presented in Sec. 3 and it is shown
to be sound and correct for computing the set of permutation-equivalent derivations. Thereafter,
Sec. 4 validates the efficiency of the analysis based on an extended version of the running example.
Finally, Sec. 5 sums up the main results, discusses related work, and points out aspects of future
work. The full proof of the main result Thm. 2 and details for the efficiency of the technique are
given in Appendices ?? and ??.1

2 Transformation Systems and Permutation Equivalence

Most definitions and results of the DPO approach, originally developed for graphs [7] and similar
structures, have been generalized to adhesive categories [13, 6]: these are categories where pushouts
along monos “behave well” with respect to pullbacks. Because of this, it is quite natural to present
our contribution at this level of generality, by referring all definitions to an arbitrary but fixed
adhesive category C; the reader unfamiliar with adhesive categories can safely identify C with a
standard category of graphs, like those used in the examples.

Definition 1 (Adhesive categories). A category is called adhesive if (1) it has pullbacks; (2) it
has pushouts along monos; and (3) pushouts along monos are Van Kampen squares.
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Referring to the diagram above, a Van Kampen square is a pushout (1) which satisfies the following
property: if we draw a commutative cube (2) which has (1) as its bottom face and whose back
faces are pullbacks then the front faces of the cube are pullbacks if and only if its top face is a
pushout.

For the rest of the section, let C be an arbitrary but fixed adhesive category: all objects and
arrows are assumed to belong to C. We recall some basic definitions of the DPO approach with
NACs.

Definition 2 (Transformation System with NACs). A rule is a pair of monos with the same

source in C, p = (Lp
l←↩ Kp

r
↪→ Rp). A Negative Application Condition (NAC) for a rule p is a

mono n : Lp ↪→ N , having the left-hand side of p as source. A rule with NACs is a pair 〈p,N〉
where p is a rule and N = {ni : Lp ↪→ Ni}i∈I is a finite set of NACs for p. A match of a rule p in

1Note for Reviewers: The appendix will be included in a technical report available online to accompany the final
version of this paper in case of acceptance.
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Figure 1: Part of transformation system GS , modeling task assignment
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Figure 2: Derivation d (respecting NACs) of GS

an object G is a mono m : Lp ↪→ G; match m satisfies the NAC n : Lp ↪→ N for p, written m |= n,
if there is no arrow g : N → G such that g ◦ n = m.2 We say that there is a direct derivation
respecting NACs
from an object G to H using a rule with NACs 〈p,N〉 and
a match m : Lp → G, if (a) there are two pushouts (1)
and (2) in C, as depicted; and (b) m |= n for each NAC
(n : Lp ↪→ N) ∈ N. If
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condition (a) above is satisfied (and (b) possibly not, thus NACs are ignored) we say that there is
a direct derivation from G to H. In both cases we write G =

p,m
==⇒ H. A transformation system

(TS) with NACs over C is a pair G = 〈Q, πN 〉 where Q is a set of rule names, and πN maps
each name q ∈ Q to a rule with NACs πN (q) = 〈π(q),Nq〉. A derivation (respecting NACs) of

G is a sequence G0 =
q1,m1===⇒ G1 · · · =

qn,mn====⇒ Gn, where q1, . . . , qn ∈ Q and di = Gi−1 =
π(qi),mi=====⇒ Gi

are direct derivations (respecting NACs) for i ∈ 1, . . . , n. Sometimes we denote a derivation as a
sequence d = d1; . . . ; dn of direct derivations.

Example 1 (Graph Transformation System with NACs). The adhesive category used in the ex-
amples of this paper is (Graph ↓ TG), i.e., the slice category of directed graphs over the graph
TG of Fig. 1. Thus, objects are graphs with a typing morphism to TG, and arrows are graph
morphisms preserving the typing. Fig. 1 shows a part of GS, a TS with NACs for specifying the
assignment of tasks to persons, which is a little fragment of a workflow modeling system. The type
graph TG shows that nodes in the system represent either persons or tasks: a task is active if it
has a “:started” loop, and it can be assigned to a person with a “:worksOn” edge. Rule “stopTask”
cancels the assigment of a task to a person; rule “continueTask” instead assigns the task, and it
has two NACs to ensure that the task is not assigned to a person already. Other rules are omitted,
because they are not used in the paper. Fig. 2 shows a derivation respecting NACs of GS. The
only task is first assigned to node “1:Person”, and then, after being stopped, to node “2:Person”.

The classical theory of the DPO approach (without NACs) introduces an equivalence among
derivations which relates derivations that differ only in the order in which independent direct

2Intuitively, the image of Lp in G cannot be extended to an image of the “forbidden context” N .
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Figure 3: Permutation-Equivalent Derivation d′ (respecting NACs) of GS

derivations are performed. The switch equivalence is based on the notion of sequential independence
and on the Local Church-Rosser theorem. This is briefly summarized in the next definition.

Definition 3 (Switch Equivalence on Derivations). Let d1 = G0 =
p1,m1===⇒ G1 and d2 = G1 =

p2,m2===⇒
G2 be two direct derivations.
Then they are sequentially independent if there exist
arrows i : R1 → D2 and j : L2 → D1 such that l′2 ◦ i =
m′1 and r′1◦j = m2 (see the diagram on the right, which
shows part of the derivation diagrams).
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If d1 and d2 are sequentially independent, then according to the Local Church Rosser Theorem
(Thm. 5.12 in [6]) they can be “switched” obtaining direct derivations d′2 = G0 =

p2,m2===⇒ G′1 and
d′1 = G′1 =

p1,m1===⇒ G2, which apply the two rules in the opposite order.
Now, let d = (d1; . . . ; dk; dk+1; . . . ; dn) be a derivation, where dk and dk+1 are two sequentially

independent direct derivations, and let d′ be obtained from d by switching them according to the
Local Church Rosser Theorem. Then, d′ is a switching of d, written d

sw∼ d′. The switch
equivalence, denoted

sw
≈ , is the smallest equivalence on derivations containing both sw∼ and the

relation ∼= for isomorphic derivations.3

Switch equivalence is not sound in the presence of NACs, because after switching sequential
independent derivation steps some NACs may be violated. For example, the second and the third
step in the derivation of Fig. 2 are sequential independent, but switching the steps would cause a
violation of the NAC of the rule “continueTask”. Furthermore, an adaptation of switch equivalence
using a stricter notion of sequential independence with NACs as in [8, 14] is too strict. Looking at
Fig. 2, no pair of consecutive direct derivation is sequentially independent with NACs. However,
the derivation in Fig. 3 where the task is assigned first to the second person and then to the
first one shall be considered equivalent. This brings us to the following, quite natural notion of
equivalence of derivations respecting NACs, first proposed in [9].

Definition 4 (Permutation Equivalence of Derivations). Two derivations d and d′ respecting
NACs are permutation equivalent, written d

π
≈ d′ if, disregarding the NACs, they are switch

equivalent as for Def. 3.

In the theory of Petri nets [15], from a given firing sequence one can build a deterministic
process, which is a net which records all the transitions fired in the sequence, together with their
causal dependencies. Similar constructions have been proposed for graph transformation [5] and
for transformation systems based on adhesive categories [2, 4]. In particular, in [4] it is shown
that starting with a derivation, with a suitable colimit construction in C one can build a Subobject
Transformation System (STS). An STS can be considered as a double-pushout transformation
system over the (distributive) lattice of subobjects Sub(T ) of a given object T ∈ C. Informally,
a subobject of T is an equivalence class of monos with target T , and in this framework rewriting
can be defined with a set-theoretical notation: A ⊆ B means that there is a mediating arrow from
subobject A to B, the meet A ∩B in Sub(T ) is obtained as a pullback in C, and the join A ∪B
is a suitable pushout (thanks to adhesivity of C [13]).

3Informally, d ∼= d′ if they have the same length and there are isomorphisms between the corresponding objects
of d and d′ compatible with the involved morphisms.
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We briefly recall the basic theory of STSs and then extend it to systems with NACs.

Definition 5 (STS of a derivation). A subobject transformation system S = 〈T,Q, π〉 over an
adhesive category C consists of a super object T ∈ C, a set of rule names Q, and a function π,
which maps a name q ∈ Q to a rule, i.e., to a triple π(q) = 〈Lq,Kq, Rq〉 of subobjects of T such
that Kq = Lq ∩Rq.

Given objects G,H ∈ Sub(T ) and a rule π(q) = 〈Lq,Kq, Rq〉, there is a direct derivation
G =

q⇒ H if there exists an object D ∈ Sub(T ) such that (a) G = Lq ∪D, (b) Kq = Lq ∩D, (c)
H = Rq ∪D, and (d) Kq = Rq ∩D.

Now, let G = 〈Q, π〉 be a transformation system over C, and let d = (G0 =
q1,m1===⇒ . . . =

qn,mn====⇒ Gn)
be a derivation of G. The STS generated from d is defined as Prc(d) = 〈T, P, π̂〉, where T is the
colimit object in C of the diagram underlying the derivation d, P = {dk | dk = (Gk−1 =

pk,mk===⇒
Gk) is a step of d}, and π̂(dk) = 〈[inT (Lpk

)], [inT (Kpk
)], [inT (Rpk

)]〉, where inT (X) is the injec-
tion of X in the colimit T .

For the rest of the paper, we consider only derivations such that the colimit T is a finite object,
i.e. Sub(T ) is a finite lattice. This is guaranteed if each rule of G has finite left- and right-hand
sides, and if the start object of the derivation is finite. In the STS generated from a derivation
d we can identify all derivations which are switch equivalent to d simply checking how the rules
overlap in Prc(d). We summarise some relevant facts presented in [4].

Definition 6 (Switch Equivalence of Derivations in STS). Given an STS S = (T,Q, π), two rules
π(qi) = 〈Li,Ki, Ri〉, i ∈ {1, 2}, are called independent (written q1 ♦ q2) if (L1∪R1)∩ (L2∪R2) ⊆
K1 ∩K2. Let d be a derivation in S and let s = 〈 q1, . . . , qn 〉 be its corresponding sequence of rule
names. If qk ♦ qk+1, then the sequence s′ = 〈 q1, . . . , qk+1, qk, . . . , qn 〉 is switch equivalent to the
sequence s, written s

sw∼S s′. The switch equivalence
sw
≈S on sequences of rule names is the

reflexive and transitive closure of sw∼S .

Proposition 1 (Analysis of Switch Equivalence using Prc(d)).
Let d = d1; . . . ; dk; dk+1; . . . ; dn be a derivation of a TS over C, and let Prc(d) be the generated
STS. Then dk and dk+1 are sequential independent if and only if dk ♦ dk+1 in Prc(d). As a
consequence, a derivation d′ is shift equivalent to d (d′

sw
≈ d) if and only if in Prc(d) the sequence

of names of d, sd = 〈 d1, . . . , dn 〉 is shift equivalent to the sequence sd′ (sd
sw
≈Prc(d) sd′), which

contains all the direct derivations of d in the order they are actually fired in d′.

We discuss now how to extend this result to TSs with NACs, and how Prc(d) can be used to
identify the derivations which are permutation equivalent to d.

Definition 7 (STS with NACs). Let p = 〈Lp, Kp, Rp〉 be a rule in Sub(T ), with T ∈ C. A
negative application condition for p is an object N ∈ Sub(T ) such that Lp ⊆ N . A rule with
NACs is a pair 〈p,N〉, where p is a rule and N = 〈N [1], N [2], . . . , N [k]〉 is an ordered list of NACs
for p (we denote by |N| the length of N). An STS with NACs is an STS S = 〈T,Q, πN 〉 such that
πN (q) = 〈π(q),Nq〉 is a rule with NACs. A direct derivation G =

q⇒ H as in Def. 5 respects the
NACs Nq if it holds: (e) for all 0 < i ≤ |Nq|, N [i] 6⊆ G.

The generation of an STS with NACs from a given derivation works as in Definition 5, but
additionally each rule will be equipped with a list of NACs, i.e., those obtained as “instances” of
the original NACs in the colimit object T .

Definition 8 (Instantiated NACs). Let G be a TS with NACs and let d = d1; . . . ; dk; . . . ; dn be
a derivation respecting NACs. Let 〈p,N〉 be the rule with NACs used in direct derivation dk, let
T be the colimit object of the derivation, and let inT (Lp) be the injection in T of the left-hand
side of p. Let n : Lp ↪→ N be a NAC of p; an instantiated NACs of n in T is a subobject
[j : N ↪→ T ] ∈ Sub(T ) such that j ◦ n = inT (Lp). The set of all instantiated NACs in T of all
NACs of a rule p is denoted by NACST (p).
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Definition 9 (STS of a Derivation with NACs). Let G be a TS with NACs and let d be a derivation
of G respecting NACs. The STS with NACs generated by d is given by PrcN (d) = 〈T, P, π̂N 〉,
where T and P are as in Def. 5, π̂N (dk) = 〈π̂(dk),Nk〉, π̂(dk) is as in Def. 5, and Nk is an
arbitrary but fixed linearisation of NACST (pk), where pk is the rule of G used in dk.
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Figure 4: Derived Process Prc(d) as Subobject Transformation System

Example 2 (Derived Process Prc(d)). For the derivation in Ex. 1 the process construction leads
to the STS as shown in Fig. 4. The derivation d involves the rules “continueTask” and “stopTask”
and thus, the derived STS contains the rule occurrences “cont1”, “cont2”, “stop1” and “stop2”,
where the NACs of the rule “continueTask” are instantiated.

The following relations between the rules of an STS with NACs specify the possible dependen-
cies among them: the first four relations are discussed in [4], while the last two are introduced
in [9].

Definition 10 (Relations on Rules). Let q1 and q2 be two rules in an STS with NACs S =
(T, P, πN ) with πN (qi) = (〈Li,Ki, Ri〉 ,Ni) for i ∈ {1, 2}. The relations on rules are defined on P
as follows:

Name Notation Condition
Read Causality q1 <rc q2 R1 ∩K2 * K1

Write Causality q1 <wc q2 R1 ∩ L2 * K1 ∪K2

Deactivation q1 <d q2 K1 ∩ L2 * K2

Independence q1 ♦ q2 (L1 ∪R1) ∩ (L2 ∪R2) ⊆ K1 ∩K2

Weak NAC Enabling q1<wen[i]q2 0 < i ≤ |N2| ∧ L1 ∩N2[i] * K1 ∪ L2

Weak NAC Disabling q1<wdn[i]q2 0 < i ≤ |N1| ∧ N1[i] ∩R2 * L1 ∪K2

In words, q1<wen[i]q2 (read: “q1 weakly enables q2 at i”) if q1 deletes a piece of the i-th NAC
of q2; instead q1<wdn[i]q2 (“q2 weakly disables q1 at i”) if q2 produces a piece of the i-th NAC of
q1. It is worth stressing that the relations introduced above are not transitive in general.

Example 3 (Relations of an STS). The rules of Prc(d) in Fig. 4 are related by the following
dependencies. For write causality we have “cont1 <wc stop1” and “cont2 <wc stop2”. The further
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dependencies are shown in in the table below.

Weak Enabling Weak Disabling
stop1<wen[1] cont1 stop2<wen[2] cont1 cont1<wdn[1] cont1 cont2<wdn[2] cont2
stop1<wen[1] cont2 stop2<wen[2] cont2 cont2<wdn[1] cont1 cont1<wdn[2] cont2

The following notion of legal sequences of rule names builds the basis for the analysis of
permutation equivalence of derivations with NACs within the constructed STS. It requires that
for every NAC N [i] of a rule qk of Prc(d), either there is a rule which deletes part of N [i] and
was fired before qk, or there is a rule which produces part of N [i] and is fired after qk: In both
cases N [i] cannot be present when firing qk, because the STS Prc(d) is a sort of “unfolding” of
the derivation, and every subobject is created at most once and deleted at most once (see [4]).

Definition 11 (Legal Sequence). Let d = (d1; . . . ; dn) be a derivation respecting NACs in a TS,
and let Prc(d) = (T, P, πN ) be its derived STS with NACs. A sequence s = 〈 q1; . . . ; qn 〉 of rule
names of P is locally legal at position k ∈ {1, . . . , n} with respect to d, if each rule name in P
occurs exactly once in s and the following conditions hold:

1. s
sw
≈Prc(d) seq(d)

2. ∀ NAC Nk[i] of qk :
(
∃ e ∈ {1, . . . , k − 1} : qe<wen[i]qk or
∃ l ∈ {k, . . . , n} : qk<wdn[i]ql.

)
A sequence s of rule names is legal with respect to d, if it is locally legal at all positions k ∈ {1,
..., n} with respect to d.

Theorem 1 (Analysis of Permutation Equivalence using Prc(d)). Let d = d1; . . . ; dn be a deriva-
tion respecting NACs of a TS with NACs over C, and let Prc(d) be the generated STS with NACs.
Then a derivation d′ is permutation equivalent to d (d′

π
≈ d) if and only if in Prc(d) the sequence

of names sd′ , which contains all the direct derivations of d in the order they are actually fired in
d′, is legal with respect to d.

By Thm. 1 we can transfer the analysis of permutation equivalence from derivations to se-
quences of rule names. Thus, given a derivation d respecting NACs we construct the process
model Prc(d) according to Def. 9, compute the relations for the STS, and then generate the legal
sequences w.r.t. d according to Def. 11, which identify the derivations permutation equivalent to
d.

3 Construction of the Process Skeleton

Based on the process of a derivation given by an STS, we now present the construction of its
“process skeleton”, given by a P/T Petri net which specifies only the dependencies between the
derivation steps. All details about the internal structure of the objects and the transformation
rules are excluded, allowing us to further increase the efficiency of the analysis of permutation
equivalence.

Definition 12 (Process skeleton Prc of a derivation). Let d be a derivation respecting NACs
of a TS with NACs over C, let Prc(d) be the generated STS with NACs and let s = seq(d) =
〈 q1, . . . , qn 〉 denote the sequence of rule names in Prc(d) according to the steps in d. The process
skeleton of d is given by the marked Petri net Prc(d) = 〈N,M〉, N = 〈PL,TR, pre, post〉, defined
as follows:

- TR = {qk | k ∈ {1, . . . , n}}

- PL = {p(k) | qk ∈ TR} ∪{p(j <x k) | qj <x qk ∧ x ∈ {rc, wc, d}
∪{p(k,N [i]) | Nk[i] is a NAC of qk in Prc(d) ∧ qk ≮wdn[i] qk}

- pre(qk) = p(k) ⊕
∑

qj<xqk

x∈{rc,wc,d}

p(j <x k) ⊕
∑

qj <wdn[i] qk

j 6=k

p(j,N [i]) ⊕
∑

p(k,N [i])∈PL

p(k,N [i])
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- post(qk) =
∑

qk<xql

x∈{rc,wc,d}

p(k <x l) ⊕
∑

qk <wen[i] ql

p(l, N [i]) ⊕
∑

p(k,N [i])∈PL

p(k,N [i])

- M =
∑

qk∈TR

p(k) ⊕
∑

qj <wdn[i] qk

p(j,N [i])∈PL

p(j,N [i])

3. For all i,qk with qk≮wdn[i] qk

2. For all qk <x ql, x ∈ {rc,wc,d }

1. For each qk ∈ P

Prc(d) = (S,T,P,¼) Prc(d) = ((PL,TR,pre,post),M)

a) N[i] of qk

b) For all qe <wen[i] qk

c) For all qk <wdn[i] ql

3. For all i,qk with qk≮wdn[i] qk

2. For all qk <x ql, x ∈ {rc,wc,d }

1. For each qk ∈ P

Prc(d) = (S,T,P,¼) Prc(d) = ((PL,TR,pre,post),M)

a) N[i] of qk

b) For all qe <wen[i] qk

c) For all qk <wdn[i] ql

p(j<xk) ql
+ ++

qk p(j<xk) ql
+ ++

qk

p(k,N[i]) qk
+ +p(k,N[i]) qk
+ +

p(k,N[i])qe
+

p(k,N[i])qe
+

ql
+ +

p(k,N[i]) ql
+ +

p(k,N[i])

p(k) qk
+ +

+
+

p(k) qk
+ +

+
+

Figure 5: Visualization of the Construction of the Petri net

Fig. 5 presents an intuitive view of the construction in Def. 12. Gray line colour and plus-
signs mark the inserted elements. The tokens of the initial marking are represented by bullets
that are connected to their places by arcs. In the first step each rule is encoded as a transition
and it is connected to a marked place for ensuring that it cannot fire twice. In step 2, between
each pair of transitions in each of the relations <rc, <wc and <d, a new place is created in order
to enforce the corresponding dependency. The rest of the construction is concerned with places
which correspond to NACs and can contain several tokens in general. Each token in such a place
represents the absence of a piece of the NAC; therefore if the place is empty, the NAC is complete.
In this case, by step (3a) the transition cannot fire. Consistently with this intuition, if q<wen[i]p,
i.e. transition q consumes part of the NAC N [i] of p, then by step (3b) q produces a token in the
place corresponding to N [i]. Symmetrically, if q<wdn[i] p, i.e. p produces part of NAC N [i] of q,
then by step (3c) p consumes a token from the place corresponding to N [i]. Notice that if a rule
generates part of one of its NACs, say N [i] (qk <wdn[i] qk), then by the acyclicity of Prc(d) the
NAC N [i] cannot be completed before the firing of qk: therefore we ignore it in the third step of
the construction of the process skeleton.

Note that the constructed net is a true (bounded) P/T net, and not a safe one, because the
places for the NACs can contain several tokens. A bound is given by the the maximum, taken
over places representing NACs, of the number of rules that either weakly disable or weakly enable
the specific NAC.

We now show that we can exploit the constructed Petri net Prc(d) to characterize the deriva-
tions that are permutation equivalent to d, by analysing its firing behaviour. Note that according
to Def. 12 each sequence s of rule names in the STS Prc(d) can be interpreted as a sequence of
transitions in the derived marked Petri net Prc(d), and vice versa. This correspondence allows us
to transfer the results of the analysis back to the STS. More precisely, we can generate the set
of all permutation-equivalent sequences by constructing the reachability graph of Prc(d), which
therefore can be considered as a compact representation of this equivalence class.

For the following theorem, recall that a transition complete firing sequence of a Petri net is a
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firing sequence where each transition of the net occurs at least once; notice also that in a process
skeleton according to Def. 12, each transition can fire at most once by construction.

Theorem 2 (Analysis based on Petri Nets). Let d be a derivation respecting NACs of a TS with
NACs over C, then:

s
π
≈Prc(d) seq(d) iff s is a transition complete firing sequence of Prc(d),

i.e. s is a legal sequence with respect to d iff s is a firing sequence of the skeleton process of d
given by the marked P/T Petri net Prc(d) and each transition occurs at least once in s.

In order to prove Thm. 2 we use Lemma 1 below, which we prove first. The lemma states that
switch equivalence without NACs of rule sequences in an STS respects the partial order of the
relations “<rc, <wc” and “<d”, and vice versa: if the order is respected then the two sequences
are switch equivalent.

Lemma 1 (Linearisation). Let d be a derivation respecting NACs of a TS with NACs over C,
let Prc(d) be the generated STS with NACs, and let s = 〈 q1, . . . , qn 〉 be a permutation of seq(d).
Then,

s
sw
≈S seq(d) iff ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : qi <x qj ⇒ i < j.

Proof. Let (∗) : ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : qi <x qj ⇒ i < j.
Direction “⇒”
Let s

sw
≈S seq(d) and seq(d) = 〈 q′1, . . . , q′n 〉.

We show that (∗) holds.

• We first show the property for s = seq(d), i.e.
(∗∗) : ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : q′i <x q

′
j ⇒ i < j.

⇔ ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : i ≥ j ⇒ q′i ≮x q′j .
Let π(q′i) = (〈Li,Ki, Ri〉 , Ni) and π(q′j) = (〈Lj ,Kj , Rj〉 , Nj).
For i = j the condition is fulfilled directly.

Now, consider i > j.

– Case x = rc:
By definition we have that q′i ≮rc q′j ⇔ Ri ∩Kj ⊆ Ki.
We can build up the colimit of the derivation d by stepwise pushouts. Let Ti−1 be the
colimit of the steps d1, . . . , di−1. Then we have that (1) : Kj ⊆ Ti−1. Let T ′i be the
colimit of the single derivation step di, and therefore, T ′i is given by the pushout (2)
of Gi ← Di → Gi+1. We perform a pushout (3) of Ti−1 and T ′i and obtain Ti. Now
consider the category Sub(Ti). We compose the pushouts (2) and (3) with the pushout
(4) : Di ← Ki → Ri → Gi+1 of the derivation step di. This is also a pullback and thus,
Ri ∩ Ti−1

∼= Ki. Using (1) this implies Ri ∩Kj ⊆ Ki.

– Case x = wc:
By definition we have that q′i ≮wc q′j ⇔ Ri ∩ Lj ⊆ Ki ∪Kj .
Considering the construction from before, we additionally derive Lj ⊆ Ti−1 and thus,
the equation holds.

– Case x = d:
By definition we have that q′i ≮wc q′j ⇔ Ki ∩ Lj ⊆ Kj .
Considering the construction from before, we can additionally compose the pushout
(5) : Dj ← Kj → Lj → Gj of the derivation step dj with the pushouts of the stepwise
construction of Ti−1 and finally derive Lj∩Ti−1

∼= Kj . Furthermore, we have Ki ⊆ Ti−1

from (1) and thus, the above equation holds.

• We now show that the condition (∗) holds for every sequence s that is switch-equivalent to
seq(d) without considering the NACs. By (∗∗) we know that the condition holds for seq(d).
Furthermore, each sequence s is derived from seq(d) by switchings according to

sw
≈S . It
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remains to show that each switching preserves the condition (∗). Now, switch equivalence of
sequences

sw
≈S is based on (qi ♦ qj), which is equivalent to (qi ≮rc qj ∧ qi ≮wc qj ∧ qi ≮d qj)

according to Thm. 32.2 in [4]. Thus, the condition is not affected by any switching.

Direction “⇐”:
We have to show that the condition (∗) for the sequence s implies s

sw
≈S seq(d). This is equivalent

to ¬(s
sw
≈S seq(d)) ⇒ ¬(∗). Since s is a permutation of seq(d) the condition ¬(s

sw
≈S seq(d))

means that s can be derived by switching neighbouring steps of seq(d), where at least on switching
is performed on a pair (qi; qj) of steps that is dependent, i.e. ¬(qi ♦ qj), which is equivalent to
(qi ≮x qj) for one x ∈ {rc, wc, d} according to Thm. 32.2 in [4]. Thus, this pair would violate the
condition (∗) in the new order. Since s is assumed to be not switching equivalent to seq(d) based
on

sw
≈S there is at least one such pair, where the final position of qj is in front of qi in s.

Using Lemma 1 we now prove Thm. 2.

Proof of Thm. 2. Let seq(d) = 〈 q1, . . . , qn 〉 and s = 〈 q̂1, . . . , q̂n 〉.
Direction “⇒”:
Assume that s is a legal sequence with respect to d in Prc(d). We have to show that s is a transition
complete firing sequence of Prc(d). First of all, each transition occurs exactly once, because s is
a permutation of seq(d) in Prc(d). Consider the rule name q̂m = tr in s, thus the claimed firing
step Ma −tr−→ Mb with tr = qa. We check the activation of tr in Ma, i.e. Ma ≥ pre(tr) according
to Def. 12. Now, let pre(tr) =

∑
pl∈PL λpl · pl . For each pl we have:

1. case pl = p(k):

this implies that k = a and λpl = 1. By definition this place is initially marked with one
token and there is no other transition connected to this place. Since each transition occurs
exactly once in s this token is available in Ma.

2. case pl = p(j <x k), x ∈ {rc, wc, d}:
this implies that a = k and λpl = 1, thus tr = qk and qj <x qk. By Def. 12 we then have
post(qj) ≥ pl and pl is not in the pre domain of any other transition than tr = qk. By
Lemma 1 we have that qj occurs before qk in s and thus, Ma ≥ pl .

3. case pl = p(j,N [i]):

By Def. 12, the marking M ≥ m · pl with m being the amount of weak disabling causes, i.e.
m = |DC|, DC = {q′k | qj<wdn[i]qk′}.

(a) case j 6= a:
By Def. 12 we have that λpl = 1, qj<wdn[i] qk and a = k. The only transition tr ′ in
TR \DC with pre(tr ′) ≥ pl is qj and qj consumes and produces one token.
Each of the transitions in DC consumes exactly one token and in sum they consume
exactly m tokens. Therefore, Ma ≥ pl , because qk has not fired at this point.

(b) case j = a: Thus, λpl = 1. By Def. 11 there is one preceding rule occurrence q in s
with q<wen[i] q̂j or there is one subsequent rule occurrence q in s with q̂j<wdn[i]q. This
means that for the first case Ma ≥ m · pl + 1 −m · pl = pl and for the second case:
Ma ≥ mpl − (m− 1)pl = pl .

Direction “⇐”:
Assume that s is a transition complete firing sequence of Prc(d). We have to show that s is a
legal sequence with respect to d in Prc(d). First of all, s is a transition complete firing and for
each transition qk the initial marking M contains exactly one token for the corresponding place
p(k) ∈ PL and qk is consuming exactly one token from p(k). Therefore, each rule name qk in
seq(d) occurs exactly once in s. Now, we consider an arbitrary rule name qk in seq(d). We show
that the two conditions in Def. 11 hold:
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• condition 1: s
sw
≈S seq(d)

By Lemma 1 this condition is equivalent to
(∗) : ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : qi <x qj ⇒ i < j. According to Def. 12 there is
exactly one place with initially no token for each pair (qi, qj) with qi <x qj , x ∈ {rc, wc, d}.
The transition qi produces exactly one token and qj consumes exactly one token from this
place and there is no other transition connected to this place. Therefore, the condition is
ensured.

• condition 2: ∀ NAC s Nk[i] of qk :
(
∃ e ∈ {1, . . . , k − 1} : qe<wen[i]qk or
∃ l ∈ {k, . . . , n} : qk<wdn[i]ql.

)
Consider a NAC N [i] of qk.

1. case qk<wdn[i]qk : Thus, we have a l = k for the above condition.

2. case qk≮wdn[i]qk :
Thus, there is the place p(k,N [i]), such that the transition qk consumes exactly one
token from that place. Consider the firing step Mk −qk−→ Mk+1 according to s. Since
qk has fired there was a token on p(k,N [i]) in the marking Mk. The initial marking
contains m tokens for this place, where m is the amount of weak disabling causes, i.e.
m = |DC|, DC = {qk′ | qk<wdn[i] qk′ , k 6= k′}. Let EC = {qe | qe<wen[i] qk} be the set
of weak enabling causes of of qk for Nk[i]. Assume that condition 2 of Def. 11 does not
hold. We then have that all qk′ in DC occur before qk in s and there is no qe in EC
that occurs before qk in s. This implies that each transition of DC has consumed a
token from p(k,N [i]) and none of the transitions that precede qk have produced a token
on this place. Therefore, there is no token left on p(k,N [i]), which is a contradiction
to the firing of qk and thus, condition 2 holds.

Coming back to the original challenge of computing the set of all permutation-equivalent
derivations for a given one, we can now state by the following corollary that the analysis can
be completely performed on the process skeleton Prc(d).

Corollary 1 (Analysis of Permutation Equivalence of Derivations). Let d be a derivation respect-
ing NACs of a TS with NACs over C, and let Prc(d) be its process skeleton. Then a derivation d′

is permutation equivalent to d (d′
π
≈ d) if and only if the sequence of names sd′ , which contains

all the direct derivations of d in the order they are actually fired in d′, is a transition complete
firing sequence of the marked P/T Petri net Prc(d).

Proof. This is a direct consequence of Thms. 1 and 2.

Example 4 (Process Skeleton). Consider the derivation d from Ex. 1 and its derived STS in Ex. 2.
The marked Petri net shown in Fig. 6 is the process skeleton Prc(d) according to Def. 12. As ex-
pected, there is a one-to-one correspondence between its firing sequences and the set of permutation-
equivalent derivations of d. At the beginning the transitions cont1 and cont2 are enabled. The
firing sequences according to the derivations d and d′ of Figures 2 and 3 can be executed, and are
the only firing sequences of this net.
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q1=cont1 q3=cont2

q2=stop1 q4=stop2

p(1<wc 2)

p(3)

p(1,N[2])

p(1) p(2)

p(3<wc 4)
p(3,N[1])

p(4)

Figure 6: Process Skeleton Prc(d) as Petri net

4 On the Cost of Analysis

Besides soundness and completeness of the analysis as presented before we now focus on its effi-
ciency. Therefore, we extend the previous example and compare the analysis efforts of the new
technique with those of a direct analysis of the derivation. This comparison shows a significant
advantage of the technique and the effect is not limited to specific examples.The benefit is high for
transformation sequences, where many steps overlap on matches and include dependencies because
of NACs.

q1=cont1',     i ∈ {0,1,2,3,4}

L

w1:worksOn

1:Person

4:started

K

1:Person

R

1:Person

3:Task

N1[2i+1]

w(2i+1):worksOn

1:Person

3:Task

4:started

3:Task

4:started

3:Task

N1[2i+2]

w(2i+2):worksOn

2:Person

3:Task

1:Person

4:started 4:started

T ’

w1:worksOn

1:Person

3:Task

4:started

2:Person

w2:worksOn
w3:worksOn

w5:worksOn

w7:worksOn

w9:worksOn

w4:worksOn

w6:worksOn

w8:worksOn

w10:worksOn

Figure 7: Part of the Dervied Process Prc(d̃)

Example 5 (Extended Derivation). In order to evaluate the efficiency we extend the derivation
of Ex. 1 to a derivation d̃, which specifies that the two persons are working on the same task, but
they continue and stop their work five times, i.e. d̃ = (d; d; d; d; d). The construction of Prc(d̃)
leads to an STS with 20 rule occurrences. Fig. 7 shows its super object T ′ and the rule occurrence
“cont1’ ” for the first step of d̃. This rule occurrence has 10 NACs, one for each possible edge of
type “worksOn” in T ′. These NACs are visualised in the figure by two NACs with a parameter i
ranging from zero to four. The derivation consists of 10 blocks of the form “contx; stopx”. Each
permutation-equivalent derivation of d̃ has to preserve these blocks, otherwise a NAC would not be
fulfilled or the causality relation would be violated. Thus there are 10! = 3.628.800 permutation-
equivalent derivations.

Let us consider to perform a direct analysis based on the definition of permutation equivalence.
We call this the brute force variant, where first all switch-equivalent derivations are generated
without considering the NACs, and then those which do not respect the NACs are filtered out.
This means that we only have to respect the causality between the first and the second step of each
of the 10 blocks. Therefore, we can always switch neighbouring steps of different blocks. For each
permutation-equivalent sequence we can move the rule occurrences of the rule “stop” forward,
i.e. at later positions. Therefore, we have F = 19× 17× · · · × 1 = 654.729.075 switch-equivalent
sequences for each permutation in the order of the rule occurrences “contx”, i.e. for each single
permutation-equivalent sequence. This leads to a number of 20!/210 = 2.375.880.867.360.000 ≈
2, 4× 1015 switch equivalent sequences.
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Figure 8: Comparison of the Amount of Equivalent Sequences

Fig. 7 shows how the different amounts of equivalent sequences develop for 2 up to 10 blocks
of “continue;stop” steps. Since the complexity of a function, which is dominated by a factorial
expression, is super-exponential, the calculation of invalid sequences should be avoided in general.
Obviously, also the generation of the permutation-equivalent sequences involves several computa-
tion steps. Therefore, we now compare the effort of generating the set of permutation-equivalent
derivations using the process skeleton Prc(d) with the effort of a brute force generation directly
based on Def. 4. The result is that a lower bound for the effort of the brute force variant is 8
orders of magnitude higher than an upper bound for the analysis based on the process skeleton.

Example 6 (Analysis Efforts). Based on the process skeleton Prc(d̃) we can construct the reacha-
bility graph RG(Prc(d̃)) for this marked Petri net with 20 transitions and 120 places. Each path in
this graph specifies a permutation equivalent derivation. An upper bound for the effort eff of con-
structing RG(Prc(d̃)) is given by: eff ≤ 651.030.320 < 9 · n, where n is n = 20 · 10! = 72.576.000,
which is the number of derivation steps in the set of all permutation-equivalent derivations. More
details on these numbers are given in App. ??. Considering the brute force variant we will construct
F = 654.729.075 times as many derivations as the number of permutation-equivalent derivations.
Thus, the lower bound for the brute force effort EFF is given by F · n ≤ EFF . In comparison we
have:

eff < 1, 4× 10−8EFF .

Details for the Efficiency Results

• Size of the Petri net Prc(d̃) = (PN ,M),PN = (PL,TR, pre, post):
|TR| = 20
|PL| = 20 + 10 + 10 · 9 = 120
Amount of arcs = 20 + 2 · 10 + (1 + 2 + 1) · 10 · 9 = 400
Amount of all elements: 540

• Size of RG(Prc(d̃)) = (V,E, s, t):
Branching number for the successors: root node: 10 (for each “contx”), then 1 (“stopx”),
then 9 , . . . , then 1, then 1
|V | = 1 + 2 · (

∑
i=0..10 10!/(10− i)!) = 19.728.201

|E| = |V | − 1 = 19.728.200

• Effort for calculating RG(Prc(d̃)):
Store the transitions that have fired, since the maximum of one time firing is ensured by
definition
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At each node: check each transition that has not fired for activation, i.e. for the “contx”
transitions 1 + 9 =10 pre arcs and for the “stopx” transitions 1 + 1 pre arcs. If one place
in the pre domain is found empty, the remaining ones do not have to be checked. Then,
continue and update the marking (1+9+1=11 for “contx” and 1+1+9=11 for “stopx”).
Effort eff measured in binary operations: eff ≤ 651.030.320 < 33 · |V | < 9 · n

Of course, the effort for constructing the Petri net has also to be taken into account, but it
does not change the result. In general, the construction of the process Prc(d) with its relations
is shown to be of polynomial time complexity with respect to the length of the derivation d [9].
Furthermore, the construction of the process skeleton is linear with respect to Prc(d) and for this
example contains only 120 places. Note that still all steps in d̃ are sequentially dependent with
the NACs and therefore, no direct switching is possible.

5 Conclusion

In the framework of adhesive high-level replacement (HLR) systems there are many instantiations,
such as graph transformation systems scaling up to typed attributed graph transformation systems
with node type inheritance, and Petri net transformation system - in particular for the modelling
of workflows of reconfigurable mobile adhoc networks. Each of them has its specific features,
which support the modelling of systems in the concrete application domain. Negative Application
Conditions (NACs) are an important control structure for these techniques and they are widely
used for applications. However, the analysis of processes of such systems, i.e. the study of
equivalence of derivations in the presence of NACs, was introduced only recently in [9].

While switch-equivalence [2] for systems without NACs leads to the complete set of equivalent
derivations, this is not the case in the presence of NACs if the notion of equivalence proposed in
[8, 14] is considered. Similarly, the notion of shift equivalence [16, 12] for derivations cannot be
extended appropriately to the case with NACs, because it is also based on sequential independence
of neighbouring steps. The problem is that rule applications may be possible in an equivalent way
at several positions of the derivation, which are not situated next to each other, as shown with
the presented example.

In order to provide a sound, complete and efficient analysis technique for permutation equiv-
alence we have shown how the generated process given by an STS [4, 9] can be transformed to a
process skeleton given by a marked P/T Petri net. The construction is shown to be sound and
complete with respect to the computation of the set of permutation-equivalent derivations to a
given one. Furthermore, the constructed Petri net shows significant advantages with respect to
efficiency. While the example in this paper was kept compact, the overall approach can be applied
to adhesive HLR systems in general, if suitable side conditions are fulfilled [10].

The efficiency of the approach is based on two advantages. First of all, the constructed Petri
net only specifies the dependencies among the steps of the derivation, ignoring the concrete struc-
ture of the involved objects: This advantage is independent of the presence of NACs. The second
advantage is that NACs are respected during the generation of the permutation-equivalent se-
quences. Thus, the number of generated sequences during the analysis is reduced significantly if
NACs are involved, as shown by the presented example. The construction of the Petri net can be
performed in polynomial time with respect to the size of the initial derivation [9], and thus it does
not affect the efficiency of the analysis.

Some of the problems addressed in this paper are similar to those considered in the process
semantics [11] and unfolding [1, 3] of Petri nets with inhibitor arcs, and actually we could have
used some sort of inhibitor arcs to model the inhibiting effect of NACs in the process skeleton of
a derivation. However, we would have needed some kind of “generalised” inhibitor nets, where
a transition is connected to several (inhibiting) places and can fire if at least one of them is
unmarked. To avoid the burden of introducing yet another model of nets, we preferred to stick
to a direct encoding of the process of a derivation into a standard marked P/T nets, leaving as a
topic for future reserach the possible use of different models of nets for our process skeletons.
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Future work will also include the study of non-deterministic processes of transformation systems
with NACs, which will be based on incomplete firings of the constructed P/T Petri net and
suitable side conditions. Further improvements of efficiency could be obtained by observing the
occurring symmetries in the P/T Petri net, and applying symmetry reduction techniques on it.
Additionally, the space complexity of the analysis could be reduced by unfolding the net and then
representing all permutation-equivalent derivations in a more compact, partially ordered structure.
An implementation of the analysis is planned and will be based on a recently developed graph
transformation engine in Mathematica.
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