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Abstract

Switch equivalence for transformation systems has been successfully used in many
domains for the analysis of concurrent behaviour. When using graph transformation as
modelling framework for these systems, the concept of negative application conditions
(NACs) is widely used – in particular for the specification of operational semantics.

In this paper we show that switch equivalence can be improved essentially for the analy-
sis of systems with NACs by our new concept of permutation equivalence. Two derivations
respecting all NACs are called permutation-equivalent, if they are switch-equivalent dis-
regarding the NACs. In fact, there are permutation-equivalent derivations which are not
switch-equivalent with NACs. As main result of the paper, we solve the following prob-
lem: Given a derivation with NACs, we can efficiently derive all permutation-equivalent
derivations to the given one by static analysis. The results are based on extended tech-
niques for subobject transformation systems, which have been introduced recently.

Keywords: Graph Transformation, Adhesive Categories, Subobject Transformation
Systems, Negative Application Conditions, Process Analysis

1 Introduction

Transformation systems based on the double pushout (DPO) approach [5] with negative
application conditions (NACs) [7, 6] are a suitable modelling framework for several appli-
cation domains, e.g. definition of operational semantics and simulation. In this context,
the analysis of concurrent behaviour of an execution of the system is of interest. A process
of an execution describes all possible equivalent executions. Correspondingly, a process
of a derivation defines an equivalence class of derivations. Processes of graph transforma-
tion systems based on the DPO approach [4] were defined as occurrence grammars in [1].
Occurrence grammars were lifted to the abstract setting of adhesive rewriting systems [2]
in order to generalise the process construction. This opened possibilities for analysing
processes of transformation systems based on arbitrary adhesive categories [11], such as
typed graphs, graphs with scopes and graphs with second order edges.

This paper extends the standard switch equivalence of derivations without and with
negative application conditions to the so-called permutation equivalence of derivations
with negative application conditions (NACs) in adhesive categories. The main difference is
that there are permutation-equivalent derivations with NACs, which cannot be derived by
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switching NAC-independent neighbouring derivation steps. The challenge is to efficiently
calculate derivations, which are equivalent in the sense that all NACs are respected and
the matches of the original derivation are preserved. However, a direct construction of
all permutation-equivalent derivations is complex in general. First of all, the amount
of possible permutations is high in general and furthermore, the permutations have to
be derived from the original derivation by computing the new matches and the new
intermediate objects from the old ones and checking that all NACs are fulfilled.

The main result of this paper is a framework for the efficient analysis of permuta-
tion equivalence, i.e. the efficient construction of all derivations, which are permutation-
equivalent to a given one (see Theorems 5 - 7 in Sec. 6). The presented technique is
based on subobject transformation systems (STSs) [3], which can be constructed in ad-
vance, i.e. possibly before a user requests an analysis. They are based on the process
construction given in [2] and we extend them for the case with NACs. This builds the
basis for efficient dependency checks between components of pairs of rule occurrences,
where expensive pattern matching is avoided.

The next section reviews transformation systems and introduces the new notion of
permutation equivalence. Thereafter, subobject transformation systems (STSs) as process
model of a derivation are reviewed and Section 4 shows how the process construction can
be extended to systems with NACs. Section 5 introduces constructions and results for
building up concurrent productions and concurrent derivations. They are used to show
the main results for the analysis of permutation equivalence based on STSs in Sec. 6.
Finally, Sec. 7 concludes the main results and discusses future work within the presented
framework.

2 Transformation Systems and Permutation
Equivalence

In this section we review transformation systems based on the double pushout (DPO)
approach and the standard switch equivalence of derivations. We present an example in
the context of workflow modelling, where we use negative application conditions (NACs)
and show that switch equivalence does not lead to all intuitively equivalent derivations
in our example. For this reason we introduce the new notion of permutation equivalence,
which leads to the discussed equivalent derivations.

A derivation in an adhesive category C is given by a sequence of rule applications
within a grammar. A transformation rule p = (L ←l− K −r→ R) consists of three objects
L,K,R ∈ Obj(C) being left-hand side, interface, and a right-hand side, respectively, and
two monomorphisms l, r ∈ Mor(C). The interface K contains the part which is not
changed by the rule and hence occurs in both L and R. Applying a rule p to an object
G means to find a monomorphism m : L → G and to replace the matched part in G by
the corresponding right-hand side R of the rule, thus leading to a transformation step
G

p,m
=⇒ H. In this paper, matches are required to be monomorphisms. But as explained in

[10, 9], the analysis based on subobject transformation systems is also possible for systems
with non-monomorphic matching. A transformation step is given by a double-pushout
(DPO), where D is the intermediate object after constructing the pushout complement for
pushout (PO1) and in (PO2) H is constructed as gluing of D and R via K. A sequence
of transformation steps d = (d1; . . . ; dn) is called a derivation. A rule may contain a set of
negative application conditions (NACs) [7, 6]. A NAC (N,n : L → N) of a rule consists
of a negative pattern N together with a monomorphism n from the left hand side of the
rule to N . Intuitively, it forbids the presence of a certain pattern in an object G to which
the rule shall be applied. A match L −m−→ G satisfies a NAC n : L → N , written m |= N ,
if there is no monomorphism N −q→ G with q ◦ n = m.
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Typed transformations are based on a type object TG and the derived slice category
C ↓ TG , where each object G is typed over TG by typeG : G→ TG and morphisms are
compatible with the typing morphisms. A grammar specifies a start object, a type graph
and a set of rules for performing typed transformations.

Definition 1 (Grammar). Given a category C, a grammar GG = (SG ,TG , P, π) consists
of a type object TG, a start object SG, a finite set of rule names P and a function π, which
maps a rule name to a rule with NACs p = (p,N) containing a rule p = (L ←l− K −r→ R)
and a finite set of negative application conditions N . The start graph and the productions
of GG are typed over TG.
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Figure 1: The graph grammar GG
Example 1 (Graph Grammar GG). Figure 1 shows the graph grammar GG =
(SG ,TG , P, π) for mobile agents in reconfigurable networks. The mappings of the rule
morphisms are specified by numbers. Rule “startTask” assigns a person to a task via an
edge of the type “worksOn”, but the rule is not applicable if the task was already started, as
specified by the NAC “NAC1”. Rule “finishTask” is inverse to “startTask” and removes
the assignment and the edge of the type “started”, while rule “stopTask” also deletes the
assignment, but not the flag “started”. Finally, rule “continueTask” specifies that a per-
son may continue the work, which possibly was started by another person and stopped
meanwhile. The NACs NAC1 and NAC2 of this rule require that neither the person itself
nor another person is working on the task to be assigned.

Switch equivalence of derivations without NACs is based on sequential independence.
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Definition 2 (Sequential Independence without NACs). Let d = (G0 =
p1,m1===⇒ G1 =

p2,m2===⇒
G2) be a derivation without NACs in a grammar GG. Then, d1 = G0 =

p1,m1===⇒ G1 and
d2 = G1 =

p2,m2===⇒ G2 are two sequentially independent derivation steps, if there exist
i : R1 → D2, j : L2 → D1 in the diagram beneath, which shows parts of the derivation
diagrams, s.t. l′2 ◦ i = m′1 and r′1 ◦ j = m2.

K1

��

// R1

m′1

22

��22 i
$$

L2

m2
��

����j
zz

K2

��

oo

D1 r′1
// G1 D2l′2

oo

Remark 1 (Local Church Rosser). Two sequentially independent derivation steps without
NACs can be switched by the Local Church Rosser Theorem (Thm. 5.12 in [6]). By
mk : Lk → G′k we denote the match for rule pk in the new order of the steps.

Given a derivation without NACs, switch equivalence leads to the complete set of its
equivalent derivations [2]. Note that DPO derivation diagrams are unique up to isomor-
phism only, thus we relate isomorphic derivation diagrams by “∼=” meaning that there are
isomorphisms between the objects compatible with the involved morphisms.

Definition 3 (Switch Equivalence without NACs). Let d = (d1; . . . ; dk; dk+1; . . . dn) be a
derivation without NACs in grammar GG, where dk; dk+1 are two sequentially independent
derivation steps. Let d′ be derived from d by switching (dk; dk+1) to (d′k+1; d′k) according
to the Local Church Rosser Theorem. Then, d′ is a switching of d, written d

sw∼ d′.
Switch-equivalence

sw
≈ is the union of the transitive closure of sw∼ and the relation ∼=

for isomorphic derivations.

We now extend the notion of switch equivalence to derivations with NACs using se-
quential independence for derivations with NACs according to [7, 12].

Definition 4 (Sequential Independence with NACs). Let d = (G0 =
p1,m1===⇒ G1 =

p2,m2===⇒ G2)
be a derivation with NACs in grammar GG. Suppose that i : R1 → D2, j : L2 → D1 exist
in the two derivation diagrams beneath, s.t. l′2 ◦ i = m′1, r′1 ◦ j = m2. Suppose also that
the derived match m1 : L1 → G′1 by the Local Church Rosser Theorem and the match
m2 = l′1 ◦ j : L2 → G0 fullfill all NACs, i.e. m2 |= N2 for each NAC (n2 : L2 → N2) of p2

and m1 |= N1 for each NAC (n1 : L1 → N1) of p1. Then, G0 =
p1,m1===⇒ G1, G1 =

p2,m2===⇒ G2

are two sequentially independent derivation steps with NACs.
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oo
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Definition 5 (Switch Equivalence with NACs). Let d = (d1; . . . ; dk; dk+1; . . . dn) be a
derivation with NACs in grammar GG, where dk; dk+1 are two sequentially independent
derivation steps with NACs. Let d′ be derived from d by switching dk; dk+1 to d′k+1; d′k
according to the Local Church Rosser Theorem. Then, d′ is a switching with NACs of

d, written d
swN∼ d′. Switch equivalence with NACs

swN
≈ is the union of the transitive

closure of swN∼ and the relation ∼= for isomorphic derivations.

Example 2 shows that switch equivalence for derivations with NACs is not sufficient.

Example 2 (Derivation in GG). Derivation d = (d1; d2; d3; d4) = (G0 =
continueTask,m1===========⇒

G1 =
stopTask,m2========⇒ G2 =

continueTask,m3===========⇒ G3 =
stopTask,m4========⇒ G4) in Fig. 2 describes that at

first person “1” works on task “3” and afterwards person “2” works on the same task,
but both of them stop without finishing the task. Derivation steps d2 to d4 are dependent
from their preceding steps and thus, no switching of independent steps is possible: the
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Figure 2: Derivation d in the grammar GG

second step deletes edge “4” produced by the first step, the NAC of the third step forbids
the presence of “4”, which is deleted by the second, and finally, the fourth step deletes
edge “5” that was created by the third step. However, there is a permutation of the steps,
which is conceptually equivalent to the depicted derivation. Consider d′ = (d′3; d′4; d′1; d′2),
where the third and fourth steps are moved to the front. All NACs are respected and the
rules of GG are applied at the same places of the graph that is transformed.

Since switch equivalence is not general enough for transformation systems with NACs
as shown and explained in Example 2, we introduce the notion of permutation equivalence
for derivations with NACs, which relates all equivalent derivations that respect the NACs.
In particular, the equivalent permutation of the example can be derived by the new notion.

Definition 6 (Permutation Equivalence of Derivations). Two derivations d and d′ with
NACs in a grammar GG are permutation-equivalent, written d

π
≈ d′, if disregarding the

NACs, they are switch-equivalent.

A direct analysis of permutation equivalence in the adhesive category of the derivations
is possible, but can be quite complex, if e.g. the graphs of the derivation are much bigger
than in the simple running example. For each possible switching disregarding the NACs
we have to update the derivation diagrams and perform pattern matching for the NACs
on the updated objects in order to check whether the new derivation is permutation-
equivalent. Therefore, we suggest to first construct a process model based on Subobject
Transformation Systems, and then to perform a more efficient analysis on it. Accordingly,
the main results of this paper, given by Theorems 5 - 7 in Sec. 6, show that the analysis
on the basis of STSs is sound and complete and that the process model can be constructed
efficiently.

Next, we will show how subobject transformation systems can be used as process
model for a derivation without NACs. Thereafter, we present in Sec. 4 how they can be
extended to the case with NACs leading to an efficient analysis framework for permutation
equivalence, which is shown and explained in Sec. 6.

3 Subobject Transformation Systems

Processes of a graph grammar are defined as occurrence grammars together with a map-
ping to the original grammar. The concept of occurrence grammars was extended to the
more abstract setting of adhesive rewriting systems [2] based on subobjects. This tech-
nique was further elaborated in [3] introducing the general concept of subobject trans-
formation systems (STSs). In this section we review STSs and their construction from a
given derivation without NACs.

A subobject A of an object T of a category C is an equivalence class of monomorphisms
a : A → T . We write A for short to denote a representative of the equivalence class and
we leave the monomorphism a implicit. The category of subobjects of T is called Sub(T )
and its morphisms f : A→ B are those monomorphisms in C, which are compatible with
the implicit monomorphisms to T , i.e. b ◦ f = a for a : A→ T and b : B → T . If such an
f exists, we write A ⊆ B for short.
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Definition 7 (Subobject Transformation Systems). A Subobject Transformation System
S = (S0, T, P, π) over an adhesive category C consists of a super object T ∈ C, a start
object S0 ⊆ T in Sub(T ), a set of production names P , and a function π, which maps
a production name q to a production 〈Lq,Kq, Rq〉, where Lq,Kq, and Rq are objects in
Sub(T ), Kq ⊆ Lq and Kq ⊆ Rq.

The application of a production in an STS is based on union and intersection, which are
coproduct and product in category Sub(T ) and they can be constructed in the underlying
adhesive category C as follows: A∩B is given by the pullback of A→ T ← B and A∪B
is given by the pushout of A← A∩B → B. The implicit monomorphism of A∩B is given
by A∩B → A→ T and the one of A∪B is the induced one by the pushout property [11].

Definition 8 (Direct Derivations). Let S = (S0, T, P, π) be a Subobject Transformation
System, π(q) = 〈L,K,R〉 be a production, and let G be an object of Sub(T ). Then there
is a direct derivation from G to G′ using q, written G =

q⇒ G′, if G′ ∈ Sub(T ) and if there
exists an object D ∈ Sub(T ) such that: (i) L∪D ∼= G; (ii) L∩D ∼= K; (iii) D∪R ∼= G′,
and (iv) D ∩R ∼= K.

According to Proposition 6 of [3] a direct derivation in an STS induces a DPO diagram
in the underlying adhesive category C. Therefore, a derivation in an STS, specified by its
sequence of rule names, gives rise to a derivation in C.

Definition 9 (Derivation of an STS-sequence). Let dS = (G0 =
q1=⇒ G1 =⇒ . . . =

qn=⇒ Gn)
be a derivation in an STS S. Let s = 〈q1; . . . ; qn〉 be the sequence of the rule occurrences
according to dS. Then, drv(s) denotes the sequence of DPO diagrams in C for each
derivation Gi−1 =

qi=⇒ Gi in S.

In order to derive all switch-equivalent derivations to a given one we can analyse
its process, which is given by an isomorphism class of occurrence grammars together
with a mapping to the original grammar as presented in [4, 2]. An occurrence grammar
directly corresponds to an STS and in fact, the construction of an STS in [3] from a
given derivation tree coincides with the above construction of an occurrence grammar in
the case of a linear derivation, i.e. there is a one-to-one correspondence between both
representations. In analogy to [2], we explicitly define the start object S0 of an STS
derived from a derivation instead of leaving it implicit. Furthermore, this paper does
not consider general derivation trees, but derivation sequences, for which we extend the
analysis to the case with NACs in Sec. 6.

Definition 10 (STS of a Derivation). Let d = (G0 =
q1,m1===⇒ . . . =

qn,mn====⇒ Gn) be a derivation
in an adhesive category. The derived STS of d is denoted by Prc(d) and constructed as
follows: Prc(d) = (S0, T, P, π), where T is the colimit of the DPO-diagrams given by d,
S0 is given by the embedding G0 ⊆ T , P = {(qi, i) | i ∈ [n]} is a set that contains a rule
occurrence name for each rule occurrence in d and π maps each rule occurrence name
(qi, i) to the rule occurrence at the i(th) step in d extended by the embeddings into T . The
sequence of rule occurrence names of P according to d is denoted by seq(d).

In [2] the set of all linearisations of the process is derived using compound relations,
which can be obtained from basic relations as shown in [3]. Hence, we can use the
following general relation of independence subsuming the basic relations for analysing
switch equivalence.

Definition 11 (Independence of Productions in STSs). Let S = (S0, T, P, π) be an STS
and let q1, q2 ∈ P be two production names, and π(pi) = 〈Li,Ki, Ri〉 for i ∈ {1, 2} be the
corresponding productions. Then, q1 and q2 are independent, denoted q1 ♦ q2, if

(L1 ∪R1) ∩ (L2 ∪R2) ⊆ (K1 ∩K2).

In the following, we define the switch equivalence for sequences of rule occurrence
names within an STS, which will be used in Sec. 6 for the analysis of permutation
equivalence.
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Definition 12 (Switch-Equivalence of Sequences). Let S = (S0, T, P, π) be an STS,
let d be a derivation in S and let s = 〈q1, . . . , qn〉 be its corresponding sequence of
rule occurrence names. Let qk,qk+1 be independent in S, then the sequence s′ =
〈q1, . . . , qk+1, qk, . . . , qn〉 is switch-equivalent to the sequence s, written s

sw∼S s′. Switch
equivalence

sw
≈S of sequences is the transitive closure of sw∼S .

4 Subobject Transformation Systems with NACs

In this section, we extend the definition of subobject transformation systems to STSs with
NACs. Each rule in an STS is extended by an ordered list of NACs, which is later used by
the dependency relations in Sec. 6 for specifying the NAC that is causing a dependency.

Definition 13 (STS with NACs). A Subobject Transformation System with NACs S =
(S0, T, P, π) over an adhesive category C consists of a super object T ∈ C, a start object
S0 ⊆ T in Sub(T ), a set of production names P , and a function π, which maps a
production name q to a production with NACs (〈Lq,Kq, Rq〉 , N), where Lq,Kq, and Rq
are objects in Sub(T ), Kq ⊆ Lq, Kq ⊆ Rq and N is an ordered list of negative application
conditions with L ⊆ N [i] ⊆ T , where N [i] denotes the i(th) element of N .

Direct derivations with NACs in an STS correspond to direct derivations with NACs in
the underlying adhesive category, but the check of a NAC to be found in the intermediate
object G is simplified, because a NAC in an STS cannot occur at several positions in G.

Definition 14 (Direct Derivations with NACs). Let S = 〈S0, T, P, π〉 be a Subobject
Transformation System with NACs, π(q) = (〈L,K,R〉 , N) be a production with NACs,
and let G be an object of Sub(T ). Then there is a direct derivation with NACs from
G to G′ using q, written G =

q⇒ G′, if G′ ∈ Sub(T ) and for each N [i] in N : N [i] * G
and if there exists an object D ∈ Sub(T ) such that: (i) L ∪ D ∼= G; (ii) L ∩ D ∼= K;
(iii) D ∪R ∼= G′, and (iv) D ∩R ∼= K.

The extension of the process mapping Prc for derivations with NACs in an adhesive
category is based on the following instantiation of NACs applied for all derivation steps.

Definition 15 (Instantiated NACs). Let (Ni, ni) ∈ N be a NAC of a rule p = (p,N) of a
grammar GG = (SG ,TG , P, π) in an adhesive category, with p = (L←l− K −r→ R), let d be
a derivation with NACs in GG and let T be the colimit of the derivation diagram of d. An
instantiated NAC M of (Ni, ni) is a subobject of T (M ⊆ T ), such that M ∼= Ni, L ⊆M
and M is compatible with the typing of Ni and with ni, i.e. typeNi

= typeT ◦incM,T ◦isoM
and incL,M = isoM ◦ni as shown beneath. The set of all instantiated NACs of p is denoted
by NacsT (p,mk).

Ni

typeNi //

isoM

GG

##GG

Loonioo
� _

��

lL

zzvvvvvv
(=)

M �� // T
typeT��(=)

TG

Remark 2. Note that given a NAC, then the set of its instantiated NACs may be empty,
which means that the NAC cannot be found within T . Furthermore, a set of instantiated
NACs may be infinite if T or d are infinite. In this case the analysis in Sec. 6 may not be
decidable. However, in the case of finite derivation sequences and objects being finite in its
structural part, e.g. finite graph structure of an attributed graph with an infinite algebra,
we get a finite list for each NAC. Note further that (Ni, incM,T ◦ isoM ) ∼= (M, incM,T ) in
Sub(T ).
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Definition 16 (Derived STS with NACs). Let GG be a grammar in an adhesive category
C and let d = (G0 =

p1,m1===⇒ . . . =
pn,mn====⇒ Gn) be a derivation in GG. The STS for d is

given by Prc(d) = (S0, T, P, π), where T is the colimit of the derivation diagram of d, S0

is given by G0 and its embedding to T , P is a set of rule names, each distinguished name
qk corresponds to a derivation step dk = Gk−1 =

pk,mk===⇒ Gk in d and the mapping π is
given as follows: π(qk) = (〈Lk ⊇ Kk ⊆ Rk〉 , Nk), where Nk is an ordered list of the set
NacsT (qk,mk). The order of Nk is arbitrary but fixed. The sequence of rule names of P
in d is denoted by seq(d).

T

4:worksOn

1:Person

3:Task
6:started

2:Person

5:worksOn

S0

1:Person

3:Task
6:started

2:Person

Figure 3: Super object T and start object S0 of the STS Prc(d)
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R
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L
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6:started

K

2:Person
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6:started
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N2[1]

4:worksOn
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3:Task

2:Person

6:started6:started

Figure 4: Rule occurrences of the STS Prc(d)

Example 3 (STS of a Derivation). For the derivation d = (G0 =
continueTask,m1===========⇒

G1 =
stopTask,m2========⇒ G2 =

continueTask,m3===========⇒ G3 =
stopTask,m4========⇒ G4) in Fig. 2 we construct the

STS S = Prc(d) = (S0, T, P, π) as shown in Fig. 3 and Fig. 4, where numbers denote the
embeddings to the colimit T of the derivation diagram. The start object S0 is given by G0

in d and its embedding to T . Rule occurrences “cont1” and “cont2” correspond to the first
and third derivation step, respectively. Each NAC of “continueTask” can be instantiated
once, given by N1[1] and N1[2] for “cont1”. For “cont2” they are instantiated to N2[1]
and N2[2]. The rule occurrences “stop1” and “stop2” correspond to the second and forth
derivation step of d. As explained before in Example 2, no switching is possible in d.
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5 Concurrent Productions in an STS

In order to show the main results of the paper given by Theorems 4 - 7 in Sec. 6 for
the efficient analysis of permutation-equivalence, we introduce the construction of con-
current productions within STSs. This construction enables to reduce arbitrary parts of
derivations in an STS to a single concurrent derivation step.

Definition 17 (Concurrent Production). Let G0 =
q1=⇒ G1 =

q2=⇒ G2 be a derivation in an
STS S = (S0, T, P, π) with rules π(q1) = 〈L1,K1, R1〉 and π(q2) = 〈L2,K2, R2〉. Let
D1 and D2 be the context objects of G0 with respect to q1 and G1 with respect to q2,
respectively. The concurrent production is given by 〈L∗,K∗, R∗〉 with rule name q∗ =
q1 ⊕ q2, where:

• L∗ = L1 ∪ (D1 ∩ L2),

• K∗ = (K1 ∪K2) ∩D1 ∩D2, and

• R∗ = R2 ∪ (R1 ∩D2).

The first theorem in this section shows that concurrent derivations based on concurrent
productions are well defined.

Theorem 1 (Concurrent Derivation). Let G0 =
q1=⇒ G1 =

q2=⇒ G2 be a derivation in an STS.
Let D1 and D2 be the context objects of G0 with respect to q1 and G1 with respect to q2,
respectively. Then there is the concurrent derivation via the concurrent production q∗:
G0 =

q∗

=⇒ G2, where D∗ = D1 ∩D2 being the context of G0 with respect to q∗.

Proof. Let S = (S0, T, P, π) be the considered STS with rules π(q1) = 〈L1,K1, R1〉 and
π(q2) = 〈L2,K2, R2〉. An STS derivation has to fulfil the four conditions (a)− (d). The
following equation will be used: (∗) : (K1 ∩D2) ∪ (D1 ∩K2)
∼= (K1 ∪K2) ∩ (K1 ∪D1) ∩ (K2 ∪D2) ∩ (D1 ∪D2) | distributivity
∼= (K1 ∪K2) ∩D1 ∩D2 ∩ (D1 ∪D2) |K1 ⊆ D1,K2 ⊆ D2
∼= (K1 ∪K2) ∩D1 ∩D2 |D1 ⊆ D1 ∪D2

= K∗

(a) : L∗ ∪D∗ ∼= G0

L∗ ∪D∗ ∼= L1 ∪ (D1 ∩ L2) ∪ (D1 ∩D2)
∼= L1 ∪ [D1 ∩ (D1 ∪D2) ∩ (L2 ∪D1) ∩G1] | distrib., D1 ∪D1

∼= D1, L2 ∪D2
∼= G1

∼= L1 ∪D1 |D1 ⊆ D1 ∪D2, D1 ⊆ L2 ∪D1, D1 ⊆ G1
∼= G0

(b) : L∗ ∩D∗ ∼= K∗

L∗ ∩D∗ ∼= [L1 ∪ (D1 ∩ L2)] ∩ (D1 ∩D2)]
∼= (L1 ∩D1 ∩D2) ∪ (D1 ∩ L2 ∩D1 ∩D2) | distrib.
∼= (K1 ∩D2) ∪ (D1 ∩K2) |L1 ∩D1

∼= K1, L2 ∩D2
∼= K2

∼= K∗ | (∗)
(c) : R∗ ∪D∗ ∼= G2

R∗ ∪D∗ ∼= R2 ∪ (R1 ∩D2) ∪ (D1 ∩D2)
∼= R2 ∪ [G1 ∩ (R1 ∪D2) ∩ (D1 ∪D2) ∩D2] | distrib., R1 ∪D1

∼= G1, D2 ∪D2
∼= D2,

∼= R2 ∪D2 |D2 ⊆ G1, D2 ⊆ R1 ∪D2, D2 ⊆ D1 ∪D2
∼= G2

(d) : R∗ ∩D∗ ∼= K∗

R∗ ∩D∗ ∼= [R2 ∪ (R1 ∩D2)] ∩ (D1 ∩D2)
∼= (R2 ∩D1 ∩D2) ∪ (R1 ∩D2 ∩D1 ∩D2) | distrib.
∼= (D1 ∩K2) ∪ (K1 ∩D2) |R1 ∩D1

∼= K1, R2 ∩D2
∼= K2

∼= K∗ | (∗)
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As a direct consequence the operator ⊕ for constructing concurrent productions is
associative.

Fact 1. The operator ⊕ for constructing concurrent productions is associative, i.e. given
derivation G0 =

q1=⇒ G1 =
q2=⇒ G2 =

q3=⇒ G3 in an STS we have:

(q1 ⊕ q2)⊕ q3 = q1 ⊕ (q2 ⊕ q3).

Therefore, we can write q1⊕· · ·⊕qn =
∑
i6n qi for short in the general case of n derivation

steps.

Furthermore, we have that the concurrent production is pure, if it is derived from
succeeding steps in derivation d corresponding to a derivation in Prc(d). This means that
the parts deleted by the first rule are not identified with parts created by the last rule,
which is formalised by the following Lemma.

Lemma 1 (LHS and RHS of a derivation). Let d = (d1; . . . ; dn) be a derivation in a
grammar GG of an adhesive category C, where n > 1. Let qx, qy be the names for dx and
dy with 1 6 x < y 6 n in S = Prc(d) and π(qi) = 〈Li,Ki, Ri〉 , i ∈ {x, y}. Then,

Kx ∩Ky
∼= Lx ∩Ry.

Proof. This is a direct consequence of item (3) of Prop. 30 in [3].

In a next step we can use Lemma 1 to show that two succeeding steps in a derivation
of grammar GG lead to a pure concurrent production q∗ in the derived STS, which we
use e.g. in Lemma 4.

Lemma 2 (Pure Concurrent Production). Let d = (d1; . . . ; dk+1; dk+2; . . . ; dn) be a
derivation in a grammar GG of an adhesive category C, where n > 1. Let q1, q2 be
the names for dk+1 and dk+2 respectively in Prc(d) and π(qi) = 〈Li,Ki, Ri〉 , i ∈ {1, 2}.
Then the concurrent production q∗ of 〈q1, q2〉 is pure.

Proof. Showing that q∗ is pure, i.e. L∗ ∩R∗ ∼= K∗: The productions q1 and q2 are pure,
because all productions in Prc(d) are pure by Prop. 30 in [3]. By Lemma 1 we know that
(•) : R1 ∩ L2

∼= K1 ∩K2. Now,
L∗ ∩R∗ ∼= [L1 ∪ (D1 ∩ L2)] ∩ [R2 ∪ (R1 ∩D2)]
∼= (L1 ∩R2) ∪ (L1 ∩R1 ∩D2) ∪ (L2 ∩R2 ∩D1) ∪ (L2 ∩D2 ∩R1 ∩D1) | distributivity
∼= (L1 ∩R2) ∪ (K1 ∩D2) ∪ (K2 ∩D1) ∪ (K1 ∩K2) |L1 ∩R1

∼= K1 (q1 is pure),
L2 ∩R2

∼= K2 (q2 is pure), R1 ∩D1
∼= K1, L2 ∩D2

∼= K2
∼= (K1 ∩K2) ∪ (K1 ∩D2) ∪ (K2 ∩D1) ∪ (K1 ∩K2) | (•)
∼= (K1 ∩D2) ∪ (K2 ∩D1) |K1 ∩K2 ⊆ K1 ∩D2
∼= (K1 ∪K2) ∩D1 ∩D2 | (∗)
∼= K∗

Combining the previous results we obtain that a given derivation of arbitrary length
in grammar GG can be reflected as concurrent production q∗ in the derived STS, such
that q∗ is pure.
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Theorem 2 (Concurrent Production of a Derivation). Let d = (G0 =
p1,m1===⇒ · · · ⇒

Gn−1 =
pn,mn====⇒ Gn) be a derivation of a grammar GG in an adhesive category C, let

S = Prc(d) be its derived STS and s = seq(d) = 〈q1; . . . ; qn〉. Then there is the concur-
rent derivation in S via production q∗:

G0 =
q∗

=⇒ Gn, where
q∗ is given by stepwise construction of the concurrent production, i.e. q∗ = q1⊕q2⊕. . . qn =∑
i6n qi and D∗ =

⋂
i6nDi being the context of G0 with respect to q∗.

Proof. By Thm. 1 we have that each construction of a concurrent production leads to a
derivation step in the STS. Thus each constructed concurrent production can be seen as
an STS production extending the original STS by a new production. By Lemma 2 each
concurrent production corresponding to derivation steps in Prc(d) is pure. Furthermore,
by Proposition 6 in [3], each derivation in an STS corresponds to a derivation of GG .
Thus, we can interpret a concurrent derivation in S corresponding to two derivation steps
in d as a derivation step in C. Exchanging the two mentioned derivation steps in d by
the concurrent derivation steps leads to a new derivation d′ in GG ′, which is given by
GG extended by the new concurrent rule. Note that q∗ is pure by Lemma 2. The STS
S ′ = Prc(d′) then contains the new concurrent rule but leaving out the two original rule
occurrence names. The colimit object T ′ of S ′ is a subobject of T : T ′ ⊆ T , which is based
on the derived span Ti ← D∗ → Ti+2 in Fig. 5.

D∗

xxqqqqqqq

&&MMMMMMM

Gi

��

Di+1
oo // Gi+1 Di+2

oo // Gi+2

��
Ti

**VVVVVVVVVVVVVVVVVV Ti+2

sshhhhhhhhhhhhhhhhhh

T ′
��
��
T

Figure 5: The derived context object D∗ of a concurrent derivation

Recall that D∗ = Di+1 ∩ Di+2 is given by the pullback of Di+1 → T ← Di+2 in C.
T ′ is given by pushout of the derived span Ti ← D∗ → Ti+2 in C, i.e. T ′ = Ti ∪ Ti+2 in
Sub(T ). Therefore, product construction ∪ and coproduct construction ∩ in Sub(T ) are
the same in Sub(T ′) for the remaining rules in S ′. Now we have the same situation as in
the beginning.

This procedure can be repeated leading to a single derivation step d̂ in C and a pure
production q∗ and corresponding derivation G0 =

q∗

=⇒ Gn in the STS Prc(d̂).

On the basis of the introduced construction of concurrent productions we now present
the efficient analysis of permutation equivalence within the derived STS of a given deriva-
tion.

6 Efficient Analysis

In order to analyse dependencies within the process Prc(d) of a derivation d with NACs two
new relations are introduced specifying weak enabling and weak disabling dependencies.
Here we can use the fact that the NACs in an STS are given as ordered lists to indicate
the concrete NAC instantiation that is causing a dependency. These relations are used to
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characterise the permutation equivalence of derivations with NACs by properties in the
derived STS shown by the main technical result of the paper in Thm. 5.

Intuitively, q1 weakly enables q2 if it deletes an item that is part of the forbidden
structure of the NAC N2[i] of q2. This means that there is an element in L1 ∩N2[i] that
is not contained in K1 ∪ L2. Analogously, q1 is weakly disabled by q2 if q2 produces an
item that is part of the forbidden structure of the NAC N1[i] of q1.

Definition 18 (Weak NAC Enabling). Let q1 and q2 be two rules in an STS and let N2[i]
be a NAC of q2, i.e. N2[i] ∈ N2 for π(q2) = (〈L2,K2, R2〉 , N2). The relation <wen[i] is
defined on P as follows: q1 <wen[i] q2 ⇔ L1 ∩N2[i] * K1 ∪ L2.

Definition 19 (Weak NAC Disabling). Let q1 and q2 be two rules in an STS and let
N1[i] be NAC of q1, i.e. N1[i] ∈ N1 for π(q1) = (〈L1,K1, R1〉 , N1). The relation <wdn[i]

is defined on P as follows: q1 <wdn[i] q2 ⇔ N1[i] ∩R2 * K2 ∪ L1.

In Prop. 1 we characterise the introduced relations for NACs in an STS using the
following definition of causes and co-causes of a subobject. This will support the proofs
of Lemmas 4 and 5 used for the main results of the paper.

Definition 20 (Causes, co-causes). Let S = (S0, T, P, π) be an STS, then for a subobject
A ⊆ T we define xAy= { q ∈ P |Rq ∩ A * Kq } and pAq= { q ∈ P |Lq ∩ A * Kq }
as the sets of causes and co-causes of A, respectively. Given a subobject B ⊆ A we
define the (co-)causes of A outside of B by xA \ By= { q ∈ P |Rq ∩ A * Kq ∪ B } and
pA \Bq= { q ∈ P |Lq ∩A * Kq ∪B }.

Proposition 1 (Characterisation of NAC-relations). Def. 20 allows us to to characterise
the relations <wen[i] and <wdn[i] as follows: q1 <wen[i] q2 ⇔ q1 ∈pN1[i] \ L1q and

q1 <wdn[i] q2 ⇔ q2 ∈xN1[i] \ L1y

In a next step we show a basic property of the sets of causes and cocauses, namely the
composition, by the following lemma.

Lemma 3 (Composition of causes). Let S = (S0, T, P, π) be an STS and let B ⊆ A and
A ⊆ T , then the sets of (co-)causes of B and A \ B compose to the (co-)causes of A:
xA \By∪xBy=xAy and pA \Bq∪pBq=pAq .

Proof. Let (1) : B ⊆ A. For causes it is sufficient to show M1 = M2 for M1 := P \ (xA \
By∪xBy ) and M2 := P\xAy .
We have that M1 = { q ∈ P |H1(q) : Rq ∩ B ⊆ Kq ∧ Rq ∩ A ⊆ Kq ∪ B } and M2 = { q ∈
P |H2(q) : Rq ∩A ⊆ Kq }.
We show H1(q)⇔ H2(q):
“⇐′′: Let (2) : Rq ∩A ⊆ Kq, then
Rq ∩B ∼=[(1)] Rq ∩A ∩B ⊆ Rq ∩A ⊆[(2)] Kq.
Rq ∩A ⊆[(2)] Kq ⊆ Kq ∪B.
“⇒′′: Let (3) : Rq ∩A ⊆ Kq ∪B and (4) : Rq ∩B ⊆ Kq, then
Rq ∩A ⊆[(3)] Rq ∩A∩ (Kq ∪B) ⊆ Rq ∩ (Kq ∪B) ∼= Kq ∪ (Rq ∩B) ⊆[(4)] Kq. For co-causes
the proof is analogous exchanging Rq by Lq.

The following lemma characterises the conditions under which a subobject of T is
visible in a sequence of rule occurrence names in the corresponding STS. In particular,
this characterisation supports the check whether a NAC of a rule will be the subobject of
an intermediate object in a derivation that is specified by a sequence of rule names. This
property is more general than the notion of reachable sets in [4], because it is not restricted
to the point in a sequence where the subobject is exactly the intermediate object of the
derivation. Furthermore, it is complete in the sense that it holds for any subobject of T
and in particular for any intermediate object of a possible derivation.
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Lemma 4 (Witness of a Subobject). Let d be a derivation of a grammar in an adhesive
category, let S = Prc(d) = (S0, T, P, π), let s = seq(d) = 〈q1; . . . ; qn〉 be the sequence of
rule occurrences in S with respect to d and let S0 = G0 =

q1=⇒ . . . =
qn=⇒ Gn be the corre-

sponding derivation in S. Let further j ∈ {0, . . . , n} and let A ⊆ T be a subobject of T
then:
xAy⊆ {q1, . . . , qj−1} and pAq∩ {q1, . . . , qj−1} = ∅ iff Gj is a witness for A, i.e. A ⊆ Gj.

Proof. Direction “⇒”
By [2] we know that S = Prc(d) builds the basis for an occurrence grammar. Therefore, we
have by Def. 12 in [2] for any subobject A ⊆ T that (a) : A ⊆ (S0 ∪

⋃
(q∈xAy)Rq) leading

to (1) : A ⊆ S0 ∪
⋃

(0<i<j)Ri. Furthermore we derive from the second precondition:
(2) : ∀ i ∈ {1, . . . j − 1} : A ∩ Li ⊆ Ki.

Let the preconditions of the lemma hold for j ∈ {0, . . . , n}. We show the following
property by induction over m:
P (m) : A ⊆ Gm ∪

⋃
(m<l6j)Rql

.

base case (m = 0): Gm = G0 = S0 =
(1)
=⇒ A ⊆ S0 ∪

⋃
(0<l<j)Rl = A ⊆ Gm ∪⋃

(m<l<j)Rl

inductive step: Assume that there is m ∈ {0, . . . , j − 1}, such that P (m) holds, i.e.
(IP ) : A ⊆ Gm ∪

⋃
(m<l6j)Rq. We show P (m+ 1).

We consider the deletion of the derivation step m+ 1, which implies square (3).

Lm+1

��
(3)

Km+1
oo

��
Gm ∪

⋃
(m<l6j)Rl Gm+1 ∪

⋃
(m+1<l6j)Rloo

From (3) we show and use the following equation (4):
Lm+1 ∪Gm+1 ∪

⋃
(m+1<l6j)Rl

∼= Lm+1 ∪Dm+1 ∪Rm+1 ∪
⋃

(m+1<l6j)Rl
∼= Gm ∪Rm+1 ∪

⋃
(m+1<l6j)Rl

∼= Gm ∪
⋃

(m<l6j)Rl.

This leads to (5):

A
(IP )∼= A ∩ (Gm ∪

⋃
(m<l6j)Rl)

(4)∼= A ∩ (Lm+1 ∪Gm+1 ∪
⋃

(m+1<l6j)Rl)

∼= (A∩Lm+1)∪(A∩(Gm+1∪
⋃

(m+1<l6j)Rl))
(2)

⊆ Km+1∪(A∩(Gm+1∪
⋃

(m+1<l6j)Rl))
⊆ (Gm+1 ∪

⋃
(m+1<l6j)Rl) ∪ (Gm+1 ∪

⋃
(m+1<l6j)Rl) ∼= (Gm+1 ∪

⋃
(m+1<l6j)Rl).

Using (5) we have that P (j) holds and therefore, A ⊆ Gj ∪
⋃

(j<l6j)Rql
∼= Gj .

Now, the direction “⇐”
Let (6) : A ⊆ Gj . We show the conditions (1) and (2).

condition (1): Assume that xAy* {q1, . . . , qj−1}, thus there is qm in s, such that m > j
and qm ∈xAy leading to Rm ∩A * Km

Case 1: m = j, i.e. Gj =
qm=⇒ Gm+1 via context object Dm. Then, A ∩ Rm ⊆[(6)]

Gj ∩Rm ∼= (Dm ∪ Lm) ∩Rm ∼= (Dm ∩Rm) ∪ (Lm ∩Rm) ∼= Km ∪Km
∼= Km.

Case 2: m = j + x, x > 1, i.e. Gj =
qj=⇒ . . . =⇒ Gm−1 =m=⇒ Gm. We construct the

concurrent production q∗ = 〈L∗,K∗, R∗〉 =
∑
i=j..m−1 qi, which is equal to qm

for m = j + 1. We derive d′ = (Gj =
q∗

=⇒ Gm−1 =
qm=⇒ Gm) via context objects

D∗ and Dm. Here we can use Lemma 1: Let GG be the grammar in which the
derivation d was performed. Consider GG ′, which is GG extended by production
q∗, which is possible, because q∗ is pure by Lemma 2. This allows to interpret d′ as

13



derivation in GG ′ and we derive Prc(d′). This allows us to apply Lemma 1 leading
to (7) : L∗ ∩Rm ∼= K∗ ∩Km.
A∩Rm ⊆[(6)] Gj∩Rm ∼= (D∗∪L∗)∩Rm ⊆ (Gm−1∪L∗)∩Rm ∼= (Dm∪Lm∪L∗)∩Rm ∼=
(Dm ∩Rm) ∪ (Lm ∩Rm) ∪ (L∗ ∩Rm) ∼=[(7)] Km ∪Km ∪ (Km ∩K∗) ∼= Km.

In both cases we have a contradiction to the assumption implying condition (1).

condition (2): Assume that pAq∩{q1, . . . , qj−1} 6= ∅, thus there is qm in s, such that
m < j and qm ∈pAq leading to Rm ∩A * Km

Case 1: j = m + 1, i.e. Gm =
qm=⇒ Gj via context object Dm. Then, A ∩ Lm ⊆[(6)]

Gj ∩ Lm ∼= (Dm ∪Rm) ∩ Lm ∼= (Dm ∩ Lm) ∪ (Lm ∩Rm) ∼= Km ∪Km
∼= Km.

Case 2: j = m + x, x > 1, i.e. Gm =
qm=⇒ Gm+1 =⇒ . . . =⇒ Gj . We construct the con-

current production q∗ = 〈L∗,K∗, R∗〉 =
∑
i=m+1..j−1 qi and derive d′ = (Gm =

qm=⇒
Gm+1 =

q∗

=⇒ Gj) via context objects Dm and D∗. Here we can use Lemma 1: Let GG
be the grammar in which the derivation d was performed. Consider GG ′, which is
GG extended by production q∗, which is possible, because q∗ is pure by Lemma 2.
This allows to interpret d′ as derivation in GG ′ and we derive Prc(d′), where q∗ is
the same. This allows us to apply Lemma 1 leading to (8) : Lm ∩R∗ ∼= Km ∩K∗.
A∩Lm ⊆[(6)] Gj∩Lm ∼= (D∗∪R∗)∩Lm ⊆ (Gm+1∪R∗)∩Lm ∼= (Dm∪Rm∪R∗)∩Lm ∼=
(Dm ∩ Lm) ∪ (Rm ∩ Lm) ∪ (R∗ ∩ Lm) ∼=[(8)] Km ∪Km ∪ (Km ∩K∗) ∼= Km.

In both cases we have a contradiction to the assumption implying condition (2).

The following notion of legal sequences allows us to first characterise permutation-
equivalent derivations with NACs within an STS. Afterwards we show that this charac-
terisation is sound and complete for analysing the permutation equivalence of derivations
with NACs in the original adhesive category.

Note that the STS is an unfolding of the original derivation. Thus, e.g. for the category
Graphs we have that elements can be created and deleted, but never re-created after they
have been deleted in a derivation of the derived STS, because the colimit construction
distinguishes each creation of an element. This implies that each item is either produced
by exactly one rule or it is present in the start object and not produced by any rule. Thus,
a NAC is satisfied, if an item of the elements it forbids has already been deleted (weak
enabling) or such an item is created later (weak disabling). This condition is formalised by
the following notion of legal sequences based on the new dependencies. It allows us to first
characterise equivalent derivations with NACs within an STS. Afterwards we show that
this characterisation is sound and complete for analysing the permutation equivalence of
derivations with NACs in the original adhesive category.

Definition 21 (Legal Sequence). Let d = (d1; . . . ; dn) be a derivation with NACs in an
adhesive category and let Prc(d) = S = (S0, T, P, π) be its derived STS with NACs. A
sequence s = 〈q1; . . . ; qn〉 of rule names of P is locally legal at position k ∈ {1, . . . , n} with
respect to d, if each rule name in P occurs exactly once in s and the following conditions
hold:

1. s
sw
≈S seq(d)

2. ∀ NACs Nk[i] of qk :
(
∃ e ∈ {1, . . . , k − 1} : qe <wen[i] qk or
∃ d ∈ {k, . . . , n} : qk <wdn[i] qd.

)
The sequence s of rule names is legal with respect to d, if it is locally legal at all positions
k ∈ {1, ..., n} with respect to d.

The second condition of Def. 21 considers NACs and ensures that each NAC of a rule
cannot be found in the subobject to which the rule is applied, which is a consequence of
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Thm. 5 and explained above. This subsumes the special case of s = seq(d), where we
have that seq(d) is always legal with respect to d. The following definition of permuta-
tion equivalence of sequences is based on the notion of legal sequences and therefore, it
suffices to evaluate the presented relations on rule occurrence names in order to analyse
permutation equivalence of sequences.

Definition 22 (Permutation Equivalence of Sequences). Let d be a derivation with NACs
and let S = Prc(d) = (S0, T, P, π) be its derived subobject transformation system with
NACs. Two sequences s, s′ of rule names in S are permutation equivalent, written s

π
≈S

s′, if they are legal sequences with respect to d.

In order to show that the introduced notion of permutation equivalence of sequences
builds a suitable basis for the analysis of permutation equivalence of derivations, we first
show that a derivation in an adhesive category leads to a class of permutation-equivalent
derivations in the derived STS as stated by Lemma 5 beneath. For this purpose we can
use Lemmas 3 and 4.

Lemma 5 (Legal Sequence). Let d be a derivation with NACs in an adhesive category
C and S = Prc(d) = (S0, T, P, π), then seq(d) is a legal sequence with respect to d.
Furthermore, if we have s = 〈q1; . . . ; qn〉 being a legal sequence with respect to d, then,
S =

q1=⇒ . . . =
qn=⇒ Gn is a derivation in S.

Proof.

seq(d) is legal sequence in Prc(d): First of all, we have that seq(d)
sw
≈S seq(d) in

Prc(d). It remains to show that seq(d) fulfils the second condition of a legal sequence.
Assume that the second condition does not hold for Nk[i]. We show that in this case
the NAC is present in Gk leading to the contradiction that d is not a valid derivation
with NACs in C.
The violation of condition two means that
( ∀ e ∈ {1, . . . , k − 1} : qe ≮wen[i] qk and ∀ d ∈ {k, . . . , n} : qk ≮wdn[i] qd).
Thus, we have by Prop. 1:
( ∀ e ∈ {1, . . . , k − 1} : qe /∈pNk[i] \ Lkq and ∀ d ∈ {k, . . . , n} : qd /∈xNk[i] \ Lky ).
This implies that (1) : {k, . . . , n} ⊇pNk[i]\Lkq and (2) : {1, . . . , k−1} ⊇xNk[i]\Lky .
Because Lk ⊆ Gk according to d we also have by Lemma 4 (3) : {k, . . . , n} ⊇pLkq
and (4) : {1, . . . , k−1} ⊇xLky . By Lemma 3 we can compose (1) and (3) as well as (2)
and (4) to conclude that (5) : {k, . . . , n} ⊇pNk[i]q and (6) : {1, . . . , k − 1} ⊇xNk[i]y .
Now we can apply Lemma 4 and get Nk[i] ⊆ Gk showing the contradiction that d is
not a derivation. Thus, the second condition of Def. 21 is fulfilled and we conclude
that seq(d) is a legal sequence with respect to d.

drv(s) is derivation in S: By condition (1) of Def. 21 we know that s
sw
≈S seq(d)

and thus drv(s) specifies a derivation without NACs in S being Prc(d) without
instantiated NACs, and drv(s) can be derived from d by switching independent
steps.
It remains to show that drv(s) also respects the NACs of the rules in d.
Assume that (3) : Nk[i] ⊆ Gk. We show that in this case the the second con-
dition of Def. 21 does not hold for Nk[i]. From (3) we derive by Lemma 4:
(4) : {k, . . . , n} ⊇pNk[i]q and (5) : {1, . . . , k−1} ⊇xNk[i]y . Since Lk ⊆ Nk[i] we know
by Lemma 3 that (6) : {k, . . . , n} ⊇pNk[i] \ Lkq , (7) : {1, . . . , k − 1} ⊇xNk[i] \ Lky .
This implies ( ∀ e ∈ {1, . . . , k − 1} : qe /∈pNk[i] \ Lkq and ∀ d ∈ {k, . . . , n} :
qd /∈xNk[i] \ Lky ). Thus, we have by Prop. 1: ( ∀ e ∈ {1, . . . , k − 1} :
qe ≮wen[i] qk and ∀ d ∈ {k, . . . , n} : qk ≮wdn[i] qd). Therefore, we have the contra-
diction that s is not a legal sequence with respect to d and thus the assumptions is
not valid implying that Nk[i] * Gk. Thus, drv(s) respects all NACs.
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Now Lemma 5 together with the following corollary of Def. 12 allows us to show Thm.
3, which states that the analysis of permutation equivalence using STSs is sound.

Corollary 1 (Characterisation of Switch Equivalence). Let d be a derivation in an ad-
hesive category and S = Prc(d), then d

sw
≈ d′ ⇒ seq(d)

sw
≈S seq(d′) and seq(d)

sw
≈S

s′ ⇒ d
sw
≈ drv(s′).

Proof. By Thm. 32 in [3] we have that sequential independence of two derivation steps
in d is equivalent to independence of the rule occurrence names in Prc(d). By Prop. 24
in [2] we have that switching equivalent derivations lead to the same class of isomorphic
processes. Thus, we derive switchings for d by

sw
≈ which are in one-to-one correspondence

with the switchings of seq(d) using
sw
≈S .

An analysis of permutation equivalence of derivations with NACs in an adhesive system
within STSs with NACs is possible and correct, which is stated by the following theorem.

Theorem 3 (Soundness). Let d be a derivation with NACs in an adhesive category C,
let S = Prc(d) be its derived STS and let s be a sequence that is permutation-equivalent to
seq(d), i.e. s

π
≈S seq(d). Then drv(s)

π
≈ d, i.e. each permutation-equivalent sequence

s leads to a permutation-equivalent derivation for d.

Proof. Let GG be the grammar of derivation d and let GG ′ be GG but without any NAC.
Then by Corrolary 1 we have that drv(s) is a derivation in GG ′ and drv(s)

sw
≈ d. We

show that the NACs in GG are respected within drv(s). For each step Gk−1 =
pk,mk===⇒ Gk

in drv(s) we have that Gk−1 ⊆ T and mk : Lk → Gk−1 → T is given by compatibility
of Lk → T and Lk → G′, where G′ is the object in the original derivation d at the rule
occurrence of qk. For each NAC N of rule pk in GG there is for each monomorphism
compatible with match mk one instantiated NAC and for each instantiated NAC we have
by Lemma 5 that Nk[i] * Gk−1. Thus, there is no monomorphism which maps a NAC of
rule pk to Gk−1 compatible with mk.

Furthermore, the analysis of permutation equivalence within a derived STS is complete,
i.e. for each pair of permutation-equivalent derivations we have that their corresponding
sequences are permutation-equivalent.

Theorem 4 (Completeness). Let d, d′ be two permutation-equivalent derivations with
NACs in an adhesive category C, i.e. d

π
≈ d′. Then the corresponding sequences are

permutation-equivalent in S = Prc(d), i.e. seq(d)
π
≈S seq(d′).

Proof. By Prop. 24 in [2] we have that switching equivalent derivations without NACs
lead to the same class of isomorphic processes. The instantiation of NACs for Prc(d) can
be performed thereafter. The applied rules in d and d′ are the same and the embedding of
the rule components into the super object T are equal. This leads to the same instantiation
of the NACs for Prc(d) and Prc(d′) and thus, Prc(d) and Prc(d′) are isomorphic to each
other. Thus, we we have that Prc(d) is an STS for d′. By Lemma 5 we then know that
seq(d′)

sw
≈S seq(d) and that seq(d′) is a legal sequence with respect to d′. This implies

that seq(d′) is a legal sequence with respect to d because the second condition of Def. 21
is only dependent on Prc(d), which is isomorphic to Prc(d′).

The following lemma combines Theorems 3 and 4 and it builds the basis for Thm. 5
that furthermore leads to Thm. 6.
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Lemma 6 (Permutation Equivalence). Let d, d′ be derivations with NACs in an adhesive
category, let S = Prc(d) and s′ be a sequence of rule occurrence names in S, then:

d
π
≈ d′ ⇒ seq(d)

π
≈S seq(d′) and seq(d)

π
≈S s′ ⇒ d

π
≈ drv(s′).

Proof. The lemma follows from Thm. 3 and Thm. 4 using the involved definitions.

Now, we are able to state the first main result of this paper by Thm. 5 below, which
says that the analysis of permutation equivalence within the framework of STSs is sound
and complete.

Theorem 5 (Analysis of Permutation Equivalence of Derivations based on STSs). Let d
be a derivation with NACs in a grammar GG in an adhesive category and let S = Prc(d).
Then the analysis of permutation-equivalence within S is sound and complete:
Let d′ be a derivation with NACs in GG, then: d

π
≈ d′ ⇔ seq(d)

π
≈S seq(d′).

Proof. The theorem follows from Lemma 6.

Based on Thm. 5 we define for a given derivation d the set EQU(d) of all canonical
derivations, which are derived from permutation-equivalent sequences of seq(d) in Prc(d).
Note that the set EQU(d) is finite, if d is finite.

Definition 23 (Canonical Equivalent Derivations). Let d be a derivation with NACs
in grammar GG in an adhesive category and let S = Prc(d). The set EQU(d) =
{drv(s′) | s′

π
≈S seq(d)} is called the set of canonical permutation-equivalent derivations

of d.

Now we can state the second main result of this paper by Thm. 6, which shows
that for each derivation d′, wich is permutation-equivalent to d, there is an isomorphic
representative in the set of canonical equivalent derivations EQU(d).
Theorem 6 (Generation of all Permutation-Equivalent Derivations based on STSs). Let
d be a derivation with NACs in a grammar GG of an adhesive category C and let S be
the derived STS from d. Then, ∀ d′ : d

π
≈ d′ ∃ d′′ ∈ EQU(d) : d′ ∼= d′′.

Proof. This is a consequence of Def. 23 and Thm. 5, where the derivation d′′ is obtained
by drv(s′) with s′ being the sequence of rule occurrence names that correspond to the
steps of d′.

Furthermore, the construction of the process model of a derivation is efficient as stated
by the next theorem. This ensures that the effort for the construction of the presented
framework does not lead to efficiency problems of the overall analysis.
Theorem 7 (Efficient Construction of the Process Model). Let d be a derivation with
NACs in a grammar GG of the category Graphs and let S be the derived STS from d.
If additionally the size of each NAC is bounded by the size of the left hand side of the
corresponding rule plus an arbitrary but fixed c, then the complexity of the construction of
the process model S and its dependency relations is in O(nc+4), where n is the length of
the input I = (GG , d).
Proof. The super object T is constructed as colimit of d by incremental pushouts for each
derivation step and the intermediate colimit object is extended by at most n elements at
each step. Thus, this construction has a complexity of O(n2). The size of T is at most n,
because - in the worst case - T is given as disjoint union of the graphs in d. Furthermore,
the construction of S0 with its embedding to T and the construction of P is linear.

The mapping π is given by composing the morphisms in d with the embeddings to
T and instantiation of the NACs. For each derivation step we have at most n NACs of
the current rule p. The left hand side of p is already embedded into T and it remains
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to perform pattern matching for the additional elements (at most c) for each NAC. We
derive complexity O(nc · n · n) = O(n2+c) and there are at most n1+c NAC-instances for
each rule occurrence.

The relations:For each pair of rules we store a Boolean value specifying whether the
relation ♦ holds. We have at most n2 pairs and use the embeddings to T to check whether
they overlap only on interface elements of the rules. Thus, we have a complexity of O(n3)
and a Boolean array of size at most n2. For each instantiated NAC (at most n1+c) of a
rule occurrence q we check the relation <wdn[i] against each other rule q′, i.e. whether the
rules overlap on Lq and Kq′ only. We derive the complexity O(nc+1 · n2 · n) = O(nc+4)
and a Boolean array of size at most nc+3. The same procedure is applied for <wen[i].
Summing up all steps, we have complexity O(nc+4).

Remark 3 (Check for Permutation Equivalence). If we are interested whether two given
derivations d and d′ with NACs are permutation-equivalent we can transfer this problem
to the usual analysis of switch equivalence without NACs. The reason is that we already
know that d and d′ respect all NACs. But note that this check also involves isomorphism
checks, because the modified structure of an intermediate object in d is not related to some
structure in d′.

The following claim states that given a derivation d of a graph grammar, then in most
cases the generation of a complete set of representatives for all permutation-equivalent
derivations with NACs is more efficient using the derived STS than a direct generation
based on the conditions of permutation equivalence.

Claim 1 (Efficiency of the Analysis of Permutation Equivalence of Derivations). Given
a long derivation d in category Graphs, where the intermediate graphs of d are large.
Then, the generation of EQU(d) using Prc(d) is more efficient than a direct generation
within Graphs.

Explanation:
• Using Prc(d): The relations can be completely computed after deriving the STS

Prc(d) = (S0, T, P, π) from a derivation d without any pattern matching using the
embeddings of the objects into the super object T . These constructions can be
even performed a priori, i.e. as soon as d is available and possibly before a user
requests to perform an analysis. Furthermore, the relations are stored in Boolean
arrays R. This has the advantage that the evaluation of a relation for a pair (qi, qj)
of rule occurrence names has constant complexity: it is just a lookup whether the
corresponding entry in R is 0 or 1. Note that the conditions have to be checked
only for the rule occurrence names that were involved in a switching. And for
the NAC-condition of a “legal sequence”, the number e or d for a weak enabling
resp. disabling cause can be dynamically stored, such that a search for them is
only necessary, if the specific rule qe or qd was involved in the switching. Finally,
backtracking of switchings can be substantially reduced by the stepwise construction
of a linearisation according to the properties of an occurrence grammar [2].

• Within the category Graphs: The complexity of the direct analysis of permuta-
tion equivalence of derivations in Graph is in most cases higher than in the derived
STS. First of all, sequential independence has to be checked for each switching. Fur-
thermore, we have to perform the transformation steps according to the switching in
order to derive the current intermediate objects. For checking whether a switching
is valid, one has to perform pattern matching of the NACs of each derivation step
that was involved in a switching. Now, pattern matching is of high complexity. This
pattern matching has to be performed for all switchings and all involved NACs.
Finally, normally many switchings can be possible at the same time, but not all of
them will lead to an equivalent derivation, which implies many backtracking points
and paths.
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The main advantage of the analysis using STSs is that we do not need to update
the graphs of the derivation and we do not need to perform pattern matching for the
NACs after each switching. Permutation equivalence of sequences within an STS does
only concern the introduced relations on rule occurrence names. This means that we only
have to check whether rule components overlap in the specified way. Therefore, we do
not need to perform any pattern matching after the STS is constructed. Furthermore, we
can compute the relations once and for all and store the results in Boolean arrays. This
allows us to efficiently check the relations.

G’1

4:worksOn

1:Person

3:Task
6:started

2:Person

⇒ ⇒ ⇒

G0

1:Person

3:Task
6:started

2:Person G’2

1:Person

3:Task
6:started

2:Person G’3

5:worksOn

1:Person

3:Task
6:started

2:Person G4

1:Person

3:Task
6:started

2:Person

⇒

d′ = (G0 =
continueTask,m′

3==========⇒ G1 =
stopTask,m′

4=======⇒ G2 =
continueTask,m′

1==========⇒ G3 =
stopTask,m′

2=======⇒ G4)

write causality weak enabling weak disabling
cont1 <wc stop1 stop1 <wen[1] cont1 cont1 <wdn[1] cont1
cont2 <wc stop2 stop1 <wen[1] cont2 cont1 <wdn[1] cont2

stop2 <wen[2] cont1 cont2 <wdn[2] cont2
stop2 <wen[2] cont2 cont2 <wdn[2] cont1

Figure 6: Derivation d′ equivalent to d in GG and the table of its dependencies

Example 4 (Equivalent Sequence). The presented derivation d′ in Fig. 6 is permutation-
equivalent to the derivation d in Fig. 2 in Section 2. The last two steps are moved to the
beginning. Using the relations in an STS we derive the dependencies as listed in Fig. 6
for the rule occurrences “cont1, cont2, stop1, stop2” in Fig. 4, where the basic relation
for write causality “q1 <wc q2” as defined in [3] is a special case of dependency given
by ¬(q1 ♦ q2). This implies that “cont1” has to occur before “stop1” and “cont2” before
“stop2”. According to Thm. 5 and Def. 22 we can check, whether the sequence seq(d′) can
be derived by the presented relations. First of all, the sequence is derived by switchings of
independent rule occurrences without considering NACs: stop1 ↔ cont2, stop1 ↔ stop2,
cont1 ↔ cont2 and cont1 ↔ stop2 leading to s = 〈cont2;stop2;cont1;stop1〉 = seq(d′).
Now, for each rule occurrence and NAC in s there is a weak enabling rule before or a weak
disabling rule behind or the rule disables itself. For instance for N1[2] of “cont1” we have
“stop2” with stop2 <wen[2] cont1 and therefore, N1[2] is not present in the intermediate
object. All together s = seq(d′) is a legal sequence with respect to d, which implies that
seq(d′)

π
≈S seq(d) and hence, d′

π
≈ d according to Thm. 5.

Note that a pairwise switching of the example derivation with NACs is not possible,
because each pair is sequentially dependent - either by causal relation or by NAC depen-
dency. Therefore, this sequence cannot be derived by standard switching of completely
independent derivation steps according to switch equivalence with NACs in Def. 5. This
shows that switch equivalence with NACs based on sequential independence of derivations
with NACs [7, 12, 13] only leads to a subclass of equivalent derivations and in general,
many equivalent derivations cannot be derived. But as the example derivation shows, all
permutation-equivalent derivations are of interest, because a certain person may not be
available for a concrete time slot while another person could use the time and give some
support for the task.

19



7 Conclusion and Future Work

Up to now, process analysis of transformation systems did not consider negative applica-
tion conditions (NACs), which are widely used in practical case studies and applications.
Switch equivalence based on sequential independence of derivations with NACs [7, 12] is
not sufficient, because rule applications may be possible in an equivalent way at several po-
sitions of the derivation, which are not situated next to each other and these permutation-
equivalent derivations cannot be derived by switching sequentially independent steps as
explained with the presented example. Furthermore, also critical pair analysis [14] for
systems with NACs only leads to partial results in this context. Critical pairs specify
the possible conflicts of productions without considering the current instance objects on
which productions are applied to in a concrete derivation. But in most cases rules have
the ability to conflict each other. Analogously, the criteria for the applicability of rule
sequences in [15] cannot be applied, because they are only sufficient but not necessary,
and furthermore, matches can be arbitrary and do not have to be equivalent.

For this reason, we introduced permutation equivalence for derivations with NACs.
From a general point of view permutation equivalence is maximal in abstraction, because
it relates two derivations, if they start at the same object, they end at the same object,
both derivations are valid, each one can be obtained by the other by permuting the applied
rules, and finally all matches are equivalent with respect to the gluing of all intermediate
instances.

The main result of this paper is a framework for the efficient analysis of permuta-
tion equivalence, i.e. the efficient derivation of all derivations, which are permutation-
equivalent to a given one. The presented construction of a process model for derivations
with NACs is based on subobject transformation systems (STSs) [3], which are defined for
the abstract setting of adhesive categories. Thus, the process analysis can be instantiated
to several concrete categories.

The main benefit of using STSs in this context is that the construction of the process
model can be performed in polynomial time and in advance, i.e. possibly before a user
requests an analysis. Furthermore, the relations for the analysis are based on overlappings,
which implies that there is no need for pattern matching and updates of the derivation
in order to analyse permutation equivalence of derivations with NACs. A direct analysis
in the adhesive category of the derivation would cause high complexity as explained in
detail in the previous section. In particular, many of the possible permutations have to be
constructed and checked including the high complexity of pattern matching for the NACs
on the updated intermediate objects.

This paper is a fundamental contribution to the PhD project: Process Construction
and Analysis for Workflows modelled by Adhesive HLR Systems with Application Condi-
tions [8]. While this paper concerns the extension of the process construction for NACs in
the setting of adhesive categories, also positive application conditions will be integrated
in a further step, which allow the modeller to specify rules that are more compact, which
additionally leads to a bigger class of permutation-equivalent derivations in general. Fur-
thermore, the results will be transferred to the more general class of adhesive high level
replacement systems (AHLR systems) [6] as already explained in [10, 9]. The developed
techniques will be instantiated to typed attributed graph transformation systems and
further more, to Petri net transformation systems, which are used for modelling mobile
networks.

The benefits of the overall framework of process analysis will be elaborated in future
case studies for reconfigurable workflow models as instances of AHLR systems, which shall
show that analysis and execution are efficient and convenient.While the running example
of this paper is simplified to show the results on compact instances, a full case study
of mobile reconfigurable workflow systems will cover complex scenarios and in particular
emergency scenarios. A motivation for the case study is to compute equivalent executions
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that show maximal parallelism or improved properties with respect to the application
domain.
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