
An ECLIPSE Framework for Rapid Development of
Rich-featured GEF Editors based on EMF Models

Tony Modica, Enrico Biermann, Claudia Ermel
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin
E-Mail: {modica,enrico,lieske}@cs.tu-berlin.de

Abstract: Model-based development has an increasing importance in modern soft-
ware engineering and other domains. Visual models such as Petri nets and UML
diagrams proved to be an adequate way to illustrate many structural and behavioral
system properties. However, while tooling for textual modeling is pretty mature now,
visual tool builders are faced with a much higher complexity regarding the represen-
tation of model properties, and the interplay of the concrete syntax (the views) with
the underlying abstract model representation, e.g. based on Java, XML or the Eclipse
Modeling Framework (EMF). In order to ease the development of visual editors, the
Graphical Editing Framework (GEF) offers layout and rendering possibilities, as well
as an architecture that allows to integrate models based on EMF, Java or XMI with
their visual views and editors. Unfortunately, the structure of GEF is quite complex to
use if editors are not simply one-to-one representations of model elements, or if more
than one view is needed at a time for more complex models.

Based on several years of experience in teaching the development of GEF-based
visual editors for complex visual models to students, we developed MUVITORKIT
(Multi-View Editor Kit), a framework for rich-featured visual editors, which is pre-
sented in this paper. MUVITORKIT is based on EMF and GEF, and supports nested
models, models needing multiple graphical viewers, and animated simulation of model
behavior. The architecture of MUVITORKIT is designed in a way that encapsulates the
complex underlying mechanisms in GEF and simplifies the integration in the ECLIPSE
workbench.

1 Introduction

Model-based development grows more and more important in modern software engineer-
ing. For a long time, visual models were restricted to pencil drawings on paper, used in
the early software development phases to illustrate structural and behavioral system as-
pects. While textual modeling had been supported by tools pretty early, visual modeling
tools have been developed much later. Tool builders of visual modeling tools still face
a number of problems such as layouting, pretty-drawing, view management and version
control. The ECLIPSE Graphical Editing Framework (GEF) allows editor developers to
implement graphical editors for existing models. GEF provides the layout and rendering
toolkit DRAW2D for graphics and follows the model-view-controller (MVC) architectural
pattern to synchronize model changes with its views and vice versa.

Our research group has its main focus on applying formal techniques to visual modeling
languages. For five years now, we have held a visual languages programming project
(VILA) for graduate students, concerning the development of a graphical editor as an
ECLIPSE plug-in, using GEF and the Eclipse Modeling Framework (EMF).

Generally, with a complex framework as GEF there are always many different possibil-
ities to approach the implementation of a feature, but usually there are better and worse
ways, especially if you want to reuse code later on. Several frameworks support genera-
tion of code for from abstract editor specifications, like the ECLIPSE Graphical Modeling
Framework (GMF) or MOFLON [AKRS06]. Unfortunately, the visual languages we usu-
ally want to implement editors for and their simulation operations seem not appropriate to
be specified in these frameworks, which assume models to be displayed in a single pane
only. Moreover, if we used e.g. GMF to generate code as far as possible, GEF apprentices
without deeper knowledge of the mechanisms in GEF would surely struggle when laying
hand on the generated code to extend it with complex features.

So, we used our past experiences to generalize recurring code fragments for many editor
features into code templates and to document them properly for simplifying the familiar-
ization process for the students as well as the editor implementation. This development
lead to our GEF-based framework MUVITORKIT (Multi-View Editor Kit). MUVITORKIT
supports nested models, models needing multiple graphical viewers, and animated simu-
lation of model behavior. The architecture is designed in a way that encapsulates complex
underlying mechanisms in GEF and simplifies the interaction with the ECLIPSE work-
bench.

We present the MUVITORKIT framework in this article, which is structured as follows: In
the next section we give a short overview over the requirements that rise from the models
we usually want to implement editors for, and which are supposed to be supported by
MUVITORKIT. In Section 3, we present actual implementations based on MUVITORKIT.
Section 4 describes the architecture of MUVITORKIT, its advantages and how to use it.
The fifth section presents a package of MUVITORKIT that allows developers to define
flexible animations in editors based on it. In the conclusion we mention some future work
on MUVITORKIT. The appendix contains sample code fragments for selected presented
features.

2 Functional and Pragmatic Requirements

GEF in combination with EMF models is adequate for building editors with a single
panel showing one diagram at a time. However, for visual languages whose components
do not only consist of single graph-like diagrams, we have to come up with additional
mechanisms to manage the different components of such models1.

In this section we give an overview of the main additional editor concepts we need to sup-
port in order to enable visual editor users to edit their models conveniently. For illustration,

1We call the instances of a visual language simply ‘models’ in this article, in contrast to the notion ‘EMF
model’, which is in fact a meta-model describing the visual language.

we introduce some recurrent components of visual languages from our VILA projects.

Workflow Execution

n

transform(r,n)

r

n

fire(n)

Workflow:ObjectNetRules:Rule

Workflow AdaptionR1 WF

 NAC LHS RHS Select

Building

Matching

Compile

Questionnaire

Make

Photo

Send

Photo

1:

1:

2:

1:

2:1:

Figure 1: Example higher-order Petri net

Nested Models Fig. 1 shows an example of a special kind of high-level Petri nets, i.e.
a higher-order Petri net. Here, the token WF on place Workflow is a (simple) Petri net
itself2. According to [Val98], we say that the (shaded) system net contains the object net
WF. Thus, for a higher-order net editor, we need some facility to access nested objects like
the object net tokens, e.g. to open a special editor component for editing simple Petri nets
in addition to one for the high-level system net.

Components with more than one Graphical Viewer In the left of the system net in
Fig. 1, you can see another complex token R1 that is not a Petri net but a transformation
rule for Petri nets [HME05]. Such rules consist of a left-hand (LHS) and a right-hand side
(RHS), similar to formal grammars for strings. Additionally, there may be some negative
application conditions (NAC), which can prevent rule applications in certain cases.

If we want to build an editor component for rules, we have to integrate three single pan-
els into it and to provide means for specifying the relations of the rule’s elements (here
indicated by the small numbers next to the places) and managing the NACs.

In addition, we surely want to be able to check the system net and its object nets while
editing a rule for a special purpose. Therefore we cannot simply overlay the main edi-
tor’s panel with the net/rule/token we want to edit, we rather need a parallel simultaneous
presentation of the different editor components similar to Fig. 1.

Animated Simulation Petri nets are behavioral models and we want the editors not only
for editing but for simulating them as well, i.e. the firing steps, which consume and pro-
duce tokens. Continuous animation of the involved tokens would let the user comprehend

2You may ignore other details of this net for now.

the performed firing step better than simple switching to the new system’s configuration.
So, we need an easy to integrate mechanism to state that consumed token’s figures should
move (by animation) from the incoming places to the firing transition and vanish, whereas
the newly created tokens should appear at the firing transition and then move to their corre-
sponding places. For an example, see Fig. 2 where the dashed arrows show the animation
paths that the consumed and the created tokens will follow during a firing step of the
transition.

transition

Figure 2: Example animation for a firing step in a Petri net

Support Stepwise Development and advise Good Practices In addition to the former
functional requirements derived from specific visual language features, we also want to
deal with the difficulties of getting acquainted with ECLIPSE and GEF and nevertheless
writing coherent code. For this, we would like to support the students by suggesting prac-
tices we found useful for producing code that is easy to extend and to maintain.

3 Sample Editors based on MUVITORKIT

In this section, we present two editors based on the MUVITORKIT to demonstrate how to
realize our multiple view requirements. The editors are working on complex models that
integrate approaches for different aspects of a system, e.g. typed graphs, Petri nets, and
activity diagrams (structure); and graph or Petri net transformation rules (behavior and
reconfiguration).

3.1 RONEditor for Reconfigurable Object Nets

The visual language of this editor, Reconfigurable Object Nets (RON), are just a variant
of the higher-order nets in the previous section, simplified for the VILA students’ project
[BEHM07]. RONs are higher-order system nets consisting of transitions (without alge-
braic expressions as before, but with fixed semantics) and of places that carry object Petri
net and rule tokens. The editor is freely available [RON].

Fig. 3 on the following page shows a screenshot of the editor with an example RON (a
producer-consumer model for distributed producers and consumers, see [BEHM07] for a

detailed explanation). In the left, you see the main tree editor component (1), showing
all elements as transitions, places, and tokens on places. (2) is the graphical component
for editing the RON system net. If you open the editor on a RON file, it will immediately
show (1) and (2). This, displaying the tree editor and the graphical view for the main
element (the ‘top’ element of the model), is the default behavior in all MUVITORKIT
implementations.

Consider the place Producers in (2). If you double-click on the token Prod1, GEF trig-
gers an ‘open’ request, which by default MUVITORKIT handles such that the graphical
component (3) for the object Petri net will be opened. Similarly, ‘opening’ the rule token
mergePC on place MergeRules causes the rule editor component (4) to appear. Note that
this component has a single tool palette shared by three graphical viewers, showing the
NAC, LHS, and RHS of the rule.

Opening graphical views for model elements is also always possible in the main tree editor
component. The user may double-click entries in the tree to open corresponding graphical
views, such (3) and (4).

1 2

3

4

Figure 3: Screenshot of the RONEditor

All components (1)-(4) are regular ECLIPSE views that can be arranged in any way. More-
over, the RONEditor demonstrates how to define a perspective, so that the components for
rules and object nets are automatically arranged as depicted and, if multiple views of the
same kind are opened, they are gathered with tabs as the views for the object nets Prod1,
Prod2, and Cons1.

3.2 ActiGra Editor

In the ActiGra model we combined activity diagrams with graph transformation rules as
activities. When simulating an activity diagram, the correspondent rules will be applied
to a graph representing some data. In Fig. 4, we have again in (1) the all-encompassing
tree view where you can open views for the data graphs, e.g. for PizzaOrder in (2), and
for activity diagrams, e.g. for orderPizzaDiagram in (3). Note that rule views, as for
orderBeverage in (4), are accesible via the tree view as well as via the activity nodes, e.g.
(4) could have been opened by double-clicking the corresponding activity in (3).

1

2

3

4

Figure 4: Screenshot of the ActiGraEditor

4 Structure and Features of the MUVITORKIT

In this section, we describe the MUVITORKIT, its main parts, and how they can be used to
quickly build a GEF editor meeting our previously mentioned requirements.

In general, implementing a GEF editor involves two main tasks. On the one hand, you
have to use the GEF architecture to implement EditParts as controllers that mediate
between a model element and the view part, which are DRAW2D figures, according to the
MVC principle. For our models, we use EMF to design the model and to automatically
generate code featuring i.a. a qualified notification mechanism. On the other hand, the edi-

tor has to be integrated properly into the complex ECLIPSE workbench. To keep the second
task as simple as possible, MUVITORKIT contains abstract classes for building editors and
graphical classes with GEF’s editing capabilities, which need only the GEF-specific infor-
mation to be implemented. In short, most parts that are not GEF-related and integrate the
editor into the workbench are already configured reasonably in MUVITORKIT to provide
many features to every MUVITORKIT implementation with little effort for the developer.
Nevertheless, the editor can be controlled via well-documented special methods in the ab-
stract classes, following our requirement for encapsulating good practices in simple-to-use
methods. Note that, in contrast to GMF, where you specify and generate an editor via an
abstract model, the aim of MUVITORKIT is to help users with easy-to-use and extendable
default implementations for building complex GEF editors.

Most generalizations of editor features are only possible because we assume to have a
generated EMF model and make use of the generated code’s special features. The whole
MUVITORKIT framework and its parts are tailored to be used together with an EMF model.

We describe the different parts in detail to give an impression about building an editor
based on MUVITORKIT. At first, let us state a nomenclature: In ECLIPSE, all workbench
components are called ‘views’ and an editor is just a special kind of view with an input.
In MUVITORKIT, there is always only one class implementing the ECLIPSE interface
IEditorPart (see next paragraph), so in the following, we will refer to ‘views’ as the
graphical components that are not the main tree-based view, which we call the editor.
In a view or an editor, there may reside several GEF ‘viewers’, which actually display
the graphical or tree-based representation of the model for editing, and that must not be
confused with ‘views’! In general, view classes have to be registered in the plug-in’s
configuration file plugin.xml with some identifier to be used in the workbench.

Main Tree Editor The central part of an editor based on MUVITORKIT is an implemen-
tation of the abstract class MuvitorTreeEditor. It integrates a basic but comprehen-
sive tree-based editor component into the workbench, as a base to access all the graphical
views for specific model elements from. As for all ECLIPSE editors, this class has to be
registered with the editor extension point of the editor plugin you want to build (i.e. in
plugin.xml).

Implementing a subclass of MuvitorTreeEditor is basically connecting the compo-
nents responsible for the GEF parts to the editor. For this, there are several abstract meth-
ods in which you need to instanciate the following parts: a default EMF model instance
(for empty or corrupt files); an EditPartFactory for assigning GEF EditParts to
EMF model elements; a ContextMenuProvider for the tree editor component, and
optional some custom actions. See the appendix A.1 for a sample code fragment realizing
the RONEditor. Implementing the edit part factory and the context menu provider is pure
GEF developing; there is no need for the developer to deal with workbench integration at
this point.

There are other methods to realize further editor features as well, but this is the necessary
set. In addition, you need to associate the types of EMF model elements (e.g. graphs, Petri
nets etc.) that you want to display graphically to appropriate views. We will see later how

to implement these views and how they can be opened via the MuvitorTreeEditor’s
showView mechanism.

All MuvitorTreeEditors, even resulting from minimal implementations, have the
following features:

∙ When opened, the editor activates a perspective (general layout for the views on
the workbench) if optionally registered in plugin.xml. When closed, it restores the
previous perspective and remembers all currently opened graphical views. These
are reopened when the editor is activated again.

∙ A manager for persistency operations on EMF models is provided and handled prop-
erly. No additional load and save implementations are needed.

∙ Most generic actions provided by ECLIPSE and GEF are automatically installed to
the action bars as save, save as, undo, redo, print, direct edit, delete, alignment,
revert. MuvitorTreeEditor automatically takes care about updating the states
of these actions properly. A basic revert mechanism allows to reload the model from
the current file.

∙ If the developer lets the editor create special problem markers, editor users may
‘open’ these in the ECLIPSE Problem View, which causes the editor to be activated
(if necessary) and to display and to select the problematic part of the model via the
showView mechanism.

∙ Registering the class MuvitorFileCreationWizard with the new wizard ex-
tension point in plugin.xml is all you need for a wizard dialog that creates a new
empty file. MuvitorTreeEditor fills this with the empty default model. The file
extension to which the editor is bound is retrieved automatically from plugin.xml.

∙ Several special technical adjustments are made for better support of the multi view
concept, e.g. to keep the editor’s action bar enabled if the user selects something in
a graphical view.

Graphical Views Using MUVITORKIT, the main editor can open different views for
certain types of model elements (e.g. for the graphs, Petri nets, rules etc.) that support an
arbitrary number of (GEF) viewers hosted inside a view (e.g. a view for transformation
rules containing two viewers displaying the rule’s LHS and RHS, maybe even with a third
one displaying a NAC).

MuvitorPage is an abstract implementation of an ECLIPSE view that is prepared to
be opened via the method MuvitorTreeEditor.showView(EObject). If the
EMF model type of the passed EObject (i.e. its EClass) has been assigned to the
identifier of a registered (in plugin.xml) view, calling this method will open the cor-
reponding view and make the EObject accessible for this view. See Fig. 5 on the
following page for a diagram outlining how the MuvitorTreeEditor interacts with
the ECLIPSE platform and workbench to open a MuvitorPage for a model element.
This mechanism makes use of the EMF notification mechanism for automatically closing

views showing elements that have been deleted in the model. Alternatively, you may call
closeViewsShowing(EObject), as well.

Eclipse Platform

Extension Registry

Views:

viewID1 viewImpl1.class

viewID2 viewImpl2.class

...

MuvitorTreeEditor

TreeViewer

EditPart EditPart

MuvitorPage

model of type

typeID1EditPart

Map
typeID1 viewID1

typeID2 viewID2

...

1:double click occurs

2:call showView(model)

3:request to open view with viewID

corresponding to model’s typeID

4:instanciates

and reveals view

with viewID

5:determine

which concrete

model of type

typeID1 to show

GraphicalViewer

EditPart

Eclipse Workbench

Figure 5: How to open graphical views in MUVITORKIT

In principle, MuvitorPage is very similar to the default editor implementation GEF
provides, but changed to be integrated in the workbench as a view instead of as an editor.
The main additional contribution of MuvitorPage is to handle the changes of the cur-
rently active GEF viewer of this page for proper integration into the main editor and the
workbench. With this, you can e.g. change the zoom level of each viewer independently
via a single action in the editor’s main toolbar.

Implementing a MuvitorPage is very similar to subclassing MuvitorTreeEditor
before; it defines again the vital parts for GEF viewers, in this case graphical ones, like an
EditPartFactory, a ContextMenuProvider, and optionally some actions that
may be shared with the main editor. For the graphical viewers, we need additionally a
palette for the editing tools. The most important abstract method requires to return a list
of EObjects, each to be displayed in an own viewer on this page. For example to show
a rule as mentioned before, if the view has been opened via showView(rule), the returned
list must contain rule.getNAC(), rule.getLHS(), and rule.getRHS(). See the appendix A.2
for a sample code fragment realizing the RONEditor’s rule component.

Furthermore, there are additional API methods e.g. for hiding single viewers, e.g. if you
delete the NAC of a rule.

By implementing MuvitorPage, you get features for free again, in this case a number
of generic actions that work as they are in every single GEF viewer of the page:

∙ ExportViewerImageAction exports the components contents into a graphic
file.
TrimViewerActionmoves the figure in the upper left corner so that the viewer’s
size is minimized but still showing all figures.

∙ GenericGraphLayoutZESTAction and GenericGraphLayoutAction
apply the ZEST or DRAW2D graph layout algorithms to the selected component.

∙ MoveNodeAction changes the location of selected nodes on key strokes.

∙ SelectAllInMultiViewerAction selects all parts in the current viewer.

∙ GenericCopyAction copies any EMF model in form of a serialized string into
the system’s clipboard. GenericPasteAction pastes the clipboard into the cur-
rent edit part’s EMF model if allowed. It supports undo operation and definition of
flexible PasteRules, e.g. to prevend rule tokens to be pasted into system net
places for object nets and vice versa.

∙ MuvitorToggleRulerVisibilityAction and MuvitorToggleGrid-
Action toggle the ruler and grid visibility of a viewer.

Implementing EditParts as Controllers Now that we have the main editor and the
views, we need to some place to invoke the showView mechanism. For this, MUVITORKIT
offers its own extended EditParts called AdapterEditParts, which are the con-
trollers of the elements displayed in the GEF viewers and which are supposed to be used
exclusively in MUVITORKIT. Besides other enhancements3, by default they call showView
on their model if they receive GEF’s open request, which is dispatched to an edit part when
a double-click occurs on it (see the first step in Fig. 5 on the previous page). This is the key
to the behavior of the MUVITORKIT examples we described in Sect.3: we configure the
views correctly and associate them with the types of elements they are supposed to display
and we use these special AdapterEditParts. The types of models (rules, nets etc.) can be
arbitrarily nested and we can navigate as deep as we want, as long as we have an edit part
for a closed representation of each nested part, like a rule token, and a view for its detailed
representation like the rule view.

An editing feature, useful for almost all edit parts, is direct editing of a name or some
other attribute value. In previous projects, we commissioned one of the student groups
to give a little lecture about how to implement this features as this is not a trivial task.
With presuming an EMF model, we could generalize and encapsulate this feature to all
AdapterEditParts. All we need to do is to let a custom edit part implement our

3E.g. to support closing the views for deleted models, and providing a generic EObjectPropertySource
for the Properties View, showing all of the model’s attributes and their values.

Figure 6: Direct Editing with validator for unique node names

interface IDirectEditPart, which just has one mandatory method that returns the
EMF identifier of the model’s attribute that should be edited4. This is all information the
edit part needs to run a direct edit manager as in Fig. 6. Optionally, you may specify a
validator checking the input and generating an error message as in this picture.

5 A Package for Defining Functional Animations

MUVITORKIT supports the definition of continuous animations for selected model ele-
ments. The main class in the animation package is AnimatingCommand, which can
be given information about how some model elements (EMF EObjects), visualized by
figures in a graphical viewer, should be animated5. For this, you specify stepwise absolute
(Points) or relative (some model elements) locations and optional size factors for the
model elements to be animated.

Why not use GEF’s Animation Mechanism? GEF also contains classes Animator
and Animation, which can be used to animate figures, i.e. sliding a figure on a straight
path to the new location it is set to. The following main advantages of using MUVI-
TORKIT’s animation package instead allow to specify more powerful animations more
flexibly:

∙ You can specify which model element to animate instead of the corresponding figure.
This means that you can specify animations independently from actual viewers and
model states, and rely on the package’s mechanism to find the corresponding figures
automatically at animation runtime.

∙ Several elements can be animated independently along complex paths with flexible
timing/speed (by interpolating intermediate steps). You can even alter the animation

4e.g. EcorePackage.ENAMED ELEMENT NAME
5According to the MVC principle, we strictly distinguish a model element (some EMF EObject instance)

from its ‘figure’, which is just its graphical representation in GEF viewers

paths to sine, circle, or elliptic curves.

∙ Each animated figure can be zoomed smoothly while it moves on its path, according
to absolute size factors. Such figures resize independently of all other (possibly
animated) figures in the same viewer.

∙ You can easily specify parallel animations in several independent viewers.

∙ You can easily integrate your animation definitions into the Commands your ed-
itor invokes to change the model on editor operations. Moreover, Animating-
Command automatically takes care of reversing performed animations to support
the ‘undo’ operation.

We provide a detailed tutorial example in the documentation of AnimatingCommand
[RON].

6 Conclusion

We presented MUVITORKIT, a framework to facilitate the implementation of rich-featured
GEF editors, and described the important aspects of this framework’s main classes and
how they can be used to build editors for complex visual languages consisting of different
nested components. Many more details about benefits of using MUVITORKIT can be
found in the Java documentation of its classes.

We are permanently extending the MUVITORKIT. When our students come up with useful
features in the projects or have feature requests, we try to generalize them in MUVITORKIT
if possible or to include at least a documented example implementation in the RONEditor.

Future Work We plan to extend the MUVITORKIT by further features and to eliminate
some minor deficiencies:

∙ For now only one instance of a MUVITORKIT implementation (i.e. only one file)
should be safely opened at the same time to avoid confusion in the graphical view
management.

∙ When developing custom editor plugins based on MUVITORKIT, each editor has to
reference its own exclusive copy of the MUVITORKIT plugin in its dependencies.
This is due to the fact that the mechanisms accessing the editor’s plugin registry
are located in MUVITORKIT. Generalization is possible but would impose more
preparation steps when implementing a custom editor on the developer.

∙ The animation package is going to be restructured to support more animation-related
aspects like highlighting figures and annotating them with other figures like labels
during animation.

References

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In A. Rensink and
J. Warmer, editors, Model Driven Architecture - Foundations and Applications: Second
European Conference, volume 4066 of Lecture Notes in Computer Science (LNCS),
pages 361–375, Heidelberg, 2006. Springer Verlag, Springer Verlag.

[BEHM07] E. Biermann, C. Ermel, F. Hermann, and T. Modica. A Visual Editor for Reconfigurable
Object Nets based on the ECLIPSE Graphical Editor Framework. In Proc. 14th Work-
shop on Algorithms and Tools for Petri Nets (AWPN’07). GI Special Interest Group on
Petri Nets and Related System Models, 2007.

[HME05] K. Hoffmann, T. Mossakowski, and H. Ehrig. High-Level Nets with Nets and Rules
as Tokens. In Proc. of 26th Intern. Conf. on Application and Theory of Petri Nets and
other Models of Concurrency, volume 3536 of LNCS, pages 268–288. Springer Verlag,
2005.

[RON] Website of the RONEditor and MUVITORKIT. http://tfs.cs.tu-berlin.
de/roneditor.

[Val98] R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In
ICATPN ’98: Proceedings of the 19th International Conference on Application and
Theory of Petri Nets, volume 2987 of LNCS, pages 1–25. Springer, 1998.

A Sample code fragments from the RONEditor

A.1 Example for RONTreeEditor

p u b l i c c l a s s RONTreeEditor ex tends M u v i t o r T r e e E d i t o r {
s t a t i c S t r i n g ob jec tNe tViewID = ” ObjectNetPageBookView ” ;
s t a t i c S t r i n g ru leViewID = ” RulePageBookView ” ;
s t a t i c S t r i n g ronViewID = ”RONPageBookView” ;

/ / d e f i n e t h e v i e w s f o r s p e c i f i c EMF model e l e m e n t s
{ r e g i s t e r V i e w I D (RonmodelPackage . L i t e r a l s .RON, ronViewID) ;

r e g i s t e r V i e w I D (RonmodelPackage . L i t e r a l s . RULE, ru leViewID) ;
r e g i s t e r V i e w I D (RonmodelPackage . L i t e r a l s . OBJECT NET ,

ob jec tNe tViewID) ;
}

/ / c r e a t e d e f a u l t model f o r empty or c o r r u p t f i l e s
p r o t e c t e d EObjec t c r e a t e D e f a u l t M o d e l () {

RON newRon = RonmodelFac tory . eINSTANCE . createRON () ;
newRon . setName (”<d e f a u l t >”) ; re turn newRon ;

}

/ / f a c t o r y f o r a s s i g n i n g GEF E d i t P a r t s t o model e l e m e n t s
p r o t e c t e d E d i t P a r t F a c t o r y c r e a t e T r e e E d i t P a r t F a c t o r y () {

re turn new R O N T r e e E d i t P a r t F a c t o r y () ;
}

/ / d e f i n e a c o n t e x t menu f o r t h e t r e e e d i t o r component
p r o t e c t e d [. . .] c r e a t e C o n t e x t M e n u P r o v i d e r (TreeViewer v) {

re turn new RONEdi torContex tMenuProvider (v , g e t A c t i o n R e g i s t r y ()) ;
}

/ / c r e a t e some a d d i t i o n a l a c t i o n s f o r t h e e d i t o r
p r o t e c t e d void c r e a t e C u s t o m A c t i o n s () {

r e g i s t e r A c t i o n (new Gener i cCopyAct ion (t h i s)) ;
r e g i s t e r A c t i o n (new G e n e r i c P a s t e A c t i o n (t h i s)) ;

} } / / end c l a s s

A.2 Example for RulePage

p u b l i c c l a s s RulePage ex tends Muvi to rPage {

/ / d e f i n e a c o n t e x t menu f o r t h e r u l e e d i t o r
p r o t e c t e d [. . .] c r e a t e C o n t e x t M e n u P r o v i d e r (E d i t P a r t V i e w e r v) {

re turn new RulePageCon tex tMenuProv ide r (v , g e t A c t i o n R e g i s t r y ()) ;
}

/ / s h a r e a d d i t i o n a l a c t i o n s from t h e e d i t o r
p r o t e c t e d void c r e a t e C u s t o m A c t i o n s () {

r e g i s t e r S h a r e d A c t i o n A s H a n d l e r (A c t i o n F a c t o r y .COPY. g e t I d ()) ;
r e g i s t e r S h a r e d A c t i o n A s H a n d l e r (A c t i o n F a c t o r y . PASTE . g e t I d ()) ;

}

/ / d e f i n e a p a l e t t e w i t h e d i t o r t o o l s
p r o t e c t e d M u v i t o r P a l e t t e R o o t c r e a t e P a l e t t e R o o t () {

re turn new R u l e P a l e t t e R o o t () ;
}

/ / t h i s a r r a y d e t e r m i n e s number and c o n t e n t s o f t h e v i e w e r s
p u b l i c EObjec t [] g e t V i e w e r C o n t e n t s () {

Rule r u l e = (Rule) getModel () ;
re turn new EObjec t [] {

r u l e . ge tNac () , r u l e . ge t Lh s () , r u l e . ge tRhs () } ;
}

/ / f a c t o r y f o r a s s i g n i n g GEF E d i t P a r t s t o model e l e m e n t s
p r o t e c t e d E d i t P a r t F a c t o r y c r e a t e E d i t P a r t F a c t o r y () {

/ / r e u s e f a c t o r y because l h s , rhs , and nac are o b j e c t n e t s
re turn new O b j e c t N e t E d i t P a r t F a c t o r y () ;

} } / / end c l a s s

