Modeling and Reconfigurating critical Business Processes
for the purpose of a Business Continuity Management
respecting Security, Risk and Compliance requirements at
Credit Suisse using Algebraic Graph Transformation:
Long Version
== DRAFT VERSION (in progress...) ==
April 5, 2010
Version 1.4

Christoph Brandt, Frank Hermann and Jan Friso Groote

Bericht-Nr. 2010/_ _
ISSN 1436-9915

Modeling critical Business Processes for Continuity
Management respecting Security, Risk and Compliance
requirements using Algebraic Graph Transformation

(long version)
Christoph Brandt!, Frank Hermann?, and Jan Friso Groote?

1) Université du Luxembourg, SECAN-Lab, Campus Kirchberg,
6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg-Kirchberg, EU
christoph.brandt@uni.lu,
WWW home page: http://wiki.uni.lu/secan-lab

2) Technische Universitiat Berlin, Fakultat IV,
Theoretische Informatik/Formale Spezifikation, Sekr. FR, 6-1,
Franklinstr. 28/29, 10587 Berlin, EU
frank@cs.tu-berlin.de,

WWW home page: http://www.tfs.tu-berlin.de

3) Eindhoven University of Technology, Systems Engineering,
Department of Computer Science. Hoofdgebouw kamer 6.75,
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven The Netherlands, EU
J.F.Groote@tue.nl,
WWW home page: http://www.win.tue.nl/jfg

Abstract

Critical business processes can fail. A Business Continuity Management System is a special
management system that will define how to recover from such failures and specifies temporary
work-arounds to make sure a company is not going out of business in the worst case. However,
because today’s implementations are primarily organizational best-practice solutions, their
security, risk and compliance issues in such a recovery situation are mostly unknown.

Algebraic graph theory can be used as a formal method supporting employees when run-
ning business processes need to be reconfigured to recover from specific failures. The example
discussed is a loan granting process in a real-world banking environment. Because such a
process has to respect certain laws, regulations and rules even in emergency situations, we
sketch how this can be done during the process reconfiguration by looking at security, risk
and compliance issues, compatible with the graph technique. Furthermore, we show how the
analysis can be extended to requirements concerning the information flow using the process
algebra mCRL2.

Keywords: business continuity management, algebraic graph theory, event-driven
process chains, security, risk, compliance, process algebra

1 Introduction

The problem statement can best be described by the empirical study of Knight and Pretty [IJ.
They show that companies that implemented a Business Continuity Management System (BCMS)
are in a better position to survive a disaster that interrupts one of their critical business processes.
However, a company’s chance to survive is not guaranteed. Sometimes companies fail to recover
from a disaster even so they have implemented a BCMS. In the highly regulated environment of
banks certain laws, regulations and rules need to be respected as a side constraint even in such a
situation which is, to our knowledge, not solved by today.

The research question derived from this situation is about how an effective and efficient BCMS
can be put in place that fullfills security, risk and compliance issues derived from the laws, reg-

ulations and rules. This question is discussed based on a loan granting process running in the
real-world banking environment at Credit Suisse (CS). The challenge is to generate all continuity
processes to a given critical business process and its continuity fragments, such that security, risk
and compliance side-constraints are respected. The purpose is to enable an optimal choice of
optimal continuity processes and to enable case-based decisions.

This paper presents contributions in the area of business continuity management (BCM) with
respect to security, risk and compliance and in the area of algebraic graph transformation (AGT).
Given a declarative process model and continuity snippets all possible continuity processes that
respect given side constraints can be generated. So, for all combinations of modeled failures it is
possible to check if sound continuity processes are available. Therefore, it can be tested beforehand
if a BCMS is complete as a whole. In doing so, the way of modeling and the nature of models are
kept fully compliant with business requirements of Credit Suisse. The solution is required to be
fully declarative, minimal, decentralized, formal (in a transparent way) and automatable at the
same time. From the point of view of theory AGT analysis techniques are specialized for the given
class of problems.

The paper is organized as follows: Firstly, we show how laws, regulations and rules can be
mapped to the notion of security, risk and compliance and we sketch how these qualities can be
measured based on a modeled business process. Secondly, we introduce the notion of a business
continuity management system and reflect the corresponding situation at CS. Thirdly, we present
a simplified version of a loan granting process as an example of a critical business process at CS
and draw the link to an underlying BCMS. Fourthly, we give a short introduction to algebraic
graph transformation and reference subobject transformation systems that we are going to use to
reconfigure the loan granting process in case of a failure of one of its parts. Fifthly, we demonstrate
how a concrete loan granting process model can be analyzed and optimized in an efficient and
effective way that fulfills security, risk and compliance issues as a real-world side constraint. Beyond
that, we illustrate how case based decisions can be supported. Finally, we draw our conclusions,
point to issues of future work and mention some related work.

2 Laws, Regulations, Rules

Laws, regulations and rules determine the degree of freedom and possible boundaries a bank can
exploit or needs to respect. They do limit or enforce certain actions and organizational structures.

In the context of this study we like to put our focus on concrete requirements regarding
security, risk and compliance derived from laws, regulations and rules. In a first step, we will
present today’s understanding in the banking environment which is best-practice driven. In a
second step, we will point out our understanding which is more aligned towards formal methods.
We use this understanding in the following sections to discuss the handling of a loan granting
process by the help of an implemented business continuity management system.

2.1 Security

From a best-practice point of view at CS, security can be understood as a set of services. These
service encompass the protection of persons, assets, physical property, organizational standards,
handling notifications of security incidents, handling policy violations, as well as I'T security related
issues, etc. From a methodological point of view, we consider security as everything that can be
proven based on sound models. We assume that the organizational models and corresponding
methods are selected and combined in a way that enables fully automated modelchecking. As an
example the separation of duties is presented next.

2.1.1 Separation of duties

The separation of duties is a special security requirement. Its primary objective is the prevention
of fraud and error. This is realized by disseminating the tasks and associated privileges for a
business process among several persons. It can be illustrated as requirement of two signatures on
a contract [2].

Its monitoring and enforcement from a best practice point of view can be realized by the
help of an organizational policy that defines that no person should handle more than one type
of function and that requires contracts to be signed by two different persons. Such a policy is
reviewed, enforced and monitored by a security organization.

Its monitoring and enforcement from a methodological point of view can be realized already
when building organizational models. Therefore, it comes along as a side constraint during the
modeling process. Because models can be build using algebraic graph transformation, such re-
quirements can be automatically enforced as graph constraint checks on the abstract syntax of
formal models [3]. This methodological approach has some advantages like better quality assur-
ance and better scalability than the best practice approach. Cognitive business process models [3]
that are aligned with their formal counterparts can easily be used by a workflow engine to monitor
security rules which is more efficient than using an additional organizational security structure.

2.2 Risk

Credit Suisse considers different types of risk: market risks, credit risks and operational risks.
Here, we only focus on operational risks. An operational risk encompasses inadequate or failed
business processes, people or systems caused by certain events that lead to financial losses.

From a best practice point of view, operational risks are managed by organizational solutions
like committees and forums, processes and standards, indicators, reports, audits, analysis of loss
data, estimation of required risk capital, etc. From a methodological point of view, risks can
be much better investigated using simulations of possible failures and their consequences based
on sound organizational models. We claim that the case of business processes failures can be
backuped to a certain extent by emergency procedures in the context of a business continuity
management in particular.

2.2.1 Emergency Procedures

We define emergency procedures (EP) as special micro business processes that are put in place in
case that an IT application, a person or a database is not available. It is usually a work-around
to guarantee a minimum availability of business services or a certain quality of service.

2.2.2 Business Continuity Management

According to EPs, we define a business continuity management to be a special management func-
tion that takes care of emergency planing and handling to ensure that a bank is not going out of
business in case of major failures in its critical business processes.

2.3 Compliance

From a best practice point of view at CS, compliance means conforming to a specification or policy,
standard or law. A famous example in this context is the Sarbanes-Oxley Act [4] which is about
the accuracy of financial statements and the corresponding top management responsibility. It is
not always fully defined of how to comply to certain regulations. From a methodological point of
view we define compliance as a relationship between certain norms and organizational models and
as a relationship between organizational models and the real-world situation. Because a real-world
situation does not have to be in line with a model, tests need to be performed to check whether the
concrete situation always conforms to the model. As examples, we like to point to the behavior
of people inside the bank regarding information barriers and outside the bank regarding agreed
payment plans.

2.3.1 Information Barriers

Information barriers exists between different divisions of a bank for various purposes. At CS such
divisions are investment banking, asset management, private banking and shared services. The
main purpose is to make sure that confidential information is not passed from the private side of
the bank to its public side.

For example, a person belonging to the investment banking can act as a broker-agent for a
client on behalf of a person belonging to the private banking. According to usual information
barriers, such an agent is only allowed to access client data relevant to the transaction but it
might be the case that he does access other data too.

2.3.2 Payment Plans

Payment plans in the context of granted loans need to be monitored to see if clients actively
comply to the plans. A plan as a business model does not assure that the concrete behavior of a
client will conform to it.

3 Business Continuity Management

Business Continuity Management (BCM) is introduced here according to the BS 25999 [5] by
taking two different perspectives: the first is a general one, the second a specific one, focussing on
the concrete situation at Credit Suisse.

From a general perspective BCM is build on the code of practice, the BS 25999-1:2006 standard,
introducing the notion of a Business Continuity Management System (BCMS). The British Stan-
dard Institution (BSI) updated this standard using feedback from industry. The BS 25999-2:2007,
published November 2007, summarizes the specifications for a BCM. According to Boehmer [6]
more than 5000 industrial ideas have been incorporated during this update, this standard is setting
out a high level of maturity. Key elements of a BCM are the notion of a disaster, of a business
risk, of a critical business process, of a disaster recovery plan, of a business continuity plan, and of
the maximum tolerable period of disruption (MTPD). We further define the maximum acceptable
outage (MAO), the recovery time to objective (RTO), and the time to recover (TTR).

A disaster is an unforeseen event having a disruptive impact on a critical business process of
a company. A business risk is the risk that a disaster potentially has on the business model of a
company. A critical business process of a company is a business process the company is running
that if interrupted and not recovered in a certain time span causes the company to go out of
business in the worst case. A disaster recovery plan of a company is a plan that defines how to
recover from the failures in a critical business process that have been caused by a disaster. A
business continuity plan is a plan that is applied after the disruption of a critical business process
to deliver a minimum level of business activity in order to guarantee the survival of the company
during the time the business recovery process is executed.

The MTPD is the maximum time a company can survive without a minimum level of business
activity. The MAO is the maximum period of downtime within which the business activities and
functions must be fully recovered before the outage compromises business objectives and overall
operational viability. The RTO is the maximum time allowed following disaster declaration to
return the failed business and IT processes to a minimum level of activity. The TTR is the time
taken to fully recover the IT and Business processes.

The BS 25999 is reactive in nature. It comes into play once a catastrophic event has happened.
An important control used in the context is the MTPD that defines the tolerable downtime between
the disruption of a critical business process and the availability of a minimum level of business
activity for this process, defined as RTO, either caused by the business continuity plan or the
business recovery plan. It will be assumed that the business continuity plan and the business
recovery plan are started simultaneously once the disruptive event has happened. The control
RTO < MTPD is one measure to evaluate the effectiveness of a BCM because a company will go
out of business if it is not able to partially recover from an unforeseen and disruptive event in the
time span given by the MTPD. As a second control TTR < M AO can be used. It is a measure
to evaluate that the IT and business processes are fully recovered in the time span given by the
MAO. Any BCMS includes those business processes that are vital to the company.

From the concrete perspective of Credit Suisse, the bank’s BCM can be looked at from a
strategic and an operational point of view. In the first case, it coordinates according to the bank’s
global policy business continuity activities including information gathering, planning, implemen-
tation, testing as well as crisis management, to assure survivability of the bank in case of a major
operational disruption, crisis and disaster. In addition to that IT disaster recovery differentiates
itself from an availability management, by the severity of events and non-resolvability with ordi-
nary management techniques and decision making authorities. In the second case, it consists of
global and regional concepts and templates defining concrete tasks, a readiness assessment of the
implemented BCMS and an established BCM reporting.

In detail, Credit Suisse’s BCMS differentiates between a disaster, a crisis, a major incident
and an incident. A disaster is an event that is primarily handled by the activation of the business
recovery plan. A crisis is an event that requires critical decisions that cannot be resolved with
ordinary management techniques. An incident is an event that may lead to a disruption of a
critical business process or a low quality of service of a critical business process. A major incident
is an aggregation of events that constitutes a group of incidents for which the consequences might
be unknown.

The purpose of Credit Suisse’s BCMS is to implement and maintain the organization’s resilience
to disruption, interruption or loss in supplying critical products and services in the event of a
major operational disruption. The policy for BCM regulates roles and responsibilities as well as
implementation and maintenance of planning, analysis, readiness assessment, communication and
training aspects and regulates crisis management.

Credit Suisse’s solution today is primarily an organizational solution. The current BCMS is
based on a mixed plan and meta-plan-like concept that defines procedures of how to establish
concrete plans in the case of a disruption of a critical business process. This plan and meta-
plan-like concept is complemented by an organizational structure intended to handle emergency
situations, characterized by check-lists and ad-hoc management procedures. The response time
in this context is not always known and automatically generated decision alternatives for the
given emergency situation are not available. Therefore, the current approach does not scale well.
It is underspecified and cannot be smoothly split into orthogonal models. It focuses primarily
certain types of disasters, not failures in business and IT processes. Therefore, combinations
of failures caused by different disasters are not reflected as such. It lacks decision support and
dynamic flexibility depending on the emergency situation. It does not have a sound concept of
handling failures at different level of granularity and abstraction. Because of its organizational
and informal nature and because continuity fragments are not available as such, no optimization
can be performed and case based decisions cannot be supported.

4 A Loan Granting Process

A loan granting process is presented here as a critical business process a bank is running. In a
first step, it is introduced from the general point of view of Credit Suisse. In a second step, a
more concrete model is introduced that is discussed in the following section 6 more formally. At
the end, this model is put in the context of a BCMS.

4.1 Scenario

Credit Suisse (CS) runs its lending business actively. One business objective is to increase the
client profitability. To realize this objective the full potential of an existing bank-client-relationship
needs to be known to realize possible advantages for both sides. Therefore, a professional advisory
service and individual financial solutions tailored to a client’s personal situation are offered. Other
business objectives are to strengthen the loyalty of existing clients and to acquire new clients.
Potential clients are natural or legal persons. For economic reasons a certain minimum business
volume as well as a certain diversity of business activities between the bank and a client is expected.
For security reasons the customer relationship management process, the credit approval and
administration process and the credit monitoring process are separated. Therefore, there are four
distinct parties in a loan granting process to a client: the client relationship manager, the credit
advisor, the credit officer and the credit unit. The client relationship manager is an expert in
the concrete client relationship, the credit advisor is an expert in the bank’s portfolio of credit

products and services, the credit officer is charged with the responsibility of approving credit
transactions, and finally the credit unit is handling exceptions in the credit business process as
well as the ongoing administration, monitoring and reporting.

A loan is usually granted on a fully secured basis. It can be secured against marketable
securities or against banking securities. Depending on the concrete case the percentage of coverage
and the date up to which the securities need to be available can change. Because some securities
are volatile an ongoing monitoring is needed.

The relationship manager (RM) is responsible for the entire client relationship to assure the
highest possible client satisfaction, to develop a long-term business relationship and to optimize
the profitability of this relationship. The RM will take care of collateral shortfalls, limit excesses
and acount overdrafts.

The credit advisor (CA) is responsible for the lending business products. In particular, the CA
is responsible for the profits generated by the lending products. His duty is to promote the lending
business, to administrate specific requirements of clients, to assess the credit worthiness and to
handle loan applications. The CA will — in cooperation with the RM — provide advice to the client.
For example, he will point out the opportunities available regarding the various lending products
and services. The CA advices the RM regarding specific conditions of products and services as
well as their appropriate handling. He is responsible for the renewal of credit approvals.

The credit officer (CO) is responsible for credit approvals as well as limit accesses or account
overdrafts that are beyond the defined tolerances.

The credit unit (CU) is responsible for the ongoing monitoring, reporting and control of run-
ning credit processes, their corresponding shortfalls and customer positions. The CU is assuring
compliance with credit limits and repayment schedules as well as credit settlements at the matu-
rity date. At CS, the credit monitoring is mainly based on reports automatically delivered by the
IT systems in place. The CU can take actions in the event of emerging difficulties during a credit
process.

From the point of view of this paper this loan granting process is simplified to match the
scope of this study. It encompasses a client, a relationship manager, a credit advisor and a credit
officer. The process is characterized by steps that are performed manually, steps that are executed
automatically and steps that are hybrid. The view on the process is the one taken from a workflow
engine that runs workflow instances based on their workflow scheme. The notation used is the one
for event driven process chains, but in a slightly modified version to fit the requirements of the
presented scenario in a better way. The process itself covers the whole lifespan of a granted loan,
starting with the demand for a loan, ending with its finished payment plan.

We assume that, once a client (C) arrives at the bank, he will be asked a couple of things by
the RM (functions F1-F4 in the workflow model in Fig. [2). Firstly, he needs to identify himself
and the RM will try to make a first estimation about the possible customer value in an assumed
business relationship. Secondly, the RM will record the client’s demand. All data is entered into
IT systems by the RM. In the following the credit worthiness and a customer rating for C is
calculated automatically by two different applications (F5-F6). Based on the rating the CA will
make a decision if C will be accepted for a loan (F7). In the next step, an optimized product is
created by the CA and the RM for C (F8). Afterwards, the RM creates a contract for C (F9).
This contract has to be signed by C and the RM. The credit officer (CO) needs to approve the
contract (F10-F12 in Fig. . Here the 4-eye principle applies for security reasons because the
RM and the CO are not allowed to be the same person. Afterwards, the bank pays the granted
loan to C, and C is paying the credit back according to a payment plan up to the moment the
contract will be closed (F13-F15).

From the point of view of a BCM this loan granting process can be discussed looking at
certain failures that can happen in the process. Because we like to introduce fully automated
continuity techniques respecting security, risk and compliance issues as real-world side constraints
the perspective on the process is the one of a workflow engine that implements these techniques.
Further, we like to base our discussion on a running process instance, not only on the underlying
process scheme as it is done today in the context of BCM. This leads to highly optimized reactions
towards certain failures in a critical business process. We assume that for most steps in a critical
business process continuity fragments are available to backup those steps. We further assume
that the elements that can fail in a process are people, applications and databases. Depending on
concrete failures, a workflow engine can select an emergency process based on the calculated set
of all continuity processes. It can reconfigure the running process instance in order to optimize

time and cost functions while fulfilling security, risk and compliance side constraints.

The critical business process about granting a loan is introduced next from the point of view
of a workflow engine using a slightly modified version of an event driven process chain (EPC) [1].

This type of EPC consists of business functions, events, organizational entities and applications
executing business functions, as well as the dataflow into and out of a business function from or to
certain data storage units. Such storage units are either databases, or, alternatively, organizational
entities, like concrete persons. Because we take the perspective of a workflow engine, this scheme
will run as an instance when performing a concrete business process. As such, a workflow instance
owns local storage to remember certain data values. Data values that are kept in local storage
of the workflow instance are modeled by dark-blue boxes. Data values that are not kept in local
storage are put into light-blue boxes. This allows to cover automated and non-automated parts of
a business process by the help of one single process model. In case that a data value is still known
to the workflow instance, it has not to be re-loaded from a database or entered by a person. In
case that a failure occurs, data values can be re-loaded on demand. We like to name this a data-
flow oriented EPC from the point of view of a workflow engine, or in short: WDEPC. A central
advantage out of this understanding is that business functions can be shifted back and forth in the
process chain depending on the data values they require. So, in contrast to today’s understanding
of EPCs, data flow dependencies can be handfeed orthogonal to event chain dependencies.

Further, the notion of local storage of a workflow instance enables work-arounds of temporarily
non-available data storage units. A business function is performed by a person, an application or
any combination out of these. Data values not relevant to the workflow are abstracted.

4.2 Business Process Model

The presented business process has to meet certain objectives. There are primary and secondary
goals as shown in Fig. [I} From the point of view of CS, this process needs to generate a contract
and leads to a long-term client-bank-relationship. Relevant attributes regarding the contract are
the time required and the realized costs, regarding the relationship the relevant attribute is the
measurable client loyalty. It further requires to respect certain security, risk and compliance
requirements.

In the given case, security will be proven by the help of a graph constraint check assuring the
four eye principle when signing the loan contract. Risk will be simulated from a perspective of the
workflow scheme discussing possible failures and recovery strategies in the limits of a 48h MTPD
BCM baseline (RTO < MTPD). Finally, compliance is assured by testing the workflow instance
against the real-world situation.

Figure 2]shows the WDEPC language artifact for the presented loan granting process: WDEPC
LG. The diagrams are divided into five columns. Starting on the left, there are data storage units.
The next column contains the corresponding data items, where solid lines indicate that the data
is also locally cached within the workflow engine. This allows us to cover automated and non-
automated parts of a business process by one single declarative process model. The third column
consists of the business functions, the fourth contains the events and finally the fifth column
consists of the organizational entities, i.e. persons or software applications.

While this process model shows a fixed order of certain functions many of them are not directly
dependent on each other. But they are partly dependent on the data that is produced by previous

Primary Goal Secondary Goal
Contract Relationship | | Security Risk Compliance
4 Eye Repayment | | Information
Loyaltyax Principle Schedules Flow
Timein | | Costsyin grc(’)r(‘:t;‘j‘i"g BCM48h

Figure 1: Primary and Secondary Objectives

Customer\ &' b1 Prcal\E10
arrived
o (availability) Product computed
‘ I~ CulD,~ et Customer F9
Address Identity Create
(availability costs, time ‘ RM Contract Cul Contract !TMb'I't
E2 (availability 14.03.2010 costs, time (akalablly
D ColD, PP
ColD, PP En
DB2 Contract
o F2 (availability) created
| Get Customer
‘ R Demand
(availability i Contract ColD F10
S costs, time; RM 14.03.2010 RM
E3 (availability: . 0 RM
SRM(RMID) S (availabilit
Data SRM(RMID), .
collected DB2 E12
— labili
(availability’ - Store ID Data RM signed
(costs, time) (availability, Contract ColD F11
ul
DB1 ¥ 14.03.2010
(availability) Ad‘é'ess* E4 sc Customer P
Y ID Data Signature
sC e (ID)
e stored DB2 costs, time;
RM F4 (availability)
‘ (availability Store CD RM Contract E13
[-
IDEiE (availability signed
DB1 costs, time; 12
(availabilty) o ES ColD,
Y Contract SRM(RMID) Approve co
Data 14.03.2010 Contract v
tored A " (availabilit;
S costs, time]
SCO(COID) E14
CulD, F5 SCO(COID)
Address Credit- DB2 Contract
DBSchufa P CW App (availability) approved
(availability) (| Worthiness (availability)
y costs, time F13 ‘
availabilit)
DB ow E6 ColD Cash Payment ¢
(availability) CwW (costs, time)) Contract
computed E15 App
DB2 MT1 (availability)
F6 (availability) .
CulD,Address, Ratn Cash paid
CV,Ccw I 9 Rating App
il (availabilty)
(costs, time) Y
DB1 i ColD, S2
(availability) (e PP v
F14 ‘ C
Cash (availabilit;
turned
F7 DB3 retume Contract
P Customer = (availabilty) [*| T2 PP Zzeb ine App
5 “ﬁn' Acceptance . (availability)
ating costs, time; (giEbity S3 \ E16
St Open PP
\
E8 E9
Customer) /CUstome E17
cv, accepted accepted ColD, fs Closed PP)
Cw,CD MT1
F8 ‘ CA
Toef T It tract
b1 reate Optimize (availability DB3 Closing- cg,ﬁ,s:m CTprsc
. Product Product (availability) Date " labilit
(availability) (costs, time Price Engine costs, time; (availability)
\—¢ E10 (availability)
Price
computed,
list of abbreviations
App Application [e]6] Credit Officer MT Money Transfer SRM Signature of Relationship Manager
C Customer CulD Customer ID PP Payment Plan RMID Relationship Manager ID
CA Credit Advisor Ccv Customer Value RM Relationship Manager
CD Customer Demand |CW Credit-Worthiness [SC Signature of Customer
ColD Contract ID DB Data Base SCO Signature of Credit Officer

steps. Look e.g. at functions “F1” to “F4” for getting and storing certain customer data. Clearly,
“F1” needs to be executed before “F3” and similarly “F2” before “F4”, but there are no further
dependencies. Thus, leaving out the synthetical events in between we are interested in all permu-
tations of such steps fulfilling the data dependencies to generate valid process variants. However,
there are some specific events like "E8”, "E9” or "K14” which restrict possible permutations in
the sense that they play the role of a boundary functions cannot pass when shifted up or down.
Critical parts of the workflow are e.g. at functions “F10” where the contract is signed by the
relationship manager and “F12” where the contract is approved by the credit officer. Here, the
four-eye principle applies as a security requirement and demands that these functions have to be
performed by two different persons. For this reason, also the continuity processes have to ensure

Figure 2: Workflow LG

this requirement. It can be codified as a graph constraint.

5 Algebraic Graph Transformation

In order to support the development of business recovery and business maintenance plans for
different scenarios we propose to apply algebraic graph transformation [8], which is a formal,
visual and intuitive technique for the rule based reconfiguration of object structures. Graph
transformation offers analysis techniques for dependencies between transformation steps, which
specify the actions of a business process in our scenario. This allows us to show how possible
modifications of the process steps can be automatically computed.

From the formal point of view a graph grammar G = (TG, R, SG) consists of a type graph
TGd, a set of transformation rules R and a start graph SG. The type graph specifies the struc-
ture of possible object structures and the rules constructively define how models are modified.
The start graph is typed over T'G and is the starting point for each transformation. Each graph
G = (V, E, src, tgt) is given by a set of vertices V, a set of edges F and functions sre,tgt : E — V
defining source and target nodes for each edge. Graphs can be related by graph morphisms
m : G1 — Go, where m = (my, mg) consists of a mapping my for vertices and a mapping mg for
edges, which have to be compatible with the source and target functions of G; and G5. Note that
we can also use modeling features like attribution and node type inheritance as presented in [§].

< K-—">R

K r
ml (POy) \L (PO2) |m*

G=<=—D—H

The core of a graph transformation rule consists of a left-hand side L, an interface K, a right-
hand side R, and two injective graph morphisms K & L and K . R. Interface K contains the
graph objects which are not changed by the rule and hence occur both in L and in R. Applying
rule p to a graph G means to find a match m of L in G and to replace this matched part m(L) by
the corresponding right-hand side R of the rule. By G 22 H we denote the graph transformation
step where rule p is applied to G with match m leading to the result H. The formal construction
of a transformation step is a double-pushout (DPO), which is shown in the diagram above with
pushouts (PO1) and (PO2) in the category of graphs. D is the intermediate graph after removing
m(L) and H is constructed as gluing of D and R along K.

L R 3
] 3atA [2- CD-external 3aA 2 CD-external

: StoreCDData

0
<

IN
=}
2

| 4:DB1 |#R[-cD

Figure 3: Rule storeCD

Fig. [3| shows the rule storeCD, which specifies the function “Store CD” of the EPC for the
loan granting process in Sec. [B] Since the rule storeCD is nondeleting we have that in this case
K = L. This will also be the case for all derived rules in our scenario. The effect of the rule
is the creation of a node with type “StoreCDData”, which corresponds to the process function
“Store CD Data”, where CD abbreviates “Customer Demand”. Furthermore, edges are inserted
to connect the new function node with its actors and data elements. The morphisms [: K — L
and 7 : K — R of the rule are denoted by numbers for nodes and edges, i.e. each number specifies
a mapping between two elements.

6 Analysis and Optimization

At Credit Suisse continuity plans are defined only for certain fixed scenarios at a macro level, even
so there are lots of small failures in such a scenario. That leads to problems when more than one
continuity scenario is going to come up at the same time, or when failures that are assigned to
different scenarios mix up in a new scenario. In addition to that Credit Suisse’ continuity plans are
to a large extent not operational but need to be instantiated towards a concrete situation. That
makes it impossible to check their effectiveness and efficiency. Because continuity processes based
on a given continuity plan are created ad-hoc at Credit Suisse their effectiveness and efficiency
cannot be evaluated either. So, Credit Suisse knows very little about the quality of its own
continuity procedures. That drives insurance costs. It is like you carry wood with you for life-
boats as well as a construction manual but you never checked how many boats you will get at the
end and in which order people can be evacuated best.

By looking at the human-centric business process model of the presented loan granting process
we like to show how to address these problems in a methodological way. In contrast to Credit
Suisse’ approach which is top-down we like to go bottom-up by defining continuity snippets for
the presented business process. A second difference is that Credit Suisse’ approach is static, which
means it only addresses one very specific scenario, whereas ours is flexible and can address a wide
range of different scenarios by applying continuity snippets to emerging failures in unforeseen ways
by the people in the field. A third difference is that Credit Suisse’ approach does not scale well,
it always requires to execute the whole continuity plan, whereas our approach can dynamically
focus very specific parts of a scenario like minimal invasive medical operations. It only needs to
apply continuity snippets that are linked to concrete failures, not to whole scenarios. Therefore,
we use the snippets as well as security rules like the one for the four-eye principle to generate the
universe of business continuity processes given the universe of all functional valid process variants.
Once this universe is available single continuity processes as well as the whole set can be checked
regarding their effectiveness and efficiency. We will focus on the generation of valid process variants
as well as possible continuity processes. The check for their effectiveness and efficiency will be left
for future work.

6.1 Graph Grammar for a WDEPC

Business process models given by EPCs often consist of chains of functions. The intermediate
events imply virtual dependencies of consecutive functions, even if these dependencies do not exist
in the real process. In the following, we describe the construction of a graph grammar GG to define
the operational semantics of the LGP. Thereafter, we show how dependencies that are mainly
not caused by the events but by the dependencies on data elements and actors are computed
using the constructed grammar. The reconstruction of the graph grammar can be performed
automatically based on the underlying abstract syntax of WDEPC-models that can be created
during the modeling phase by e.g. using a visual editor that is generated by the Tiger environment
[0, T0]. Furthermore, we can define the functional requirements as an additional graph rule, by
stating which data elements have to be created in the process for a certain combination of events.
In the presented example we have the requirement that either the customer is not accepted or the
contract shall be approved and a closing date has to be set.

Given a workflow model in form of a WDEPC the corresponding graph grammar GG =
(TG, RULES, SG) is reconstructed as follows:

e The type graph T'G contains the nodes and edges of the WDEPC, where nodes with the
same label that occur several times in the WDEPC are identified and occur only once in
TG. Analogously, edges with the same source and target node are identified and appear
only once in TG.

e The start graph SG consists of the nodes for the actors, i.e. the organizational entities, and
the resources only.

e Each function is translated into a graph rule (see e.g. function “Store CD Data” Fig.
and its corresponding rule in Fig. [3). The left hand side of the rule contains the actors,
the input data elements with its resources and the edges between these elements. The right
hand side additionally contains the function node, the output data elements, and the edges

10

that connect the nodes as given in the WDEPC. A rule may be extended, if connected to a
special event as specified in the next item.

e An event is a control event, if its frame has an additional line or the event is the successor of
a fork node. If a control event is the predecessor of a function, then the RHS of the rule for
the function is extended by this event. If a control event is a direct or indirect predecessor
of a function then the LHS and RHS of the rule are extended by this event. An function is
an indirect predecessor of an event, if there is a path of sucessor edges from the event to the
function.

e Finally, there is a special rule “neededData”, which creates all data elements that are not
created by any other rule. Thus, the RHS contains all data elements and their links to
resources, which are in the set N specified below. The LHS is given by the resources that
are connected to the links in the RHS and these resources are also in the RHS.

N =TG\/(U R;), where each graph is flattened to a single set containing its nodes

r;€RULES and edges.

Figure [5| shows the type graph TG for the graph grammar GG as reconstructed from Fig.
2l Some nodes and edges are depicted several times in order to improve the layout, but they are
identified as described before. Those nodes and edges, which appear again are marked by a grey
fill resp. line color as e.g. the node “RM” or the edge “atA” from “CulD” to “RM” in the top left
area of the figure. This type graph directly corresponds to the abstract syntax of the WDEPC.
This type graph is itself typed over the meta type graph TG prer, for WDEPCs, which is shown
infd The reason why we do not directly use the meta type graph is that the we apply the theory
of subobject transformation systems, where an injective typing is required. This means that each
rules LHS and RHS have to be included in the type graph, i.e. the type graph is the super object
for each considered graph. Since the additional continuity snippets in Sec. [6.3] introduce some
additional nodes and edges the type graph is extended accordingly.

Resource |

y toF

Function | ¢ Actor

atR Y A
v Y
| Join |<—| Event Fork

atA

Figure 4: Meta Type graph for graph grammars for WDEPCs

The adjacent edges of the event nodes are not used by any rule in general, because the do not
provide additional information required for the analysis. The reason is that the relevant events
are contained in the same rule as the function, which is reading or creating the event. A WDEPC
can be simulated by applying the generated rules to the start graph according to the order in the
WDEPC. Each intermediate graph represents the current state for the execution of the process
and each rule application ensures that not only the necessary input data elements are available
but also that they are visible via the involved resources to which the particular actor has access. If
the RHS of the special rule “neededData” is not empty, we have that the given WDEPC contains
at least one function that cannot be executed, because the needed Data was not produced by any
function. This means that the WDEPC is not sound in the way that all parts may be executable
in at least system run.

The dependencies between the functions of an WDEPC can be analyzed by the dependencies
between the rules itself, because the derived graph grammar fulfills the additional conditions of
a subobject transformation system - a graph grammar, where each rule component is injectively

11

CustomerArrived
ath CulD-external
out

toF

. F

IDCollected

in

-m atR Product _Prirnr‘
in
atR out A 4 toF
a[com] — [GreneConiac []
oul

e
aiR

ContractCreated

in

-
tR
Contract :aj:' =~ out - }‘ @
-m atR

at in
@A [culD-external
[sub-external

A A LA]
AHT{ Address-external }T>l S(:relDDa(a l
CV-external [,

atR out

culp [+
atR out
atR ou

IDDataStored

StoreCDData|4—— [RM |
[storecoData}a————— Rm |

. toF
alR l SRM(RMID) }L:Ll‘\pproveContractl
—
atR

DataStored i
in out
Address »{Credit-Worthiness |- [cwW_App ‘K@‘ PP
toF L =
- comR] +
D o
comF
atR
bB1 out CashPaid
" ‘
CW_Computed
"
"
in A
oW |—>[RatingCustomer|«—————{ Rating_App
toF

Figure 5: Type graph of the graph grammar GGpg

typed. For this reason, we can apply the efficient techniques especially developed for the analysis
of dependencies in processes [I1], 12} [13].

A WDEPC model may be ambigious in the following sense regarding the data elements. There
may be several functions that create the same data element, i.e. which store the data element
but do not read it from a resource. If there is a possible execution sequence that involes the
creation of the same data element twice we consider this execution as ambiguos, because the
data values may be different and the depending succeding steps may use one or the other value
nondeterministically. For this reason, our generation does only provide those execution paths in
which the same data element is created only once, which is ensured by checking the dependency
condition called “forward conflict”.

The following figures show the rules of the graph grammar GG for the critical business
process modeled by the WDEPC LG as shown before. Each rule corresponds to an equally named
function in LG.

12

getCID

L R :toF
= z.c
— : GetCustomerldentity |
2:C out A .
: Address-external toF 1 RM
A
:atA
atA
:atA
getCD
L R *—:toF 2. C
L.RM ‘out : GetCustomerDemand|
: :’ A ‘toF.
2.c : CD-external ° 1:RM
:atA
storelD
]
5atA [5 - CulD-external
1:RM 6:atAl3 : CV-external
4 : Address-external
7:atA
8:DB1
storeCD

2 : CD-external

Figure 6: Rules of graph grammar GG g - Part 1

13

creditWorthiness

O

ulD
2 : Address
3 : DBSchufa

=G

[5-CW_App|

IN
=)
0
=

R 1:CulD :

:comR n Y oF
3 ; DBSchufa[*] : Credit-Worthiness

:comF
[4:DB1 3" —cw [*ow

ratingCustomer

[L [1:cuD

2 5 : Rating_App

.‘?‘.‘f’é
Olllo]|la
=||<||[s
n
(7]

(2}
o
o
=

® 1:CulD . |
= 2 Address| 5. Rating_App]
an
in v toF

: RatingCustomer

iin

[6:DB1 |<5[<Rating [*out

customerAcceptance1

-]

o
O
>

3:C

>

O
=
- ‘

2 : Rating

: CustomerAcceptance I«:mF

: CustomerAccepted

customerAcceptance2

-]

oo
O
>

3:C

>

O
=
- ‘

2 : Rating

: CustomerAcceptance I«:mF

|__CustomerNotAccepted|

Figure 7: Rules of graph grammar GG - Part 2

14

createOptimizedProduct

t [1.: CustomerAccepted|

[]

6 : PriceEngine

7.DB1

R 2:¢V in— 1 CustomerAccepted|
in—————| 5:.CA
: Y :toF
| -CreateOptimizedProduct|3—
‘ ‘toF

createContract

[1.: CustomerAccepted|

R 2.CulD [

| 1: CustomerAccthed|

[ZRu |
3 : Product
[(6:DB2 |

3 : Product iin 1

4:RM

RMSignature

L |1 CustomerAccepted|

2:ColD 3:RM

4 : Contract

5:DB2

‘toF

4 : Contract | gatR i
: SRM(RMID)| gFout

atR
5:DB2

CustomerSignature

L J[1: CustomerAccepted|

4 : Contract

5:DB2

R | [1:CustomerAccepted|

approveContract

L J[1: CustomerAccepted|

2:ColD

R | [1:CustomerAccepted]

2:ColD in
3 : SRM(RMID)| i,

: SCO(COID)

: ContractApproved

CaschPayment

L J[1: CustomerAccepted|
2 : ContractApproved

[3.CoD | [4:C |
5 : ContractApp
6:DB2

R | [1.CustomerAccepted|

2 : ContractApproved
3:ColD Ain : CaschPayment :

- -atR -] :

| 6:DB2 |<—| ~MT1 out M5 ContractApp

Figure 8: Rules of graph grammar GG - Part 3

15

CashReturnedLoop

L R
J|1 :CustomerAccepted| J |1 :CustomerAccepted| | :OpenPF‘|
2 : ContractApproved 2 : ContractApproved
3:ColD = 3:ColD [N
2-PP 5. C 4-PP i : CaschReturned
6 : ContractApp atR ' e — 6 : ContractApp
B :atR . out
7.DB3 [2.0B3 |5 w12 | —OpenPP
CashReturnedEnd
ﬂ|1 :CustomerAccepted| ﬂ |1 :CustomerAccthed|
2 : ContractApproved 2 : ContractApproved
3 : OpenPP 3 : OpenPP
7 : ContractA 7 : ContractA
8:DB3 8:DB3 _ ClosedPP
CloseContract
L |1 :CustomerAccthed| R |1 :CustomerAccthed|
2 : ContractApproved 2 : ContractApproved
3 : ClosedPP 3 : ClosedPP
4 ColD = | [4:CoD | _CloseContract

o

6 : ContractApp |

:out

5:
:atR
7:DB3 |4 | ClosingDate

6 : ContractA

Figure 9: Rules of graph grammar GG - Part 4

6.2 Computation of Dependencies

The first step for the generation of business continuity processes is the analysis of existing depen-
dencies between the single steps of a process. Here, we focus on data-flow dependencies between
functions. We therefore remove the dependencies caused by the syntactic events between the
functions and only keep specific event-dependencies, which are marked as e.g. “E14” in Fig. [2| or
which are used for a control structure as e.g. “E8” and “E9”. This analysis allows for possible
process paths that show a different order of the steps and possibly enable the exchange of certain
parts with continuity fragments that were not possible in the standard order. Furthermore, the
process is kept flexible which improves the usability for the actors assuming that the execution of
the process is supported by a workflow engine.

Consider the first four functions “Get Customer ID”, “Get Customer Demand”, “Store ID
Data” and “Store CD Data”. The corresponding rule of “Store CD Data” is shown in Fig.
and the only dependencies for the corresponding rules p; = getID, py = getD, ps = storel D and
ps = storeCD in GGpqg are: p1 <,c p3 and ps <, ps, where “rc” denotes read causality. This
means that p3 uses a structure that is created by p; and p4 uses structures that are created by ps.
Now, the WDEPC LG requires a sequential execution. However, the dependencies based on the
rules also allow that first the demand of a customer is determined and stored and thereafter, the
necessary identification information is collected and stored. This means that the four steps can be
executed in several ways - all together 6 variants - only the partial order given by the dependency
relation <. has to be respected. The relation manager shall be able to act upon the customer
preferences and upon the course of conversation, such that any of the possible interleavings should
be possible. Of course, the possible interleavings can also be achieved by modifying the EPC, but
during the modeling of an EPC for a business process several possibilities of concurrency will not

16

be detected, because the real actors are asked to specify the standard execution. Fortunately, the
computation on the basis of the corresponding rules can be performed automatically, because it
uses the dependency relations of the underlying STS and these relations are computed statically,
i.e. without any need for executing the steps.

Now, have a look at the end of the example process LG where functions “Customer Signature”
and “Approve Contract” occur. The corresponding rules are p;; = customerS and p12 = approve.
There is no dependency between these rules implying that the customer may sign the contract
before or after the contract is approved by the credit officer. Consider the case that the customer
may want to see both signatures on the contract before he signs. Thus, this inverse order is
relevant. Note that it is not trivial to find this partial independence while building an EPC model
by hand.

6.3 Computation of Alternatives

In order to construct complete continuity processes for a combination of failures we first show how
process fragments are replaced and composed:

Composition of Process Parts Consider that we have process parts P1 and P2. They are
composable, if first of all the start event of P2 occurs in P1 - this is the gluing point of the
composition and we denote the new part by Q = P1; P2. Furthermore - in order to have that
P1; P2 can be executed - each left hand side of a rule p, of the corresponding grammar GG¢ has
to be included in the start graph joined with the right hand sides of the rules that correspond to
preceding steps. This condition is sufficient, because the constructed rules are non-deleting. If P1
is already executable then the check can be reduced to the rules of GG ps.

As soon as a resource or an actor is not available the process execution has to be replaced
by an alternative execution sequence, which contains suitable alternative process parts, such that
the alternative execution is possible and fulfills all requirements. Consider the following failure in
the present scenario: the rating application in the WDEPC “LG” is not available, which implies
that the function “Rating Customer” cannot be executed. In this case the alternative function
“Rating Customer (C)” in Fig. can be executed, where ”(C)” denotes that it is a continuity
function for a certain failure of a resource. Exchanging function “Rating Customer” with function
“Rating Customer (C)” may cause conflicts with other functions. The underlying dependencies
with respect to the other functions of the current chain of process steps can be analyzed using the
corresponding graph transformation rules. This analysis can be performed statically, i.e. before a
failure occurs, and the results can be stored and remain valid during a process execution.

CulD,Address,
CvV, Cw

Customer
30.07.2009 —| i
CulD, Address, CV Retio

Figure 10: Alternative Function “Rating Customer (E)”

Customer (C)
costs, time

RM
(availability,

“Rating Customer (C)” needs the availability of “CulD, Adress, CV” and “CW?”, which are pro-
vided by the functions “Get Customer Identity” and “Credit Worthiness”. These dependencies are
present for the corresponding rules p; = getCID, ps = creditW orthiness, pg = ratingCustomerC
as well. We have the following pairs of the relation “read causality”: p; <,. p6) and ps <, p6),
i.e. pb needs some elements that are produced by p; and ps.

Furthermore, we have to ensure that all elements that are necessary for the succeeding steps
of “Rating Customer (C)” are present. Thus, we have to ensure that each element, that is created
by function “Rating Customer” is:

1. created by “Rating Customer (C)” as well or

2. not needed by a succeeding step.

17

The complete business continuity process is constructed stepwise and for each step the following
condition (1) ensures that the succeeding steps can access the elements they need. In more detail,
the rule p; = (L; «— K; — R;) of condition (1) below corresponds to the i(th) function of an
WDEPC and p; shall be replaced by the alternative rule p; = (L, «— K| — R}). The elements in
the set (R; \ K;) are the nodes and edges that are created by the rule p;.

(R\K)n|JL;| CRI\K] (1)

J>1

Fortunately, this condition is fulfilled for “Rating Customer (C)” in Fig. and we can use
this fragment. Furthermore, independent succeeding steps can be moved to preceed the critical
function, which delays the execution of the continuity fragment - e.g. in Fig. the steps a7, a8
are moved in front of a6, which is going to be replaced by a6’. If the missing resource is available
again and the delayed function is still not executed then the original function can be executed
instead. This is an important advantage of the automatic analysis capabilities and the generation
of possible continuity processes.

shift jrr]gepvgngieint steps

» . .
@ a7 a8 a9 alo all
256260, 260=>0,=2>0,,> ..

l I I I I J
iexchange with alternative (emergency) action
a6’ ,

G;=> Gy

—

Figure 11: Automatic generation of alternatives

Alternative process parts may contain several steps that furthermore may only replace parts of
the original steps or cause conflicts with other steps, which implies that additional alternatives have
to be used to build up a complete alternative. In Fig. two alternative parts are composable
with the original process by exchanging it with steps al to a4. The step a2 is not completely
covered by one alternative fragment but by the composition of the two fragments. In order to find
optimal continuity processes annotated costs and time values of the functions can be used.

al uZX a3 a4 as a6
G >26056,260,260,2060,> ..
| Il I J1 I J1 |
‘ I | 2 composable alternatives
2> =... 2 for(al;a2.1;a2.2;a3)

Figure 12: Complex alternatives

We now present the further emergency fragments for the process LG, such that alternative
continuity processes can be generated automatically for combinations of failures. For some business
functions there are two emergency fragments, depending on the combination of failures that may
occur.

18

RM [CuD "} F3(C)
‘ (availability’ | Cr\jss' Store ID
LV] Data (C)

Customer TulD, costs, time

16.03.2010
CulD, Address, CV. | Addcrsss,

RM
(availability

RM
(availability

‘ RM (- I R
(availability; | Store CD
S Data (C)

costs, time;

Customer

16.03,201
CulD, Addregs?%)\/(,)..

0« cCD

CulD,
Address
DBSchufa R
(availability) (availability;
Customer)

16.03.2010 +—| CW
CulD, Address, CV

CulD,
Address

Credit
Worthiness (C2)
costs, time

Customer

16.03.201
cup, Adgiees &P | ow

RM
(availability

Figure 13: Emergency Fragments - Part 1

19

Cv,Ccw

Create Standard

e '(C1) (availability
costs, time,
pa! «—| Product
(availability)
Cv,cw
reate Standard
Product (C2) CA
(costs, time) (availability
Customer
16.03.2010 «—
CulD, Address, CV Product

Price
computed,

Contract

CulD,
Product

16.03.2010
ID, Payment Plan *

Create
Contract (C)
costs, time

Customer

16.03.2010 «—]
CulD, Address, 8V

ColD, PP

Contract

ColD

16.03.2010
ID, Payment Plan

Customer

T

Signature
costs, time

16.03.2010
CulD, Address, CV~ *

SRM(RMID)

11

E
Contract
created

Contract ColD
16.03.2010 RM CA
SRM(RMID) Sl (availabilit
SRM(RMID) costs, time;
DB2 E12
(availability) RM has
signed
Contract
created
ColD
F11(C) ‘
Contract Customer
16.03.2010 Signature (C)
ID, Payment Plan ‘—‘ costs, time. ‘ RM
Customer) (availability
16.03.2810 h sC
CulD, Address, CV

Figure 14: Emergency Fragments - Part 2

20

Contract
signed

ColD,
SRM(RMID)
Contract CAp[pro:/((eC) @
ontrac S
16.03.2010 q availabilit
ID, Payment Plan 4—‘ costs, time; ()
Customer
16.08.2010 *| SCOCOP)
CulD, Address, CV
E13
F12
(C2)
ColD,

Approve
Contract
costs, time,

Contract

SRM(RMID)
16.03.2010 1
SCO(COID)

SCO(COID)
DB2
(availability)
ColD

o] ‘ S
(availability,

Customer ‘ =
CulD, Ad!ﬁ?é%g',zg\}o 1 MT (availability,

ColD,
PP

‘ C
(availability;

‘ RM
(availability

Cash
returned (C)
costs, time

Customer

16.03.2010 «—
CulD, Address, 8V M

ColD

Customer
16.03.2010 i
CulD, Address, CV (@lesiitg
Date

F15(C)

Closed PP
Close
)

Contract (C
costs, time

Contract
closed

Figure 15: Emergency Fragments - Part 3

RM
(availability;

6.4 Validation of Objectives

Usually, several security constraints have to be respected by all possible process variants. As an
important example we illustrate the handling of the four-eye principle specified by the constraint
in Fig. The functions “RM Signature (F10)” and “Approve Contract (F12)” have to be
performed by different persons in order to ensure a separation of concerns. The graph constraint

21

is given by a negation of the formal constraint “samePerson”, which states the following: If the
premise P is fulfilled, then also the conclusion graph C' has to be found, i.e. in this case the two
functions are executed by the same person as specified by the connecting edges.

graph constraint: samePerson \ graph constraint:
- c 4EyePrinciple
J |RMSignature - Function| |RMSi nature : Function
— —(samePerson)
|ApproveContract . Functionl |AggroveContract : Function

Figure 16: Graph Constraint: 4 Eye Principle

The shown constraint is a meta constraint, i.e. it is not fully typed over the type graph T'G of
the reconstructed graph grammar. The conclusion graph C contains the a node of the meta type
“Actor”, for which the type within T'G is not specified. Thus the effective constraint is obtained by
instantiating the meta constraint into a set of graph constraints typed over T'G. This construction
is introduced by the following definition using the notion of instantiated graphs, which corresponds
to Def. 15 in [12].

Definition 1 (Instantiated Graph). Given a typed graph (G,ta) typed over TG prera, a type graph
(TG, trg) typed over TG yreta, and a partial mapping from G to TG via the span of injective typed
graph morphisms G <& D typep, @R typed over TG prera- An instantiation of G within TG is
given by (G, type : G — TGQ), where types is an injective graph morphism typed over TG pretq
and typeq o d = typep as shown below. The set of all instantiated graphs for G and TG via d is
denoted by Inst(d,G, TG).

TGMeta
TtTG\\
\ tc
TG =)
o
(=) typeg
\
D d

Based on the definition for instantiated graphs we extend this notion the the case of constraints.

Definition 2 (Meta Graph Constraint). Given a graph constraint PC(a) = P % C with injective
a typed over TG pretq, a type graph TG typed over TG prerq, and a partial mapping from P to
TG wvia a span of injective typed graph morphisms P < D 92, TG typed over TG pera. The
graph constraint (PC(a),d) is called a meta graph constraint. An instantiated graph constraint
of PC(a) is given by (P, typep) < (C,typec;)icr, where (P, typep) is an instanctiated graph in
Inst(d, P, TG) and (C, typec ;)i € I) is an ordered list of the set Inst(a,C, TG) using the partial
mapping from C to TG via the span of injective typed graph morphisms C <& P WPer, TG, The
set of instantiated graph constraints is denoted by Inst(d, PC(a), TG).

A graph G typed over TG fulfills the meta graph constraint, written G |= (PC(a), d), if for each
instantiated constraint (P, typep) % (C,typec ;)ier of in Inst(d, PC(a), TG) there is an i € I,
such that G |= PC(a) with a : (P, typep) < (C, typec ;).

Note that the set of instantiated graph constraints may contain several constraints but it may
also be empty meaning that it is always fulfilled. For the given graph constraint in Fig. we
derive exactly one instantiated graph constraint with one conclusion as shown in Fig.

Indeed, the complete example with all continuity snippets can lead to a situation where the
four-eye principle is not respected. There are several continuity snippets for the functions “RM
Signature (F10)” and “Approve Contract (F12)” and in the case that both, the relationship
manager and the credit officer, are temporarily unavailable there is one combination of snippets
where both actors are replaced by the credit advisor. In order to avoid such a situation we use the
graph constraint and generate application conditions for the graph rules that ensure the four-eye
principle. Credit Suisse requested security requirements to be modeled in such a declarative way.

22

graph constraint: samePerson \ graph constraint:
4EyePrinciple
7] [RMSignature : Function| € | [RMSignature : Function|*7 :toF
— CA - Actor —(samePerson)
|A roveContract : Function| | ApproveContract : Function :toF

Figure 17: Instantiated Graph Constraint for the Security Requirement: “the 4-eye principle”

If a condition shall be ensured only locally, i.e. for a single function like “Approve Contract”,
the constraint can be formulated directly as an application condition for the corresponding rule
of the function [8] [12].

In the next step a dependency net is generated out of this grammar as presented in [I3], which
is given by a place/transition Petri net that purely specifies the dependencies between the steps.
This net is used to generate the universe of the execution paths of the variants of the given business
process and its corresponding continuity processes.

7 Generated Universe of Continuity Processes

Once the process model given by a WDEPC is analyzed as described above, the reachability graph
of the derived dependency net can be generated, where functional as well as security requirements
are respected in the way that steps that violate the security requirements are not performed and
paths that finally do not fulfill the functional requirements are filtered out. This way, the universe
of valid process paths is generated as shown in Fig. [[8 Because graph techniques are well suited
to check for local requirements we propose to use a machine-centric business process model based
on process algebra to check for global requirements like data-flow and information-flow aspects
later on as presented in Sec.

Reachability Graph of Standard Process Reachability Graph of Continuity Process

Start

Ry
it g i,
SNSRI 2

21y
o J 2
:\ ‘?‘\!, i Ty
R \‘
o

A

SAAAA AR ARSI || s
7 :"; ,‘ ;‘l
&
Standard Paths F1-F15: Additional Continuity Paths F1-F15:
126 valid permutations 252 additional valid permutations
Standard Paths Continuity Paths
Steps F10 - F15 ~ Steps F10 - F15 -
—_—
Standard Paths: Additional Continuity Paths:
6 valid permutations 12 additional valid permutations

All Paths (standard and continuity): 378 valid permutations of steps F1-F15

Figure 18: Universe of Continutity Paths

23

The first graph in Fig. shows the possible paths of the standard process in Fig. where
the middle node represents the starting point. Each arrow in the graph represents one step. At
first, there are two choices for executing a function, either the relationship manager records the
customer identity or the customer demand. In both cases the next step can be to record the other
data or to proceed with the storage of the already recorded data. This flexibility is not directly
present in the WDEPC-model, but leaving out the syntactic events that fix the order of the steps
we can derive this user friendly flexibility.

The overall amount of possible sequences of the standard process is 126. The lower left graph
shows the last 6 functions including the loop at function “F14” leading to 7 steps for each path.
Here again, there are two possibilities at the beginning: either the relationship manager signs the
contract first or the customer. Usually the relationship manager will sign first, but there might
also be few cases in which this is not the case because of time constraints of the customer. Finally
we derive 6 functional valid sequences for this part of the workflow.

On the right hand side of Fig. there are graphs showing the additional continuity process
paths that are possible using one or more continuity snippets. For simplicity reasons the depicted
graph shows the paths using snippets for the functions “RM Signature (F10)” and “Approve
Contract (F12)” only, where both actors may be not available and are replaced using some of
the continuity snippets given in [I4]. These functions have to respect the four-eye principle as
discussed at the end of Sec. before. Indeed, there is a combination of snippets in which
both actors are replaced by the credit advisor. For this reason, the generation checks the security
constraint as shown in Fig. [I6] on-the-fly and provides only the valid sequences. The amount of
additional continuity paths is 252 and for the last 6 functions of the workflow part there are 12
additional paths.

There are certain advantages having all variants of the business process and its corresponding
continuity processes generated. Firstly, in case of an emergency the Credit Suisse management
can look at different options and make informed decisions which is not possible by today. This
leads to some sort of recommender service. Secondly, by having all continuity processes generated
continuity plans at Credit Suisse can be checked regarding their effectiveness and efficiency leading
to better optimized continuity plans. We can image to use monte-carlo simulations regarding
the failures in a business process given its corresponding continuity snippets. Thirdly, given
the different snippets and side-constraints the universe of process variants and corresponding
continuity processes can be generated beforehand making it possible for a workflow engine to
react without any delay towards upcoming failures. So, this approach is compatible with real-time
requirements that are showing off in certain financial transactions at Credit Suisse. Fourthly, the
business process model and its corresponding continuity snippets can be stored separately, which
reduces the complexity of process models and and supports ideally the decentralized modeling
workflows at Credit Suisse. It further makes the administration of enterprise models easier for the
people.

Summing up, once a business process is modeled its corresponding graph grammar can be
derived automatically, and graph constraint checks can be performed on the abstract syntax of
such a model to ensure structural security requirements. Therefore, it can be proven that a certain
security requirement is valid for a certain model. By adding snippets of continuity procedures,
continuity processes can be generated. Technically, this is done using process composition based
on algebraic graph transformation. Continuity processes can be created in general for all possible
combinations of failures from the point of view of a workflow scheme, or on a case-by-case basis
from the point of view of a running workflow instance. For every generated process alternative its
satisfiability is checked. The positively evaluated process schemes can be used to simulate all kinds
of failures and corresponding consequences of a process instance in terms of time, operational costs
and financial losses. By doing this we are able to discuss risks from a methodological point of
view, not only based on organizational best-practices. Therefore, we can make informed decisions
about alternatives that are fully or partially respecting the side constraints regarding security, risk
and compliance. Knowing all possible continuity processes for a given critical business process we
can simulate BCM risks.

After having validated these objectives, we are able to make a statement about the effectiveness
and efficiency of a business continuity management system, as well as if it is economically sound
in respect to security, risk and compliance requirements.

24

8 Transformation to mCRL2

In this section we explain the process modelling language mCRL2, show how business processes
can be translated to it using graph transformation rules, and formulate a number of information
flow requirements in modal logic that we have checked on the model.

8.1 Introduction

The process modelling language mCRL2 [15] is the successor of uCRL. The letters CRL stand
for Common Representation Language and the p, which later became m is used to indicate that
it is kept as concise as possible, only containing the most essential features to model discrete
processes. Development on pCRL started in 1990 and work on mCRL2 began in appr. 2003. The
largest difference between the two languages is that mCRL2 has full fledged data types (including
sets, functions, quantification, etc.) whereas uCRL only offers an equational data type definition
mechanism.

The essential concept in all discrete process modelling formalisms is an action which indicates
that something happens. Actions are assumed to have no duration. They are said to be atomic in
the sense that they happen atomically in time. Actions are abstractly indicated as a, b, ¢, ..., and
in more concrete situations refered to by more verbose strings like send, receive and drop. Two
actions can take place at the same time. This is denoted by an multi-action a|b. In this case it is
said that they synchronize. By enforcing actions to synchronize they can be forced to communicate.
For example, a send and receive can be forced to synchronize causing a communication.

There are a few operators that can be used to combine actions into behaviour. The sequential
composition of processes p and ¢ is denoted by p-g and indicates that first the behaviour of p
happens, and when p terminates the behaviour of ¢ can take place. The alternative composition
p+q indicates that either the behaviour of p or the behaviour of ¢ can happen. The choice between
the two is determined by the first action that happens in one of the two processes. So, a-b + c-d
is the process that can either do a followed by b, or ¢ followed by d. There is one special process,
called deadlock of delta, and denoted as § which is the process that cannot do anything. It is used
to indicate that behaviour will not proceed. E.g., a-0 indicates the process that can do an action
a and nothing more.

Using process equations recursive behaviour can be described. An equation X = a-X defines a
process X that can do a repeatedly. Simililarly, the process equation Y = (a+b)-Y is the process
that can repeatedly and ad infinitum do an a or a b.

The parallel composition pl||q is used to put processes in parallel. Because actions are atomic,
they can either take place consecutively or at the same time, but they can never partly over-
lap. This form of parallelism is called interleaving. In an equation this is expresses as a||b =
a-b+b-a+amaidb.

Actions and processes can carry any number of data parameters. Typically, one can define a
process that counts by C(n:IN) = count(n)-C(n+1). By the if-then-else construct cond—poq a
condition on data cond can be used to select between processes p and q. The else branch can
be omitted at will. Using the sum operatator a possibly infinite choice between processes can be
denoted. For instance), p(n) represents p(0) + p(1) + p(2) + ---. The sum operator ranges
over a data types, and not over a set of elements or a condition. So, in order to have a choice of
all elements smaller than, say, 100, one writes sum,.x (n<100)—p(n).

Standard data types such as B, IV , R are present in the language. The faithfully represent
their mathematical counterpart. E.g., there is no largest natural number. For all data types, it
is possible to put them in lists, bags or sets. The sort of sets of natural numbers is denoted by
Set(IN'). Typical sets of natural number are the empty set {}, a finite set {1, 3,5, 8} or an infinite
set {n:IN | n>34}. Of particular interest to us are enumerated types. These are defined as follows:

sort Elements = struct eleml | elem2 | elem3 | elem4 | elem5;

This defines the sort FElements that contains the five mentioned elements. In this way more
complex data structures can also be defined. For instance a domain with pairs of natural numbers
is defined by

sort Pair = struct pair(first:IN , second:IN);

So, in this case a pair of natural numbers is denoted as pair(1,2) and the functions first and second
can be used to get the first and second element of each pair.

25

Using the keyword map new auxiliary functions can be defined and using the keyword eqn
equations defining properties of these new functions are defined. The tools interpret these equa-
tions as rewrite rules, rewriting them from left to right. The data language domain is much richer,
but for the exposition below this suffices.

When processes are put in parallel, the communication operator I'c is used to indicate which
actions must communicate. E.g., I'send|receive— comm)P indicates that all actions send and receive
that happen synchronously in p must communicate to comm. If actions contain data, they can
only communicate if their data parameters are the same. This can be used to hand over data,
namely, the data that occurs in a receive action must match those in the send action. Using the
allow operator Vg it can be indicated which actions are allowed. So, by writing Vycommy}(p)
it is indicated that only communication actions can take place, and singular actions send and
receive cannot occur. So, using Vycomm} ! {send|receive— comm}P 18 @ typical pattern that enforces
the receive and send actions to communicate.

Also regarding the process part, we only provided the most essential elements that are used
below. For a fuller exposition see for instance [I5] or refer to the website www.mcrl2.org where
the tools used below can also be obtained.

8.2 Triple Rules from WDEPC to mCRL2

Triple rules from WDEPC to mCRL2 declaratively describe the relationship between the human-
centric business process model to the machine-centric business process model. We assume that
there is a construction grammar for the WDEPC: CWDEPC. However, we do not give it explic-
itly here. Triple rules consist of three different components: a source component, a connection
component and a target component.

The source component shows a needed match of the source model as well as additional nodes
and edges that are added after a possible match. The target component does the same for the
target model. The connection component links both matches. So, that they can be looked for
synchronously. Double plus signs indicate that nodes or edges are added after a possible match.
Node attributes are listed in the attribute section of a node.

We do not give the complete set of triple rules for the model transformation from a WDEPC
model to an mCRL2 model, but a substantial subset that will demonstrate how the mechanism
works. We like to make clear that all triple rules that are listed below work on the abstract syntax
of their source and target models. Therefore, the visual appearance does not need to be fully
compliant with the concrete syntax of the human-centric business model and the machine-centric
business process model.

Connection

Source Component Target Component

Component
N ,r’/ ++ ++
++
1:Function 3:Proc :edge 4:Line
number = noF1 - ‘ " | number = noF1 . d value="F“+noF1+";*
name = nF1 2.F2p name = nF1 rank=100

++

edge 5:Line

value="proc F*+noF1+"="
rank=1

++

:edge ++ Gihne

" value=nF1+*
rank=50

Figure 19: Triple rule: function

The triple rule “function” in Fig. [19| creates a function node (1) in the source model as well as
a node for a process variable (3) in the mCRL2 specification that are connected by a connection
node (2) in the connection component. It further creates three nodes (4,5,6) representing three
lines of mCRL2 code: Two mCRL2 actions and one definition. The definition (5) establishes the
mCRL2 code snippet for the business function, one action (6) represents a call of the business
logic, the other action (4) calls the mCRL2 process again. The mentioned ranks helps to order
the lines once they are created by different triple rules.

26

Source Component

Connection

Target Component

The triple rule “event”

Source Component

Component
7 - g ++ ++
++ .
1:Event 3:Proc ‘edge 4:Line
number = noE1 ‘ " | number = noE1 - value="E“+noE1+"“;*
name = nE1 2:E2P name = nE1 rank=100
++
‘edge 4 5:Line
[value="proc E“+noE1+*=*
rank=1
++
edge 4y 6:Line
"I value=nE1+"*
rank=50

Figure 20: Triple rule: event

in Fig. [20] works like to the triple rule “function” in Fig.

Connection
Component

Target Component

The triple rule “fork” in Fig. maps the fork node in the human-centric business process
model into the machine-centric model. Here, only two mCRL2 lines are created. An action as in
the former triple rules is not needed because the fork node is assumed to only split the control
flow without executing anything. So, there is one line defining the mCRL2 process for this fork

g value=“proc Fork“+noFo1+"="*
rank=1

\ v \ Vs ++ ++
o + b
1:Fork [[3:Proc :edge 4:Line
number = noFo1 . | " number = noFo1 -+ " value="Fork“+noFo1+*"
i § 2:Fo2p % i name = ,Fork rank=100
P P +
edge 5:Line

Figure 21: Triple rule: fork

node (5) and one line calling this mCRL2 process again once it was executed (4).

Source Component

Connection
Component

Target Component

:edge ++
3:Event 11:Proc ++ 12:Line
number = noE3 . " number = noE3 g value="E“+noE3+“_F“+noF6+*_s.”
name = nE3 8:E2P name = nE3 :edge rank=98
:edge ++ ++
6:Function . 13:Proc ++ N 14:Line
number = noF6 " number = noF6 i value="E“+noE3+"_F“+noF6+" r.”
name = nF6 9:F2p name = nF6 :edge rank=2
++
++ 15:Line
redge g value="F“+noF6+*_E“+noE7+"_s.*
- :edge rank=98
++
v
7:Event 16:Proc *+ 17:Line
number = noE7 . " number = noF7 g value="F“+noF6+“_E“+noE7+" r.“
name = nE7 10:E2P name = nF7 :edge | rank=2

27

Figure 22: Triple rule: event-function-event

The triple rule “event-function-event” in Fig. adds two edges in the source model to connect
an event with a function and this function with another event. Nodes 12 and 14 as well as 15
and 17 in the target model represent atomic pairs of mCRL2 actions which means that they are
assumed to happen simultaneously. Therefore, the mCRL2 code for the events and the function
can be connected in a way that implements the control flow of the human-centric business process
model.

Source Component gg::;’?r::: Target Component
e ™\ //'/ . ,,"/ =+ A
2:Function 6:Proc 4 7:Line
number = noF2 h ‘ " number = noF2 g value=“send(,+nD3+",F“+noF2+*,CACHE).“
name = nF2 5:F2p name = nF2 :edge rank=70
A :edge .
++
3:Data ++ 8:Line
name=nD3 value=“send(,+nD3+*,CACHE,“+nR4+").
cached=true :edge rank=80
++
:edge
Y
4:Resource
name=nR4

Figure 23: Triple rule: function-data-storagel

The triple rule “function-data-storagel” in Fig. 23] adds a node representing a data item into
the source model that is send from a business function to a resource. It translates this by adding
two lines in the mCRL2 model. The first line (7) sends the data item from the business function
to the cache, the second line sends it from the cache to the resource (8).

Source Component gg:.::’e:r:'e‘::; Target Component
. ™ - N
2:Function 6:Proc ++ 7:Line
number = noF2 . number = noF2 value="send(,+nD3+",F“+noF2+“,CACHE).
name = nF2 5:F2p name = nF2 :edge rank=70
++ :edge .+
=+
v
3:Data ++ 8:Line
name=nD3 g value="send(,+nD3+“,CACHE,"+nR4+").*
cached=false :edge rank=80
* :edge ++
v
4:Resource ++ 8:Line
_ "| value="drop(,+nD3+*,CACHE).*
name=nR4 :edge rank=90

Figure 24: Triple rule: function-data-storage2
The triple rule “function-data-storage2” in Fig. [24] is very much like for former rule in Fig.

[23] The only difference here is that the data is dropped by the cache. Therefore, there is a third
mCRL2 line inserted which defines that the data is dropped (8).

28

Connection

Source Component Target Component

Component
1:Resource
name=nR1
++ :edge
A
2:Data
name=nD2
cached=true
++ :edge ++
A
3:Function 6:Proc -+ 7:Line
number = noF3 - . " number = noF3 i value=“send(,+nD2+",“+nR1+“,CACHE).“
name = nF3 name = nF3 :edge rank=20
5:F2P
++
++ 8:Line
value="send(,+nD2+*,CACHE,F“+noF3+).“
:edge | rank=30

Figure 25: Triple rule: storage-data-functionl

The triple rule “storage-data-function” in Fig. 25| maps the data flow between a resource and
a business function in the human-centric business model to the two mCRL2 lines in the machine-
centric business process model. The first mCRL2 line defines that the data item is send from the
resource to the cache (7), the second data item defines that the data item is send from the cache
to the business function (8).

Connection
Source Component Component Target Component
1:Resource
name=nR1
++ :edge
++
v
2:Data
name=nD2
cached=false
++ :edge ++
v
3:Function 6:Proc ++ 7:Line
number = noF3 h ‘ " number = noF3 value=“send(,+nD2+",“+nR1+“,CACHE).
name = nF3 5:F2p name = nF3 :edge rank=20

++

++ 8:Line

value=“send(,+nD2+*,CACHE,F“+noF3+").“
:edge rank=30

++

*+ 9:Line

d value=“drop(,+nD3+“,CACHE).*
:edge rank=40

Figure 26: Triple rule: storage-data-function2

The triple rule “storage-data-function2” in Fig. [20] is similar to the former triple rule in Fig.
[25] except that the data item in the cache is being dropped once the data transfer between the
resource and the function is completed.

The triple rule “function-datal” in Fig. maps a data transfer from a business function into

29

Source Component Connection Target Component

Component
- e ++ A
1:Function 4:Proc ++ 5:Line
number = noF1 “ . > umber = noF1 P Value="send(,nD2+" F*+noF 1+*,CACHE)."
name = nF1 3:F2p name = nF1 :edge | rank=70
++ :edge
+
2:Data
name=nD2
cached=true

Figure 27: Triple rule: function-datal

a cache without and resource that will take the data item finally. At the mCRL2 side there is just
one line needed to implement this (5).

Source Component gg;‘;?;:‘nt Target Component
] . ++

1:Function 4:Proc ++ 5:Line
number = noF1 b . " number = noF1 value="send(,+nD2+" F“+noF1+‘,CACHE)."
name = nF1 3.F2p name = nF1 :edge | rank=70

++ :edge ++
v
2:Data *+ 6:Line

name=nD2 value=“drop(,+nD2+“,CACHE).“
cached=false :edge rank=90

Figure 28: Triple rule: function-data2

The triple rule “function-data2” in Fig. is similar to the former triple rule in Fig. 27]except
that the data item in the cache is being dropped once the data transfer between the business
function and the cache is completed.

Source Component Connection Target Component
Component
P e = ++
1:Function 4:Proc ++ 5:Line
number = noF1 . " | number = noF1 value=“send(,+nD2+",CACHE,F“+noF 1+).“
_ =nF1 :edge k=20
name nF1“ 3.F2p name = nl g ran|
- ++ :edge
2:Data

name=nD2
cached=true

Figure 29: Triple rule: data-functionl
The triple rule “data-functionl” in Fig. 29 maps a data flow from a cache to a business function

in the human-centric business process model to the machine-centric business process model. There
it is implemented by the help of one line of mCRL2 code (5).

30

Connection

Source Component Target Component

Component
! i / ’ ++

1:Function 4:Proc -+ 5:Line
number = noF1 h . " | number = noF1 value=“send(,+nD2+",CACHE,F“+noF 1+).“
name = nF1 name = nF1 :edge | rank=30

Y 3:F2P
" ++ :edge ++
2:Data *+ 6:Line

name=nD2 g value=“drop(,+nD2+“,CACHE).
cached=false :edge rank=40

Figure 30: Triple rule: data-function2

The triple rule “data-function2” in Fig. maps the data flow of a data item from the cache
to a business function where the data item is not cached afterwards. It is realized by the help of
two lines of mCRL2 code in the target model (5,6). The first line transfers the data item (5), the
second line (6) frees the cache.

Connection
Source Component Component Target Component
- - y / ++
++ 4:Line
»
value=“generate(,+nR2+“Data1,“+nR2+).”
:edge | rank=10
++
1:Function 5:Proc T+ 6:Line
number = noF1 . " number = noF1 g value=“generate(,+nR2+“Data2,“+nF1+).“
name = nF1 3:F2p name = nF1 :edge | rank=10
:edge ++ C> ++ edge ++
2:Resource A ++ 7:Line
—nR2 d value=“send(,*nR2+Data1,“+nR2+" “+nF1+).“
name=n :edge rank=30

++

* 8:Line

value="send(,+*nR2+"Data2,“+nF1+*,“+nR2")."
:edge rank=70

Figure 31: Triple rule: function-resource-function

The triple rule “function-resource-function” in Fig. 3] maps an anonymous data flow between
a resource and a business function in both directions. In detail, two data items are generated
(4,6), first the data flow from the resource to the business function is specified in mCRL2 code
(7), then the data flow from the business function to the resource is realized (8).

31

Source Component

Connection
Component

Target Component

++
3:Event 17:Proc ++ 18:Line
number = noE3 . " number = noE3 value="E“+noE3+“_F“+noF6+*_s.”
= = :edge =
name = nE3 12:E2P name = nE3 g rank=98
++ :edge ++
4
6:Function 19:Proc ++ 20:Line
number = noF6 N . " number = noF6 value="E"+noE3+"_F“+noF6+"_r.“
= = :edge =
name = nF6 13:F2P name = nF6 g rank=2
++ :edge -+
++ 21:Line
value=“repeat b:Bool.F“+noF6+
:edge “_Fork“+noFo9+“_s(repeat).
rank=98
++
4
9:Fork 22:Proc ++ 23:Line
_ B . "| number = noFo9 value="“sum b:Bool.F“+noF3+
number = noFo9 name = ,Fork" :edge “_Fork“+noFo9+*_r(b).“
- - 14:Fo2P rank=2
:edge F+
24:Line
++
value="b->Fork“+noFo9+“_E"+
noE10+“_s+“<>Fork“+noFo9+_E“+
‘edge noE11+“_s).“
rank=3
A ++
10:Event 25:Proc *+ 26:Line
»
number = noE10 ' number = noE10 " value=“Fork“+noFo9+*_E“+
name = nE10 15:E2P name = nE10 redge | oEq0+¢ r
. : rank=2
:edge
I ++
11:Event 27:Proc b 28:Line
number = noE11 b . " number = noE11 Value="Fork“+noFo9+* E“+
name = nE11 16:E2P name = nE11 :edge NOE11+* r.* -
’ Rank=2

Figure 32: Triple Rule: Event-Function-Fork-Event-Event

The triple rule “event-function-fork-event-event” in Fig. maps the control flow between a
couple of event nodes, a function node and a fork node into the corresponding mCRL2 specification.
In detail, this is done be send and receive action pairs on the side of the mCRL2 code that are
executed as atomic actions. Therefore, they synchronize the execution of process instances. Line
23 and 24 implement the two options that are introduced by the help of the fork node in the
human-centric business process model to be able to iterate over them for model checking purposes.

32

Source Component

Connection
Component

Target Component

++
3:Event 17:Proc -+ 18:Line
number = noE3 b . " number = noE3 g value="E“+noE3+"_F“+noF11+‘_s."
name = nE3 13:E2P name = nE3 edge rank=98
i :edge ++
6:Event 19:Proc ++ 20:Line
number = noE6 ‘ " number = noE6 value="E“+noE6+“_F“+noF11+"_s.”
name = nE6 14:E2P name = nE6 edge rank=98
i :edge
v
8:Join
number = nJ8
++ :edge -+
v
11:Function . 21:Proc ++ 22:Line
numbe_r =Fn1o1F11 numbe_r =Fn101F1 ! -edge value="(E*+noE3+"_F“+noF11+
name =n 15:F2pP name = n €098 | v r4E"+noE6+"_F noF11+")
rank=2
++ :edge
++
++ 23:Line
-ed value=“F‘noF11+“_E“+noE12+"_s.”
redge rank=98
++
12:Event 24:Proc + 25:Line
number = noE12 . number = noE15 value=“F“+noF11+“_E“+noE12+
name = nE12 16:E2P name = nE15 edge |« .«
rank=2

The triple rule “event-event-join-function-event” in Fig. shows as in Fig. how a control

Figure 33: Triple rule: event-event-join-function-event

flow can be handled. Here, it is first joined before entered into the business function.

corresponding mCRL2 code realized this control flow pattern by the help of an or-statement in

line 22.

33

Source Component

Connection
Component

Target Component

++

3:Event 23:Proc -+ 24:Line
number = noE3 ‘ " number = noE3 g value="E“+noE3+“_F“+noF11+* s.“
= = edge =
name = nE3 17-E2P name = nE3 g rank=98
+ :edge +
6:Event 25:Proc ++ 26:Line
number = noE6 . " number = noE6 value="E“+noE6+"_F“+noF11+*_s.”
name = nE6 18:E2P name = nE6 edge rank=98
b :edge
v
8:Join
number = nJ8
++ :edge ++
4
11:Function 27:Proc ++ 28:Line
numbe_r =Fn101F11 . numbe_r =Fn1o1F11 .edge value="(E"+noE3+"_F“+noF11+
(EWD S] 19:F2P nameisin ece “_r+E*+noE6+‘_F“+noF11+“ r)."
rank=2
++ :edge
++
++ 29:Line
value=“repeat b:Bool.F“+noF6+
:edge “_Fork“+noFo9+“_s(repeat).”
rank=98
++
4
14:Fork 30:Proc ++ 31:Line
_ . "| number = noFo14 value="sum b:Bool.F“+noF 11+
number = noFo14 name = ,Fork" edge |« EoreinoFo14+ r(b).*
PP 20:Fo2P rank=20
edge ++
32:Line
++
value="b->Fork“+noFo14+“_E"+
noE15+“_s+“<>Fork“+noFo14+
‘edge “_E*+noE16+_s)."
rank=3
A ++
15:Event 33:Proc *+ 34:Line
number = noE15 ‘ " number = noE15 value="Fork“+noFo14+" E“+
= = :edge “ -
name = nE15 21:E2P name = nE15 g noE1_5+ T
++ rank=2
:edge
} ++
16:Event 27:Proc b 28:Line
number = noE16 ‘ " number = noE16 Value="Fork“+noFo14+* E“+
name = nE16 22:E9P name = nE16 redge | oEqg4
Rank=2
Figure 34: Triple rule: event-event-join-function-fork-event-event

The triple rule “event-event-join-function-fork-event-event” in Fig. [34] finally has a fork and a
join node at the human-centric business process model side. This control flow pattern is mapped
towards the machine-centric business process model side by combining the techniques introduced
in Fig. [32] and Fig.

34

8.3 Model Transformation in the Tool AGG

In order to present the effectiveness of the model transformation we present how the triple rules
are used to derive the operational forward rules and how they can be executed using the graph
transformation engine AGG [I6]. The following figures show parts of the flattened triple graph
grammar and the example in the tool AGG. The tool performes flat graph transformations, i.e.
uses single graphs and not triple graphs. The corresponding flat graph grammar of our triple
graph grammar can be derived as presented in [I7]. Figure shows the derived forward rule
“NonCachedData2SendDrop”. This rule translates the generated data by the function node “1”

into a “send” and a “drop” operation in the mCRL2 model.

NonCachedData2SendDrop ‘

Line
val="generate("+nD+" F'+noF+")"
rank=40

e

Line
al="send(- N0+ Fnof + R CACHE +) "
Bl rANk=55

Tedges
transi=true

Tedges
transi=false

Line
val="drop(+nD+", CACHE)."
rank=57

Figure 35: Model Transformation WDEPC2MCRL2: rule “NonCachedData2SendDrop” in AGG

The graph in Fig. specifies a fragment of the abstract syntax graph of the WDEPC model
in Fig. [2/in Sec. [We use this reduced example in order to show how the engine AGG creates
the target model, from which the mCRL2 code can be derived directly.

Source Model: WDEPC LGP ‘

edges

2dges fransl=false

transi=false

edges

transl=false e
transi=false

edges
transi=false

edges

edges
transi=false

transl=false

trans|=false

edges
transl=false

Figure 36: Model Transformation WDEPC2MCRL2: part of source model in AGG

The graph transformation engine AGG applies the derived forward rules and computes the
integrated model containing the given WDEPC source model of Fig. and its corresponding
mCRL2 target model fragment. This resulting integrated graph is shown in Fig. and the pure
target model is obtained by a restriction to the types of the target language.

35

Resulting Model: LGP as WDEPC and Intermediate MCRL2

edgesS
transi=true

edges

edges
transl=true

transi=true

edges
transl=true

transi=true

edgss
fransi=true

transi=true

transl=true

edges
fransi=true

Line
val="proc E1="
rank=1

Proc

Line
val="proc F1="
rank=1

name="Customer arrived"
ni=1

Line

Line

edges

edges

Customer arrived "

Line

val="E1_F1_r"

val="generate(Addrass,F1)"

Proc

name="ID collected"
n=2

rank=50
- rank=10 fanicat Line Line
r_:m_, . val="send(Address F1,C)"| |val="send(Addrass,F1 RM)"
val \xymhzln._lw generate{CulD,F1)." rank=45 rank=45
rank=! =
rank=40 =" [Line Line
Line Ling val="send({CulD,F1,C)." wval="send(CulD,F1, RM)."
1, val="generate(CV,F1)" .\wqm:_ﬂhm rank=45
rank=100 rank=40
RIS Line Line
& val="send(CYF1,C)." .\|\;'<m_u,_wm3n20<__u._ RM)
\.llm&mm\l\.\.lk‘ rank=45 rank=45
\\\\\ Line
%<m_u:mm_\ncma3mcc Line
"Get_Customer_ID" rank=50 al="send(Address,F1,CACHE). Line
BUgE edge rank=55 val="send(Address
rank=56
dae Line =
val="send(CulD,F1,CACHE). Ling
N rank=55 val="send(CulD,CACHE RM)"
" rank=56
3 o Line
N Line val="send(CV,F1,CACHE)" Line
Val="dropiAddress, CACHE) "| |rank=54 val="send(CV,CACHE
Line rank=56
. o rank=57
val="proc E2=
rank=1 Line
Line ,“M__Juxram‘.owROED_O.pOImv.
val="F1_E2_r" - Line
rank=10 Line val="F1_E2_s"
Tre val="drop(CV,CACHE)." rank=90
m rank=57
val="ID collzcted! Line
rank=50 val="F1;"
Line rank=100
val="E2;"
rank=100

integrated model in AGG

ing

result

36

Model Transformation WDEPC2MCRL2

Figure 37

0~ Uk WN -

8.4 Verification of some Modal Properties

In Section [8.5] the resulting mCRL2 code of the translation of triple graphs is given. Here we show
that certain properties of this code can be verified using modal logic and the mCRL2 toolset.
First some properties are given (which are all valid), and in Section it is explained how the
verification will take place.

8.4.1 A data-flow requirement

The first formula expresses that the credit advisor CA cannot know the Address. The credit
advisor can only know the address, if it is sent to him, or he generates the address himself. More
precisely, there is no send(Address, s, CA) action after an arbitrary sequence of actions (denoted by
true*), nor is there a generate(Address, CA) action that can take place after an arbitrary sequence
of actions. The structure of the formula [...]false says that if one of the sequences of actions at
... exists, then one ends up in a state where false holds and such a state does not exist. So, such
a sequence cannot occur.

[truex.exists s:Store.send(Address,s,CA)] false &&
[truex.generate (Address,CA))] false

8.4.2 An information-flow requirement

The second requirement expresses that the credit advisor C'A cannot derive the address from the
information that it has at its disposal. The data types used in this requirement are formulated at
the beginning of the specification found in Section [8.5

The modal formula is formulated as a largest fixpoint of the form v X(...).¢. At ... there is one
parameter which is updated while the formula checks the behaviour. In this case the parameters is
called knowledge_set of sort Set(LocatedKnowledge) which is initially equal to the empty set ({}).
The sort LocatedKnowledge contains pairs of a DataString containing some piece of data, such as
an address, and a Store, i.e., a place where information can be stored, which can be the mind of
a person but also a database. Such a pair represents that the datastring is known at that specific
location. So, knowledge_set is a set of all data strings that are known at specific spots.

The second line of the formula contains the check that the address is not known by the credit
advisor, or in other words, that pair(Address, CA) is not an element of the knowledge_set.

The other lines of the formula say that the knowledge_set is properly maintained. So, whenever
a generate(d, s) action take place for any data string d, and store s (denoted by [generate(d, s)]
using square brackets), then the data string d is known by location s, and this pair must be added
to the knowledge_set. Furthermore, all derivable information must also be added to those places
where it is derivable. This is done by the function AddInfo defined in the specification in Section
Using the function InfoFlow which says how information flows from data string to data string,
AddlInfo puts all data strings in those locations where they can be inferred.

Similarly, when a data string is sent from store s; to sy by send(d, s1,s2) then using the
function AddInfo it is indicated where data can become known (line 5). In line 4 it is indicated
that when data is dropped from a store, it can still be remembered, and therefore, it is not removed
from the knowledge set. Likewise, in lines 6-8 it is indicated that other actions than generate,
drop and send do not influence knowledge_set either.

nu X (knowledge_set:Set (LocatedKnowledge)={}) .
! (val (pair (Address,CA) in knowledge_set)) &&

(forall d:DataString,s:Store. [generate(d,s)] X (AddInfo(d,s,knowledge_set))) &&
(forall d:DataString,s:Store. [drop(d,s)] X(knowledge_set)) &&

(forall d:DataString,sl,s2:Store.[send(d,sl,s2)] X(AddInfo(d, s2,knowledge_set))) &&
[

(forall d:DataString,s:Store.!generate(d,s)) &&
(forall d:DataString,s:Store.!drop(d,s)) &&
(forall d:DataString,sl,s2:Store.!send(d,sl,s2))]X(knowledge_set)

8.4.3 An information-derivation requirement

Besides tracking the flow of information, one can also assume that different pieces of information
can be obtained from which some information can be derived. E.g., if one knows the customer

demand (CD), one might know the address with a certainty of 2—10 , and the credit worthiness CW

37

© 00~ Uk WN -

D UL W N

with a certainty of %. This is formulated in the function QuantinfoFlow in the specification in
Section

The formula below says that the resource manager RM will be able to derive the rating for
the customer with more that % certainty. We adopt the rule that if information can be derived
from two sources, one with certainty p; and the other with certainty ps, then we assume that the
information is known with certainty 1—(1—p;)(1—p2) (see line 77 in the specification in Section
8.9l

Basically, the formula below maintains what is known by which store in knowledge _list. At line
2 and 3 it is checked whether the resource manager knows the rating with more than 1—70 probability.
The function SelectInformation selects the information for a particular store (in this case RM)
with certainty 1. The function QuantInferredInformation is used to calculate the probabilities
with which the data can be derived from the information known to the resource manager. The
function GetQuantInfo selects the probability with which the rating is known. These functions
are defined in the specification in Section [8.5

nu X (knowledge_list:List (LocatedKnowledge)=[]).
(val (GetQuantInfo (Rating, QuantInferredInformation (SelectInformation (RM, knowledge_list),
SelectInformation (RM, knowledge_list)))>7/10)) &&

(forall d:DataString,s:Store. [generate(d,s)] X(Insert (d,s,knowledge_list))) &&
(forall d:DataString,s:Store. [drop(d,s)] X(knowledge_list)) &&

(forall d:DataString,sl,s2:Store.[send(d,sl,s2)] X(Insert(d,s2,knowledge_list))) &&
[

(forall d:DataString,s:Store.!generate(d,s)) &&
(forall d:DataString,s:Store.!drop(d,s)) &&
(forall d:DataString,sl,s2:Store.!send(d,sl,s2))]1X(knowledge_list)

8.4.4 Verification commands

Below the commands are given to verify a modal formula that is put in a file modal_formula.mcf.
The specification is put in the file LendingProcess2.mcrl2. The idea behind the toolset for mCRL2
is that there are a number of separate tools to transform a specification. Depending on the nature
of the specification and the properties that must be checked, a different sequence of tools can
be invoked. It goes too far to explain all the tools that have been used here (see for instance
www.mcrl2.org where they are all explained).

The most important tools below are mcr1221ps that translates the specification in Section 85
to a linear process which is essentially a set of condition-action-effect rules. A linear process is a
very simple basic process form, behaviourally equivalent to the original, where process structuring
operators, such as the parallel operator have been eliminated. Using the 1ps2pbes tool the linear
process together with a modal formula is translated to a parameterised boolean equation system
(PBES, [18]). A PBES is essentially a sequence of fixed point equation which must be solved. The
solution of the PBES indicates whether the modal formula is valid for the specification or not.
Line 6 indicates how to generate a labelled transition system but it is not used for the verification
of a modal formula.

mcrl22lps -vD LendingProcess2.mcrl2 temp.lps

lpssuminst -v temp.lps | lpsrewr | lpsconstelm -v | lpsrewr > templ.lps
lps2pbes -v —-f modal_formula.mcf templ.lps temp.pbes

pbesrewr -v -pquantifier-finite -rjittyc temp.pbes templ.pbes

pbes2bool -s2 -v templ.pbes

lps2lts templ.lps temp.aut

8.5 Model for Lending Process

This section contains the translation of the workflow shown in Figure The part up till the
description of the datatypes contains auxiliary data type definitions for the modal formulas. These
data types have shortly been explained above.

The main data types for the specification (line 104 and line 109) contain the data strings
DataString and the places where information can be stored (Store).

The subsequent part of the specification (line 120 till line 548) contain the translated processes.
E.g. process E1 indicates that a customer arrives, using a Customer_arrived event. Subsequently,
it sends a trigger to process F1 that it can proceed using the event FI1_FI_s. In process F1
the trigger is received using the event E1_FI_r. In the comm command at line 668 it is defined

38

© 00~ U WN -

I I I R N R e e e
DO WNF OO0 U WN-HO

27

how such events must communicate. Subsequently, in F{ information is some information is
generated, which is modelled using the generate event. The event Get_customer_identity takes
place and subsequently, there are events indicating to which ‘stores’ the information is sent. All
processes, except FI1 are repeated at the end. In EI, the process ends in delta to prevent
more than one customer from entering the system. This suffices, as we want to investigate the
information flow regarding only one customer.

At the end, all processes and events are put in parallel. Using the comm and allow operator
it is prescribed how events must communicate, and which events are externally visible (others are
blocked). In the actual verification, we had to apply alphabet axioms to push the allow operator
inside the processes, as otherwise the mcr1221ps tool would require too much time. We left this
out, as otherwise the init section at the end would become much larger.

map InfoFlow:DataString->List (DataString);
egqn InfoFlow (CuID)=[CulD];
InfoFlow (Address)=[Address,CV,CW,Rating];

InfoFlow (CV)=[CV,CW,Rating];

InfoFlow (CD)=[Address,CD,CV,CW,Product,Rating];
InfoFlow (CW)=[CV,CW,Rating];

InfoFlow (Rating)=[CV,CW,Rating];

InfoFlow (PP)=[PP];

(
(
(
(
(
(
(P
InfoFlow (Product)=[Address,CD,CV,CW, Product,Rating];
InfoFlow (CoID)=[ClosingDate,CoID];
InfoFlow (SRM_RMID)=[SRM_RMID];
InfoFlow (SC)=[SC];
InfoFlow (SCO_COID)=[SCO_COID];
InfoFlow (MT1)=[CV,CW,MT1,Rating];
InfoFlow (MT2)=[CV,CW,MT2,Rating];
(
(s
(

InfoFlow (SchufaDatal)=[Address,CD,CV,CW,Product,Rating, SchufabDatall];
InfoFlow (SchufaData2)=[SchufabData2];
InfoFlow (ClosingDate)=[ClosingDate];

map AddInfo:DataString#Store#Set (LocatedKnowledge)->Set (LocatedKnowledge);
AddInfolList:DataString#Store#Set (LocatedKnowledge) #List (DataString) -
Set (LocatedKnowledge) ;

var d,d’:DataString;
s:Store;
set:Set (LocatedKnowledge) ;
1:List (DataString);
egn AddInfo(d,s,set)=AddInfolist (d,s,set, InfoFlow(d));
AddInfolist (d, s, set, [])=set;
AddInfolist (d,s,set,d’ |>1)=set+{pair(d’,s)};

o°

The function QuantInfFlow (Quantitative Information Flow) shows how
quantitative information flows from one DataString to another. The function
indicates the direct information flow. The indirect flow is excluded. This must
be done, as indirect information can come via different dependent ways, and
should not be added in that case.

o° oP

o0 o

sort InformationPair=struct pair(data:DataString,quantity:Real);
LocatedKnowledge= struct pair (data:DataString, store:Store);

map QuantInfoFlow:DataString->List (InformationPair);
egqn QuantInfoFlow (CuID)=[];
QuantInfoFlow (Address)=[pair(CV,1/2)1]1;
QuantInfoFlow (CV)=[pair(CW,1/2),pair (Rating, 9/10)1;
QuantInfoFlow (CD)=[pair (Address,1/20),pair (Product,2/3)];
QuantInfoFlow (CW)=[pair (Rating, 9/10)];
QuantInfoFlow (Rating)=[pair(CV,8/9)]1;
QuantInfoFlow (PP)=[];
QuantInfoFlow (Product)=[pair(CD,1/2)1;
QuantInfoFlow (CoID)=[pair (ClosingDate,2/3)];

QuantInfoFlow (SRM_RMID)=[];
QuantInfoFlow (SC)=[1];
QuantInfoFlow (SCO_COID)=[];

QuantInfoFlow (MT1)=[pair (Rating,1/10)];
QuantInfoFlow (MT2)=[pair (Rating,2/5)1;
QuantInfoFlow (SchufaDatal)=[pair (Rating,1/2)];
QuantInfoFlow (SchufabData2)=[];

QuantInfoFlow (ClosingDate)=[];

39

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

map QuantInferredInformation,Combine:List (InformationPair)#List (InformationPair)->
List (InformationPair) ;

DirectDerivatives:List (InformationPair)->List (InformationPair);
Weight:Real#List (InformationPair)->List (InformationPair);
Insert:DataString#Store#List (LocatedKnowledge)->List (LocatedKnowledge) ;
GetQuantInfo:DataString#List (InformationPair)->Real;
SelectInformation:Store#List (LocatedKnowledge)->List (InformationPair);

var 1,1’ :List (InformationPair);
m:List (LocatedKnowledge) ;
d,d’ :DataString;
s, s’ :Store;
r,r’ :Real;

eqn QuantInferredInformation(l, [])=1;
17!=[] —-> QuantInferredInformation(l,1l’)=Combine (1,DirectDerivatives(l’));
Combine (1, []1)=1;
Combine ([],1")=1";
Combine (pair(d, r) |>1,pair(d,x’) |>1")=pair(d,1l-(1l-r)*(1l-r’)) |>Combine(1,1");

d<d’ -> Combine(pair(d,r)|>1,pair(d’,r’) |>1')=pair(d,r)|>Combine (1,pair(d’,r’)|>1");
d>d’ -> Combine(pair(d,r)|>1,pair(d’,r’) |>1')=pair(d’,r’) |>Combine (pair(d,r) |>1,1");

DirectDerivatives ([])=[1];
DirectDerivatives (pair(d, r) |>1)=
if(r<1/100,

DirectDerivatives (1),

Combine (Weight (r, QuantInfoFlow(d)),DirectDerivatives(1l)));
Weight (r, [1)=I[];
Weight (r,pair(d,r’) |>1)=pair(d, rxr’) | >Weight (r, 1) ;
Insert(d,s, [])=I[pair(d,s)];
(d<d’” || (d==d’ && s<s’))-> Insert(d,s,pair(d’,s’) |>m)=pair(d,s) |>pair(d’,s’) |>m;
Insert (d,s,pair(d,s) |>m)=pair(d,s) |>m;
(d>d’" || (d==d’ && s>s’))-> Insert(d,s,pair(d’,s’) |>m)=pair(d’,s’) |>Insert(d,s,m);
GetQuantInfo(d, []1)=0;
GetQuantInfo(d,pair(d’,r) |>1)=if (d==d’, r,GetQuantInfo(d, 1)) ;
SelectInformation(s, []1)=1[];
SelectInformation(s,pair(d,s’) |>m)=if (s==s’,pair(d,1l) |>SelectInformation(s,m),

SelectInformation(s,m));

5555555555555 5555555555555 5555555555555 5555555555 %%5%%%%%

% %
% Description of datatypes %
% %
E R LR R R R R R R R R R LR R L R r L

sort DataString = struct CulD | Address | CV | CD |
CW | Rating | PP | Product | CoID |
SRM_RMID | SC | SCO_COID | MT1 | MT2 |
SchufaDatal | SchufaData2 | ClosingDate;

sort Store = struct CACHE | C | RM | CA | CO | DB | DB1 | DB2 | DB3 |

F1 | ¥F2 | F3 | F4 | F5 | F6 | ¥7 | F8 | F9 | F10 |
Fl11l | F12 | F13 | F14 | F15 | DBSchufa | Contract;

555555555555 5555555555555 55555555555 5555555555555 5%5%5%5%5%5%5%%%

% %
% Description of tasks and events %
% %
EE R LR R R R R R R R R R R R R LR R L R r L
proc El=

Customer_arrived.

E1_F1_s.

delta; % Only once customer can arrive.
proc Fl=

El1_Fl_r.

generate (CulD,F1) .
generate (Address,F1) .
generate (CV,F1) .

Get_customer_identity.

40

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

proc E2=

proc F2=

proc E3=

proc F3=

send (CulD,F1,RM) .
send (Address,F1,RM) .
send (CV,F1,RM) .

send (Address,F1,C) .
send (CV,F1,C) .

send (CulID,F1,C) .

send (CulD,F1,CACHE) .
send (CulID, CACHE, RM) .
drop (CulD, CACHE) .

send (Address,F1,CACHE) .
send (Address, CACHE, RM) .
drop (Address, CACHE) .
send (CV,F1,CACHE) .

send (CV, CACHE, RM) .

drop (CV, CACHE) .
F1_E2_s.

Fl;

F1_E2_r.
ID_collected.
E2_F2_s.

E2;

E2_F2_r.

generate (CD,F2) .
Get_customer_demand.

send (CD,F2,C) .
send (CD,F2,RM) .

send (CD,F2,CACHE) .
send (CD, CACHE, RM) .
drop (CD, CACHE) .
F2_E3_s.

F2;

F2_E3_r.

Data_collected.

E3_F3_s.
E3;
E3_F3_r.

send (CulD,RM, CACHE) .
send (CulID, CACHE,F3).
drop (CulD, CACHE) .

send (Address, RM, CACHE) .
send (Address, CACHE,F3) .
drop (Address, CACHE) .
send (CV, RM, CACHE) .

send (CV, CACHE,F3) .

drop (CV, CACHE) .

Store_ID_Data.
send (CulD,F3,RM) .

send (Address, F3,RM) .
send (CV,F3,RM) .

41

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

send (CulD,F3,CACHE) .
send (CulID, CACHE,DB1) .
send (Address, F3,CACHE) .
send (Address, CACHE,DB1) .
send (CV,F3,CACHE) .

send (CV, CACHE,DB1) .
F3_E4_s.

F3;

proc E4=
F3_E4_r.

ID_data_stored.

E4_F4_s.
E4;

proc F4=
E4_F4_r.

send (CD, RM, CACHE) .

send (CD, CACHE, F4) .
drop (CD, CACHE) .
Store_customerDemand_data.

send (CD,F4,RM) .

send (CD, F4,CACHE) .
send (CD, CACHE,DB1) .

F4_E5_s.
F4;

proc Eb5=
F4_E5_r.

Data_stored.

E5_F5_s.
E5;

proc Fb5=
E5_F5_r.

send (CulID, CACHE,F5) .

send (Address, CACHE, F5) .
generate (SchufabDatal,DBSchufa) .
send (SchufaDatal, DBSchufa,F5) .

generate (SchufabData2,F5) .
generate (CW,F5) .

Credit_worthiness.

send (Schufabata2,F5,DBSchufa) .
send (CW, F5, CACHE) .

send (CW, CACHE, DB1) .

F5_F6_s.

F5;

proc E6=
F5_E6_r.

CreditWorthyness_computed.

E6_Fo6_s.
E6;

proc Fé6=
E6_Fo6_r.

42

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

proc E7=

proc F7=

proc Spl

proc E8=

proc EO9=

proc F8=

send (CulD, CACHE,Fo) .
send (Address, CACHE, Fo6) .
send (CV, CACHE, Fo6) .

send (CW, CACHE, F6) .
generate (Rating, F6) .

Rating_customer.

send (Rating, F6,CACHE) .
send (Rating, CACHE,DB1) .

F6_E7_s.

F6;

F6_E7_r.
Rating_computed.
E7_F7_s.

E7;

E7_F_r.

send (CulD, CACHE,F7) .
send (Rating, CACHE,F7) .

sum accept:Bool.Customer_acceptance.

send (CulID,F7,CA) .
send (Rating,F7,CA) .

F7_Splitl_s (accept) .
F7;

itl=

sum b:Bool.F7_Splitl_r(b).
(b->Splitl_E8_s<>Splitl_E9_s).
Splitl;

Splitl _E8_r.
Customer_accepted.
E8_F8_s.

E8;

Splitl_E9_r.
Customer_not_accepted.
E9;

E8_F8_r.

send (CV, CACHE, F8) .
send (CW, CACHE, F8) .
send (CD, CACHE, F8) .
generate (Product, F8) .

Create_optimized_product.
send (Product,F8,CA) .

send (CV,F8,CA) .

send (CW,F8,CA) .

send (CD,F8,CA) .

send (Product, F8, CACHE) .
send (Product, CACHE,DB1) .

43

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

F8_E10_s.
F8;

proc E10=
F8_E10_r.
Price_computed.
E10_F9_s.
E10;

proc FO9=
E10_F9_r.

send (Product, DB1, CACHE) .
send (Product, CACHE,F9) .
send (CulD, CACHE,F9) .

generate (CoID,F9) .
generate (PP,F9) .

Create_contract.

send (Product,F9,RM) .
send (CulID,F9,RM) .
send (CoID,F9,RM) .
send (PP,F9,RM) .

PP,F9,CACHE) .
PP, CACHE, DB2) .
CoID,F9,CACHE) .
CoID, CACHE,DB2) .

send
send
send
send

send (CoID, CACHE, Contract) .
send (PP, CACHE, Contract) .

FO9_FE11_s.
F9;

proc Ell=
F9_E11l_r.
Contract_created.
E11_F10_s.
E11;

proc F10=
E11_F10_r.

send (CoID, CACHE,F10) .
generate (SRM_RMID,F10) .

RM_signature.

send (SRM_RMID,F10,RM) .
send (CoID,F10,RM) .

send (SRM_RMID, F10, CACHE) .
send (SRM_RMID, CACHE, DB2) .

send (SRM_RMID, CACHE, Contract) .

F10_E12_s.
F10;

proc El2=
F10_El12_r.
RM_has_signed.
E12_F11_s.
E12;

proc Fll=
El12_F1l_r.

send (CoID,CACHE,F11) .
generate (SC,F11) .

44

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
417
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

Customer_signature.

send (SC,F11,C).
send (CoID,F11,C).

send (SC,F11, CACHE) .
send (SC, CACHE, DB2) .
send (SC, CACHE, Contract) .

F11_E13_s.
Fl1;

proc El13=
F11_E13_r.
Contract_signed.
E13_F1l2_s.
E13;

proc Fl2=
E13_Fl2_r.

send (SRM_RMID,CACHE,F12) .
send (CoID,CACHE,F12) .
generate (SCO_COID,F12).

Approve_contract.

send (SRM_RMID,F12,CO) .
send (SCO_COID,F12,CO) .
send (CoID,F12,CO) .

send (SCO_COID,F12,CACHE) .
send (SCO_COID, CACHE,DB2) .
send (SCO_COID,CACHE, Contract) .

F12_E14_s.
Fl2;

proc El4=
Fl2_El14_r.
Contract_approved.
E14_F13_s.
E1l4;

proc F1l3=
E14_F13_r.

send (CoID,CACHE,F13) .
generate (MT1,F13).

Cash_payment.

send (CoID,F13,C).
send (MT1,F13,C) .

send (MT1,F13, CACHE) .
send (MT1, CACHE,DB2) .

F13_E15_s.
F13;

proc E15=
F13_E15_r.
Cash_paid.
E15_F14_s.
E15;

proc Fl4=
(E15_F14_r+E16_F14_r) .

send (CoID, CACHE,F14) .

send (PP, CACHE,F14) .
generate (MT2,F14) .

45

498

499 Cash_returned.

500

501 send (CoID,F14,C) .

502 send (PP,F14,C) .

503 send (MT2,F14,C) .

504

505 send (MT2,F14, CACHE) .

506 send (MT2, CACHE, DB3) .

507 send (PP, F14,CACHE) .

508 send (PP, CACHE, DB3) .

509

510 sum repeat:Bool.F14_Split2_s (repeat) .
511 Fl14;

512

513 |proc Split2=

514 sum b:Bool.F1l4_Split2_r (b).

515 (b->Split2_ E17_s<>Split2_E16_s) .
516 Split2;

517

518 |proc El6=

519 Split2_El6_r.

520 Open_PP.

521 El6_Fl4_s.

522 E16;

523

524 |proc El7=

525 Split2_E17_r.

526 Closed_PP.

527 E17_F15_s.

528 E17;

529

530 |proc F15=

531 E17_F15_r.

532

533 send (CoID, CACHE,F15).

534 send (MT1, CACHE,F15) .

535 generate (ClosingDate,F15) .

536

537 Close_contract.

538

539 send (ClosingDate,F15, CACHE) .

540 send (ClosingDate, CACHE, DB3) .

541

542 F15_E18_s.

543 F15;

544

545 |proc E18=

546 F15_E18_r.

547 Contract_closed.

548 E18;

549

550

551 | 5%%%%55%5%55555%5%555555%55555%5%5555%555555%5%55555%555555%555555%5%555%5%%5%%%
552 [% %
553 | % Declaration of actions %
554 [% %
555 | $%%%%5%5%5%555%5%5%5%5%5%555%55%55%5%5%55%555%555%55%55%5%555%555%5%%5%%%5%5%%%
556

557 |aet EI1_Fl_s, E1_Fl_r, EI1_Fl_c,

558 F1_E2_s, F1_E2_r, F1_E2_c,

559 E2_F2_s, E2_F2_r, E2_F2_c,

560 F2_E3_s, F2_E3_r, F2_E3_c,

561 E3_F3_s, E3_F3_r, E3_F3_c,

562 F3_E4_s, F3_E4_r, F3_E4_c,

563 E4_F4_s, E4_F4_r, E4_F4_c,

564 F4_E5_s, F4_E5_r, F4_E5_c,

565 E5_F5_s, E5_F5_r, E5_F5_c,

566 F5_E6_s, F5_E6_r, F5_E6_c,

567 E6_F6_s, E6_F6_r, E6_F6_c,

568 F6_E7_s, F6_E7_r, F6_E7_c,

569 E7_F7_s, E7_F7_r, E7_F7_c,

570 Splitl_E8_s, Splitl_ES_r, Splitl_ES_c,

46

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

Splitl_E9_s, Splitl_E9_r, Splitl_E9_c,
E8_F8_s, E8_F8_r, E8_F8_c,

F8_E10_s, F8_E10_r, F8_E10_c,

E10_F9_s, E10_F9_r, E10_F9_c,

F9_El1l s, F9_El1l_r, F9_EIl c,

E11_F10_s, E11_F10_r, E11_F10_c,
F10_El2_s, F10_El12_r, F10_E12_c,
E12_F11_s, E12_F11_r, E12_F11_c,
F11_E13_s, F11_E13_r, F11_E13_c,
E13_Fl12_s, E13_Fl2_r, E13_Fl2_c,
F12_El4_s, F12_El4_r, F12_El4_c,
El14_F13_s, E14_F13_r, E14_F13_c,
F13_E15_s, F13_El15_r, F13_E15_c,
E15_Fl14_s, E15_Fl4_r, E15_Fl4_c,
El6_Fl14_s, El6_F14_r, El6_F14_c,
Split2_El17_s, Split2_El6_r, Split2_El6_c,
Split2_FEl6_s, Split2_El17_r, Split2_El7_c,
E17_F15_s, E17_F15_r, E17_F15_c,
F15_E18_s, F15_E18_r, F15_E18_c;

act F7_Splitl_s, F7_Splitl_r, F7_Splitl_c,
Fl4_Split2_s, Fl4_Split2_r, F1l4_Split2_c:Bool;

act Customer_arrived,
Get_customer_identity,
ID_collected,
Get_customer_demand,
Data_collected,
Store_ID_Data,
ID_data_stored,
Store_customerDemand_data,
Data_stored,
Credit_worthiness,
CreditWorthyness_computed,
Rating_customer,
Rating_computed,
Customer_acceptance,
Customer_accepted,
Customer_not_accepted,
Create_optimized_product,
Price_computed,
Create_contract,
Contract_created,
RM_signature,
RM_has_signed,
Customer_signature,
Contract_signed,
Approve_contract,
Contract_approved,
Cash_payment,
Cash_paid,
Cash_returned,
Open_PP,
Closed_PP,
Close_contract,
Contract_closed;

act send:DataString#Store#Store; % Copy information from one storage place to
generate:DataString#Store; % Generate some information and store it.
drop:DataString#Store; % Remove information from some storage place.

R E e E e T
% %
% Parallel combination of all tasks and events %
% %
B R R R e R R R R R e R R e e R R e R E e R L e E EE R e
init allow({send, generate, drop,

Customer_arrived, Get_customer_identity,

ID_collected, Get_customer_demand,

Data_collected, Store_ID_Data,
ID_data_stored, Store_customerDemand_data,

47

another.

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

Data_stored, Credit_worthiness,
CreditWorthyness_computed, Rating_customer,
Rating_computed, Customer_acceptance,
Customer_accepted, Customer_not_accepted,
Create_optimized_product, Price_computed,
Create_contract, Contract_created,
RM_signature, RM_has_signed,
Customer_signature, Contract_signed,
Approve_contract, Contract_approved,
Cash_payment, Cash_paid,

Cash_returned, Open_PP,

Closed_PP, Close_contract,

Contract_closed,

El Fl ¢, F1_E2_c, E2_F2_c, F2_E3_c,
E3_F3_c, F3_E4_c, E4_F4_c, F4_ES5_c,
E5_F5_c, F5_E6_c, E6_F6_c, F6_E7_c,
E7_F7_c, Splitl_E8_c, Splitl_E9_c, E8_F8_c,
F8_E10_c, E10_F9_c, F9_Ell_c, E11_F10_c,
F10_El12_c, E12_F1l1l_c, F11_E13_c, E13_Fl2_c,
F12_El14_c, E14_F13_c, F13_E15_c¢, E15_Fl4_c,
El6_F14_c, Split2_El6_c, Split2_El17_c, E17_F15_c,
F15_E18_c, F7_Splitl_c, F14_Split2_c

}!

comm({E1_F1l_s|E1_Fl_r->E1_F1_c,

F1_E2_s|F1_E2_r->F1_E2_c,
E2_F2_s|E2_F2_r->E2_F2_c,
F2_E3_s|F2_E3_r->F2_E3_c,
E3_F3_s|E3_F3_r->E3_F3_c,
F3_FE4_s|F3_E4_r->F3_E4_c,
E4_F4_s|E4_F4_r—->E4_F4_c,
F4_E5_s|F4_E5_r->F4_Eb5_c,
E5_F5_s|E5_F5_r—->E5_F5_c,
F5_E6_s|F5_E6_r->F5_E6_c,
E6_F6_s|E6_F6_r->E6_F6_c,
F6_E7_s|F6_E7_r->F6_E7_c,
E7_F7_s|E7_F7_r->E7_F7_c,
Splitl_E8_s|Splitl_E8_r->Splitl_E8_c,
Splitl_E9_s|Splitl_E9_r->Splitl_E9_c,
E8_F8_s|E8_F8_r—->E8_F8_c,
F8_E10_s|F8_E10_r->F8_E10_c,
E10_F9_s|E10_F9_r->E10_F9_c,
F9_E11_s|F9_Ell_r->F9_Ell_c,
E11_F10_s|E11_F10_r->E11_F10_c,
F10_E12_s|F10_E12_r->F10_E1l2_c,
E12_F11_s|E12_F11_r->E12_F1l1_c,
F11_E13_s|F11_E13_r->F11_FE13_c,
E13_F12_s|E13_F12_r->E13_F12_c,
F12_FE14_s|Fl2_El4_r->F12_FEl4_c,
E14_F13_s|E14_F13_r->E14_F13_c,
F13_E15_s|F13_E15_r->F13_El5_c,
E15_F14_s|E15_F14_r->E15_F1l4_c,
E16_F14_s|El6_F14_r->El6_F1l4_c,
Split2_El6_s|Split2_El6_r->Split2_El6_c,
Split2_E17_s|Split2_E17_r->Split2_E17_c,
E17_F15_s|E17_F15_r->E17_F15_c,
F15_E18_s|F15_E18_r->F15_E18_c,
F7_Splitl_s|F7_Splitl_r->F7_Splitl_c,
F14_Split2_s|F14_Split2_r->F14_Split2_c
) ’

E1||F1| |E2||F2||E3||F3||E4]||F4]||E5

F5| |E6| |F6||E7||F7||Splitl]| |E8]||E9] |

F8||E10| |F9||E11||F10||E12||F11]||E13]|]

F12||E14]| |F13| |E15]| |F14| |Split2]| |E15||E17||F15]|E18));

9 Related Work

In [I9] the importance of a resource and data driven analysis of business processes is stressed.
But the authors do not deliver a formal solution suitable to be fully automated as requested by
Credit Suisse (CS). In [20] disaster recovery plans are evaluated based on ARIS methodology.

48

This solution does not show how to generate the full configuration space that fulfills possible side-
constraints as requested by CS. In [2I] an organizational solution to address information security
management problems is presented. But this solution cannot be automated as requested by CS.
In [22] and [23] the claim is made that continuity processes need to be checked for security, risk
and compliance, and that BCMs and risk solutions should be soundly integrated. This claim is
fully compatible with the view of CS. In [24] a solution using EPC to simulate processes regarding
their risks and costs is proposed by the help of a goal-risk framework. But the complete process
configuration space can not be generated and checked for side-constraints as requested by CS.

In [25] the workflow system AgentWork is able to support dynamic workflows based on event-
condition-action rules. In contrast to that, CS requested that workflow adaptions should be
handled based on declarative continuity snippets only. Given such snippets, we can apply our
modification technique automatically. Therefore, such rules do not need to be specified. In [26]
a solution guaranteeing the structural correctness of a process model is presented while applying
dynamic changes. However, this case is different from the CS scenario where a set of continuity
processes is generated in advance based on continuity snippets to enable optimizations and case
based decisions, assumed that given side-constraints are respected. In [27] change patterns are
proposed as a means to handle modifications of a workflow model and in [28] important correctness
problems regarding general modifications are discussed in a comparative survey. In the present sce-
nario already well-formed sub-processes are given. The presented generation technique composes
these sub-processes in a controlled way, such that the well-formednes is preserved, which repre-
sents an important correctness issue. In addition to that, CS requested to check side-constraints.
We do that by the help of graph constraint checks. Therefore, modification rules need not to be
maintained and side-constraints can be modeled globally. In [3] a framework for service, process
and rule models in the context of enterprise engineering is presented. The techniques presented
in this paper are kept fully compatible with this approach as requested by CS.

In [29] and [30] the use of graph transformation and graph substitution techniques is discussed.
However, our focus is different. The reconstructed graph grammar formalizes the operational
semantics. So, there is no need to model dependencies. They can be automatically derived from
the descriptive EPC model. Therefore, the overall modeling effort can be minimized as requested
by CS.

10 Conclusions and Future Work

BCMSs have to support the execution of alternatives for regular business processes in case of
failures. For this purpose, these alternatives have to be modeled and maintained. However, the
modeling of complete alternatives for all combinations of failures is not practicable and inconsis-
tencies may easily occur. Furthermore, security, risk and compliance shall also be ensured for all
these alternatives.

The presented solution dramatically reduces the necessary efforts and supports an automatic
validation of the objectives in an intuitive and formal way. Alternatives are generated automat-
ically based on a set of declarative fragments that replace regular process parts for particular
failures. Complete alternatives for combinations of failures can therefore be derived using the
same set of fragments. The business functions of the derived process models are ensured to get
correct and available in- and output data and furthermore, the organizational entities are ensured
to be able to retrieve the data, because they are required to have access to them. Finally, the graph
model specifies which actor executes which business function and which data occurs on which stor-
age devices. This enables automatic checks of security requirements using graph constraints as
well as simulations that can be evaluated usind the annotated costs.

Therefore, the presented technique is practicable, easy to maintain and supports a formal
validation of the results. Future work will encompass the implementation of the presented graph
techniques for process optimization and composition. It will further address more cases as well as
their validation.

References

[1] Knight, Pretty: The impact of catastrophes on shareholder value. In: The oxford executive
research briefings, University of Oxford, Oxford, England, Templeton College (1996)

49

2]

[3]

[4]

[14]

[15]

[16]
[17]

Chandramouli, R.: FEnterprise access policy enforcement for applications through hybrid
models and xslt technologies. In: ICEC ’04: Proc. 6th Int. Conf. on Electronic commerce,
New York, NY, USA, ACM (2004) 490-499

Brandt, C., Engel, T., Hermann, F.: Security and consistency of it and business models
at credit suisse realized by graph constraints, transformation and integration using algebraic
graph theory. In: BPMDS 2009 and EMMSAD 2009, LNBIP 29, Berlin/Heidelberg, Springer
(2009) 339-352

Sarbanes, P., Oxley, M.: Public company accounting reform and investor protection act,
Washington, Government Printing Office (2002)

BSi: Business continuity management. bsi 25999-1, British Standards Institution (2006)

Boehmer, W.: Survivability and business continuity management system according to bs
25999. In: Proc. Int. Conf. on Emerging Security Information, Systems and Technologies
(SECURWARE 2009), Athens/Vouliagmeni, Greece, IEEE Computer Society (June 2009)

Scheer, A.W.: ARIS-Modellierungs-Methoden, Metamodelle, Anwendungen. Springer,
Berlin/Heidelberg (2001)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theoretical Computer Science. Springer (2006)

Biermann, E., Ermel, C., Lambers, L., Prange, U., Taentzer, G.: Introduction to agg and emf
tiger by modeling a conference scheduling system. Software Tools for Technology Transfer
(2010) To appear.

Tiger Project Team, Technische Universitdt Berlin: EMF Tiger (2009) http://tfs.cs.tu-berlin.
de/emftrans.

Corradini, A., Hermann, F., Sobocinski, P.: Subobject Transformation Systems. Applied
Categorical Structures 16(3) (February 2008) 389-419

Hermann, F.: Permutation Equivalence of DPO Derivations with Negative Application
Conditions based on Subobject Transformation Systems. In: Proc. Int. Conf. on Graph
Transformation-Doctorial Symposium (ICGT-DS’08), Electronic Communications of the
EASST (2009) (to appear).

Hermann, F., Corradini, A., Ehrig, H., Konig, B.: Efficient Analysis of Permutation Equiv-
alence of Graph Derivations Based on Petri Nets. In Kiister, J., Tuosto, E., eds.: Proc.
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT’10), EC-
EASST (2010) To appear.

Brandt, C., Engel, T., Hermann, F.: Business Continuity Management regarding Security,
Risk and Compliance of a Loan Granting Process at Credit Suisse using Algebraic Graph
Theory (Long Version). Technical report, Technische Universitdt Berlin,Fakultdt IV ((to
appear 2009)) tfs.cs.tu-berlin.de/publikationen/Papers09/BEH09.pdf.

Groote, J.F., Mathijssen, A., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.: 2. In:
Analysis of Distributed Systems with mCRL2. 1.st. edn. Chapman & Hall/CRC (2008) 99—
128 (www.mcrl2.org)

TFS-Group, TU Berlin: AGG. (2009) http://tfs.cs.tu-berlin.de/agg.

Ehrig, H., Ermel, C., Hermann, F.: On the Relationship of Model Transformations Based on
Triple and Plain Graph Grammars. In Karsai, G., Taentzer, G., eds.: Proc. Third Interna-
tional Workshop on Graph and Model Transformation (GraMoT’08), New York, NY, USA,
ACM (2008)

Groote, J., Willemse, T.: Model-checking processes with data. Science of Computer Pro-
gramming 56 (2005) 251-273

a0

http://tfs.cs.tu-berlin.de/emftrans
http://tfs.cs.tu-berlin.de/emftrans
http://www.tfs.cs.tu-berlin.de/publikationen/Papers09/BEH09.pdf
http://tfs.cs.tu-berlin.de/agg

[19]

[20]

[21]

[22]

Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3) (2003)

Sztandera, P., Ludzia, M., Zalewski, M.: Modeling and analyzing disaster recovery plans as
business processes. In: Computer Safety, Reliability, and Security, Lecture Notes in Computer
Science. Volume 5219., Berlin/Heidelberg, Springer (2008) 113-125

Eloff, J.H.P., Eloff, M.: Information security management: a new paradigm. In: Proc.
research conf. of the South African Institute of Computer Scientists and Information Tech-
nologists on enablement through technology (SAICSIT ’03), Republic of South Africa, South
African Institute for Computer Scientists and Information Technologists (2003) 130-136

Quirchmayr, G.: Survivability and business continuity management. In: Proc. of the 2nd
WS on Australasian information security, Data Mining and Web Intelligence, and Software
Internationalisation (ACSW Frontiers '04), Darlinghurst, Australia, Australia, Australian
Computer Society, Inc. (2004) 3-6

Cha, S.C., Juo, P.W., Liu, L.T., Chen, W.N.: Riskpatrol: A risk management system con-
sidering the integration risk management with business continuity processes. In: Intelligence
and Security Informatics, Taipei, IEEE (2008) 110 — 115

Asnar, Y., Giorgini, P.: Analyzing business continuity through a multi-layers model. In: Busi-
ness Process Management, Lecture Notes in Computer Science. Volume 5240., Berlin/Heidel-
berg, Springer (2008) 212227

Miiller, R., Greiner, U., Rahm, E.. AGENT WORK: a workflow system supporting rule-based
workflow adaptation. Data Knowl. Eng. 51(2) (2004) 223-256

Reichert, M., Dadam, P.: ADEPT flex -supporting dynamic changes of workflows without
losing control. Journal of Intelligent Information Systems 10(2) (1998) 93-129

Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features -
enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3) (2008)
438-466

Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in workflow
systems: a survey. Data Knowl. Eng. 50(1) (2004) 9-34

Heimann, P., Joeris, G., Krapp, C.A., Westfechtel, B.. DYNAMITE: dynamic task nets for
software process management. In: ICSE "96: Proceedings of the 18th international conference
on Software engineering, Washington, DC, USA, IEEE Computer Society (1996) 331-341

Bogia, D.P., Kaplan, S.M.: Flexibility and control for dynamic workflows in the worlds
environment. In: COCS ’95: Proceedings of conference on Organizational computing systems,
New York, NY, USA, ACM (1995) 148-159

ol

	Introduction
	Laws, Regulations, Rules
	Security
	Separation of duties

	Risk
	Emergency Procedures
	Business Continuity Management

	Compliance
	Information Barriers
	Payment Plans

	Business Continuity Management
	A Loan Granting Process
	Scenario
	Business Process Model

	Algebraic Graph Transformation
	Analysis and Optimization
	Graph Grammar for a WDEPC
	Computation of Dependencies
	Computation of Alternatives
	Validation of Objectives

	Generated Universe of Continuity Processes
	Transformation to mCRL2
	Introduction
	Triple Rules from WDEPC to mCRL2
	Model Transformation in the Tool AGG
	Verification of some Modal Properties
	A data-flow requirement
	An information-flow requirement
	An information-derivation requirement
	Verification commands

	Model for Lending Process

	Related Work
	Conclusions and Future Work

