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Abstract. Several different approaches to define the formal operational
semantics of statecharts have been proposed in the literature, includ-
ing visual techniques based on graph transformation. These visual ap-
proaches either define a compiler semantics (translating a concrete stat-
echart into a semantical domain) or they define an interpreter using
complex control structures. Based on the existing visual semantics defini-
tions, it is difficult to apply the classical theory of graph transformations
to analyze behavioral statechart properties due to the complex control
structures. In this paper, we define an interpreter semantics for state-
charts based on amalgamated graph transformation where rule schemes
are used to handle an arbitrary number of transitions in orthogonal states
in parallel. We build on an extension of the existing theory of amalga-
mation from binary to multi-amalgamation including nested application
conditions to control rule applications for automatic simulation. This
is essential for the interpreter semantics of statecharts. The theory of
amalgamation allows us to show termination of the interpreter seman-
tics of well-behaved statecharts, and especially for our running example,
a producer-consumer system.

1 Introduction and Related Work

In [1], Harel introduced statecharts by enhancing finite automata by hierarchies,
concurrency, and some communication issues. Over time, many versions with
slightly differing features and semantics have evolved. In the UML specification
[2], the semantics of UML state machines is given as a textual description accom-
panying the syntax, but it is ambiguous and explained essentially by examples.
In [3], a structured operational semantics (SOS) for UML statecharts is given
based on the preceding definition of a textual syntax for statecharts. The se-
mantics uses Kripke structures and an auxiliary semantics using deduction, a
semantical step is a transition step in the Kripke structure. This semantics is
difficult to understand due to its non-visual nature. The same problem arises in
[4], where labeled transition systems and algebraic specification techniques are
used.

There are also different approaches to define a visual rule-based semantics of
statecharts. One of the first was [5], where for each transition t a transition pro-
duction pt is derived describing the effects of the corresponding transition step.
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A similar approach is followed in [6], where first a state hierarchy is constructed
explicitly, and then a semantical step is given by a complex transformation unit
constructed from the transition rules of a maximum set of independently en-
abled transitions. In [7], in addition, class and object diagrams are integrated.
The approach highly depends on concrete statechart models and is not a general
interpreter semantics for statecharts. Moreover, problems arise for nesting hier-
archies, because the resulting situation is not fixed but also depends on other
current or inactive states. In [8], the hierarchies of statecharts are flattened to
a low-level graph representing an automaton defining the intended semantics of
the statechart model. This is an indirect definition of the semantics, and again
dependent on the concrete model, since the transformation rules have to be
specified according to this model.

In [9], Varró defines a general interpreter semantics for statecharts. His in-
tention is to separate syntactical and static semantic concepts (like conflicts,
priorities etc.) of statecharts from their dynamic operational semantics, which is
specified by graph transformation rules. To this end, he uses so-called model tran-
sition systems to control the application of the operational rules, which highly
depend on additional structures encoding activation or conflicts of transitions
and states.

The main advantage of our solution is that we do not need external control
structures to cover the complex statecharts semantics: we define a state transition
mainly by one interaction scheme followed by some clean-up rules. Therefore, our
model-independent definition based on rule amalgamation is not only visual and
intuitive but allows us to show termination and forms a solid basis for applying
further graph transformation-based analysis techniques.

The rest of the paper is structured as follows. Section 2 gives a brief intro-
duction to our model of statecharts as typed attributed graphs. In Section 3, we
review the basic ideas of algebraic graph transformation [10] and give a short
introduction to amalgamated transformation based on [11], which is used for the
operational semantics of statecharts in Section 4. Based on the given semantics,
we discuss the formal analysis of termination of semantical steps in statecharts.
The operational semantics is demonstrated along a sample statechart modeling
a producer-consumer system in Section 5. Finally, Section 6 concludes our paper
and considers future work directions.

2 Modeling of Statecharts

In this section, we model statecharts by typed attributed graphs. We restrict
ourselves to the most interesting parts of the statechart diagrams: we allow
orthogonal regions as well as state nesting. But we do not handle entry and exit
actions on states, nor extended state variables, and we allow guards only to be
conditions over active states.

In Fig. 1, the sample statechart ProdCons is depicted modeling a producer-
consumer system. When initialized, the system is in the state prod, which has
three regions. There, in parallel a producer, a buffer, and a consumer may act.
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Fig. 1. Sample statechart ProdCons

The producer al-
ternates between the
states produced and
prepare, where the
transition produce

models the actual pro-
duction activity. It is
guarded by a condition
that the parallel state
empty is also current, meaning that the buffer is empty and may receive a product,
which is then modeled by the action incbuff denoted after the /-dash. Similarly
to the producer, the buffer alternates between the states empty and full, and the
consumer between wait and consumed. The transition consume is again guarded
by the state full and followed by a decbuff-action emptying the buffer.

Two possible events may happen causing a state transition to leave the state
prod: the consumer may decide to finish the complete run; or there may be a fail-
ure detected after the production leading to the error-state. Then, the machine
has to be repaired before the error-state can be exited via the corresponding
exit-transition and the standard behavior in the prod-state is executed again.

For our statechart language, we use typed attributed graphs, which are an
extension of typed graphs by attributes [10]. We do not give details here, but use
an intuitive approach to attribution, where the attributes of a node are given in
a class diagram-like style. For the values of attributes in the rules we can also
use variables.

SM
name:String

R P

E
name:String

T S
name:String
isInitial:Bool

isFinal:Bool

TE
name:String

A
name:String

G

0..1

0..1 0..11

1 1

1
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1
0..1

1

1

1..n

1..n

region behaviour

currentnew
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trigger

action guard

begin

end

condition

next

sub

Fig. 2. Type graph TGSC for statecharts

The type graph TGSC

is given in Fig. 2. We
use multiplicities to denote
some constraints directly in
the type graph. To ob-
tain valid statechart models,
some more constraints are
needed which are described
in the following.

Each diagram consists of
exactly one statemachine SM containing one or more regions R. A region contains
states S, where state names are unique within each region. A state may again
contain one or more regions. Each region is contained in either exactly one state
or the statemachine. States may be initial (attribute value isInitial = true)
or final (attribute value isFinal=true), each region has to contain exactly one
initial and at most one final state, and final states cannot contain regions. Edge
type sub is only necessary to compute all substates of a state, which we need for
the definition of the semantics. This relation is computed in the beginning using
the states- and regions-edges.

A transition T begins and ends at a state, is triggered by an event E, and may
be restricted by a guard G and followed by an action A. A guard has one ore more
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Fig. 3. Statechart ProdCons in abstract syntax

states as condition. There is a special event with attribute value name="exit"

reserved for exiting a state after the completion of all its orthogonal regions,
which cannot have a guard condition. Final states cannot be the beginning of a
transition and their name has to be "name=final". Transitions cannot link states
in different orthogonal regions of the same superstate.

A pointer P describes the active states of the statemachine. Note that newly
inserted current states are marked by the new-edge, while for established current
states the current-edge is used (which is assumed to be the standard type and
thus not marked in our diagrams). This is due to our semantics definition, where
we need to distinguish between states that were current before and states that
just became current in the last state transition. Trigger elements TE describe
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the events which have to be handled by the statemachine. Note that this is not
necessarily a queue because of orthogonal states, but for simplicity we call it
event queue. There are at least the empty trigger element with attribute value
name=null and exactly one pointer in each diagram.

In Fig. 3, the sample statechart ProdCons from Fig. 1 is depicted in abstract
syntax. Nodes P and TE are added, which have to exist for a valid statechart
model but are not visible in the concrete syntax. For simulating statechart runs,
the event queue of the statechart (consisting of only one default element named
null in Fig. 3) can be filled by events to be processed (see Fig. 9 in Section 5 for
a possible event queue for our sample statechart).

3 Introduction to Amalgamated Graph Transformation

In this section, we review the basic ideas of algebraic graph transformation [10]
and give a short introduction into amalgamated transformation based on [11],
to be used for the interpreter semantics of statecharts in Section 4.

A graph grammar GG = (RS, SG) consists of a set of rules RS and a start
graph SG. A rule p = (L l←− K

r−→ R, ac) consists of a left-hand side L, an
interface K, a right-hand side R, two injective graph morphisms L

l←− K and
K

r−→ R, and an application condition ac on L. Applying a rule p to a graph G
means to find a match m of L in G, given by a graph morphism L

m−→ G which
satisfies the application condition ac, and to replace this matched part m(L) by
the corresponding right-hand side R of the rule. By G

p,m
=⇒ H, we denote the

direct graph transformation where rule p is applied to G with match m leading
to the result H. The formal construction of a direct transformation is a double-
pushout (DPO) as shown in the diagram below with pushouts (PO1) and (PO2)
in the category of graphs. The graph D is the intermediate graph after removing
m(L), and H is constructed as gluing of D and R along K.

L K R

G D H

ac l r

m (PO1) (PO2)

A graph transformation is a sequence of direct
transformations, denoted by G

∗=⇒ H, and the
graph language L(GG) of graph grammar GG is
the set L(GG) = {G | ∃ SG

∗=⇒ G} of all graphs
G derivable from SG.

An important concept of algebraic graph transformation is parallel and se-
quential independence of graph transformation steps leading to the Local
Church–Rosser and Parallelism Theorem [12], where parallel independent steps
G

p1,m1=⇒ G1 and G
p2,m2=⇒ G2 lead to a parallel transformation G

p1+p2,m
=⇒ H based

on a parallel rule p1 + p2. If p1 and p2 share a common subrule p0, the amal-
gamation theorem in [13] shows that a pair of “amalgamable” transformations

G
(pi,mi)=⇒ Gi (i = 1, 2) leads to an amalgamated transformation G

p̃,m̃
=⇒ H via

the amalgamated rule p̃ = p1 +p0 p2 constructed as gluing of p1 and p2 along
p0. The concept of amalgamable transformations is a weak version of parallel
independence, and amalgamation can be considered as a kind of “synchronized
parallelism”.
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For the interpreter semantics of statecharts we need an extension of amalga-
mation in [13] w.r.t. three aspects: first, we need a family of rules p1, . . . , pn with
a common subrule p0 for n ≥ 2; second, we need typed attributed graphs [10]
instead of “plain graphs”, and third, we need rules with application conditions.

In the following, we formulate the extended amalgamation concept for a
general notion of graphs and application conditions, where general graphs are
objects in a weak adhesive HLR category [10] and general application conditions
are nested application conditions [14], including positive and negative ones and
their combinations by logic operators. For readers not familiar with weak adhe-
sive HLR categories and nested application conditions, it is sufficient to think of
rules based on graphs and (typed) attributed graphs with positive and/or nega-
tive application conditions (see [10] for more details). A match L

m−→ G satisfies
a positive (negative) condition of the form ∃a (¬∃a) for L

a−→ N if there is a
(no) injective q : N → G with q ◦ a = n. More general, L

m−→ G satisfies a
nested condition of the form ∃(a, acN ) on L with condition acN on N if there is
an injective N

q−→ G with q ◦ a = m and q satisfies acN . Note that ∀(a, acN ) is
denoted as ¬∃(a,¬acN ) (see application conditions in Figs. 6 - 7).

L L′

G

ac Shift(t , ac)t

m m′=

An important concept is the shift of ac on
L along a morphism t : L → L′ s.t. for all
m′ ◦ t : L → G, m′ satisfies Shift(t , ac) if and
only if m = m′ ◦ t : L→ G satisfies ac [15].

Based on [11], we are now able to introduce amalgamated rules and transfor-
mations with a common subrule p0 of p1, . . . , pn. A kernel morphism describes
how the subrule is embedded into the larger rules.

L0 K0 R0

Li Ki Ri

l0 r0

si,L
si,K si,R(1i) (2i)

Definition 1 (Kernel morphism). Given rules
pi = (Li

li←− Ki
ri−→ Ri, aci) for i = 0, . . . , n, a

kernel morphism si : p0 → pi consists of morphisms
si,L : L0 → Li, si,K : K0 → Ki, and si,R : R0 → Ri

such that in the diagram on the right (1i) and (2i) are pullbacks and (1i) has a
pushout complement for si,L ◦ l0, i.e. si,L satisfies the gluing condition w.r.t. l0.
The pullbacks (1i) and (2i) mean that K0 is the intersection of Ki with L0 and
also of Ki with R0.

p0 p̃

pi

t0

si ti=

Definition 2 (Amalgamated rule and transformation).

Given rules pi = (Li
li←− Ki

ri−→ Ri, aci) for i = 0, .., n with
kernel morphisms si : p0 → pi (i = 1, . . . , n), then the amal-
gamated rule p̃ = (L̃ ←− K̃ −→ R̃, ãc) of p1, . . . , pn via p0 is
constructed as the componentwise gluing of p1, . . . , pn along p0, where ãc is the
conjunction of Shift(ti,L, aci). L̃ is the gluing of L1, . . . , Ln with shared L0 lead-
ing to ti,L : Li → L̃. Similar gluing constructions lead to K̃ and R̃ and we obtain
kernel morphisms ti : pi → p̃ and ti ◦ si = t0 for i = 1, . . . , n. We call p0 kernel

rule, and p1, . . . , pn multi rules. An amalgamated transformation G
p̃

=⇒ H is a
transformation via the amalgamated rule p̃.
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Example 1 (Amalgamated rule construction). We construct an amalgamated
rule for the initialization of a statemachine with two orthogonal regions. A
pointer has to be linked to the statemachine and to the initial states of both
the statemachine’s regions. Rules are depicted in a compact notation where we
do not show the interface K. It can be inferred by the intersection L ∩ R. The
mappings are given as numberings for nodes and can be inferred for edges. The
kernel rule p0 in Fig. 4 models the linking of the pointer to the statemachine.
We have two multi-rules p1 and p2 modelling the linking of the pointer to the
initial states of two different regions. In the amalgamated rule p̃, the common
subaction (linking the pointer to the statemachine) is represented only once
since the multi-rules p1 and p2 have been glued at the kernel rule p0. The kernel
morphisms are ti : pi → p̃ for i = 1, 2.

p0 : 1:SM 2:P

L0

1:SM 2:P

R0

p1 :

1:SM 2:P

3:R
4:S

isInitial=trueL1

1:SM 2:P

3:R
4:S

isInitial=trueR1

p2 :

1:SM 2:P

5:R
6:S

isInitial=trueL2

1:SM 2:P

5:R
6:S

isInitial=trueR2

p̃ :

1:S 2:P

3:R
4:S

isInitial=true

5:R
6:S

isInitial=trueL̃

1:S 2:P

3:R
4:S

isInitial=true

5:R
6:S

isInitial=trueR̃

s1,L s1,R

s2,L

s2,R

t1,L

t1,R

t2,L t2,R

new

new

new

new

new

Fig. 4. Construction of amalgamated rule

Given a bundle of direct transformations G
pi,mi=⇒ Gi (i = 1, .., n), where p0 is a

subrule of pi, we want to analyze whether the amalgamated rule p̃ is applicable
to G combining all direct transformations. This is possible if they are multi-
amalgamable, i.e. the matches agree on p0 and are parallel independent outside.
This concept of multi-amalgamability is a direct generalization of amalgamability
in [13] and leads to the following theorem [11].

Theorem 1 (Multi-amalgamation). Given rules p0, . . . , pn, where p0 is a
subrule of pi, and multi-amalgamable direct transformations G

pi,mi=⇒ Gi (i =

1, . . . , n), then there is an amalgamated transformation G
p̃,m̃
=⇒ H.

Proof Idea: Using the properties of the multi-amalgamable bundle, we can
show that m̃ with m̃◦ti,L = mi induced by the colimit is a valid match leading to
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the amalgamated transformation because the componentwise gluing is a colimit
construction. For the complete proof see [16].

For many application areas, including the interpreter semantics of state-
charts, we do not want to explicitly define the kernel morphisms between the
kernel rule and the multi rules, but we want to obtain them dependent on the ob-
ject to be transformed. In this case, only an interaction scheme is = {s1, . . . , sk}
with kernel morphisms si : p0 → pj (j = 1, . . . , k) is given, which defines dif-
ferent bundles of kernel morphisms s′i : p0 → p′i (i = 1, . . . , n) where each p′i
corresponds to some pj for j ≤ k.

Given an interaction scheme, we want to apply as many rules pi as often as
possible over a certain match of the kernel rule p0. In the following, we consider
maximal weakly disjoint matchings, where we require the matchings of the multi
rules not only to be multi-amalgamable, but also disjoint up to the match of the
kernel rule, and maximal in the sense that no more valid matches for any multi
rule in the interaction scheme can be found. This leads to a bundle of kernel
morphisms s′i : p0 → p′i (i = 1, . . . , n) and a multi-amalgamable bundle of direct

transformations G
p′

i,m
′
i=⇒ Gi. Since p0 is a subrule of p′i for i = 1, . . . , n, because p′i

corresponds to some pj in the interaction scheme, we can apply Thm. 1 leading

to an amalgamated transformation G
p̃′,m̃
=⇒ H, where p̃′ is the amalgamated rule

of p′1, . . . , p
′
n via p0.

Given a set IS of interaction schemes is and a start graph SG , we obtain an
amalgamated graph grammar with amalgamated transformations via maximal
matchings, defined by maximal weakly disjoint matchings of the corresponding
multi rules.

Definition 3 (Amalgamated graph grammar). An amalgamated graph
grammar AGG = (IS , SG) consists of a set IS of interaction schemes and a
start graph SG. The language L(AGG) of AGG is defined by L(AGG) = {G | ∃
amalgamated transformation SG =∗⇒ G via maximal matchings}.

4 An Interpreter Semantics for Statecharts

The semantics of statecharts is modeled by amalgamated transformations, where
one step in the semantics is modeled by several applications of interaction
schemes. For the application of an interaction scheme we use maximal weakly
disjoint matchings.

The termination of the interpreter semantics of a statechart in general de-
pends on the structural properties of the simulated statechart. A simulation will
terminate for the trivial cases that the event queue is empty, that no transition
triggers an action, or that there is no transition from any active state triggered
by the current head elements of the event queue. Since transitions may trigger
actions which are added as new events to the queue it is possible that the simu-
lation of a statechart may not terminate. Hence, it is useful to define structural
constraints that provide a sufficient condition guaranteeing termination of the
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simulation in general for well-behaved statecharts, where we forbid cycles in the
dependencies of actions and events.

Definition 4 (Well-behaved statecharts). For a given statechart model, the
action–event graph has as nodes all event names and an edge (n1, n2) if an event
with name n1 triggers an action named n2.

A statechart is called well-behaved if it is finite, has an acyclic state hierar-
chy, and its action–event graph is acyclic.

An example of a well-behaved statechart is our statechart model in Fig. 1. It is
finite, has an acyclic state hierarchy, and its action–event graph is acyclic, since
the only action–event dependencies in our statechart occur between produce
triggering incbuff and consume triggering decbuff.

For the initialization step, we provide a finite event queue and compute all
substates of all states, which is not shown here. Then, the interaction scheme
init is applied followed by the interaction scheme enterRegions applied as long as
possible, which are depicted in Fig. 5. With init, the pointer is associated to the
statemachine and all initial states of the statemachine’s regions. The interaction

init = (s3)

1:SM 2:PL30
1:SM 2:PR30

1:SM 2:P

3:R
4:S

isInitial=trueL31

1:SM 2:P

3:R
4:S

isInitial=trueR31

ac30 = ¬∃a30 L30 R30

ac31 = true

enterRegions = (idp40 , s4, s
′
4, s

′′
4 )

1:S 2:PL40
1:S 2:PR40

1:S 2:P

3:R
4:S

isInitial=trueL41

1:S 2:P

3:R
4:S

isInitial=trueR41

ac40 = true

ac41 = ¬∃a41 ∧ ¬∃b41

L41

1:S 2:P

3:R S
L41

1:S 2:P

3:R S

L40 R40

1:S 2:P

5:R 6:S

L42
1:S 2:P

5:R 6:S

R42

ac42 = ¬∃a42 ∧ ¬∃b42

L42

1:S 2:P

5:R 6:S
L42

1:S 2:P

5:R 6:S

L40 R40

1:S 2:PL43
1:S 2:PR43

ac43 = true

a42 b42

new new
new

new

a41 b41

new new

new

new
new

a30

s3,L s3,R

s4,L s4,R

s′
4,L s′

4,R

s′′
4,L s′′

4,R

new

new

new

new

Fig. 5. The interaction schemes init and enterRegions
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scheme enterRegions handles the nesting and sets the current pointer also to
the initial states contained in an active state. When applied as long as possible,
all substates are handled. Note that only those initial substates become active
that are contained in a hierarchy of nested initial states. The interaction scheme
enterRegions also contains the identical kernel morphism idp40 : p40 → p40 to
ensure that the kernel rule is also applied in the lowest hierarchy level. For later
use, also double edges are deleted and if the direct superstate is not marked by
the pointer a new edge is added to it.

The initialization step (applying init once and enterRegions as long as pos-
sible) terminates because the application of the interaction scheme enterRegions

terminates: each application of enterRegions replaces one new edge with a current

edge. The multi rules p41 and p42 create new new-edges on the next lower and
upper levels of a hierarchical state, but if the state hierarchy is acyclic this in-

transitionStep = (s5, s
′
5)

L50

1:P 2:TE
name=x

TE

name=”exit”3:TE

1:P

3:TE
TE

TE

name=”exit”

2:TE
name=x

ac50 = ∀(a50, ∃b50) ∧ ¬∃c50 L50 1:P TE
2:TE

name=x
3:TE

1:P 2:TE
name=x

3:TE

L50

1:P 3:TE

R50

1:P 2:TE
name=x

3:TE

4:S

5:T

6:S

7:E
name=x

L51

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

R51

ac51 = ¬∃g51 ∧ ¬∃a51 ∧ ∀(b51, ∃c51) ∧ ∀(d51, ∃(e51,¬∃f51))

L51 L52 L51 A5 L51 B5 C5 L51 D5 E5 F5

1:P 2:TE

name=”exit”

3:TE

4:S
5:T

S
6:S

7:E

name=”exit”A5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S

7:E
name=x

G SB5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S

7:E
name=x

G SC5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

D5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

G
S

E5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

G
S

F5

L50 R50

1:P 2:TE
name=x

8:A
name=y

3:TE

4:S

5:T

6:S

7:E
name=x

L52

TE
name=y

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

8:A
name=y

R52

ac52 = ¬∃a52 ∧ ∀(b52,∃c52) ∧ ∀(d52,∃(e52,¬∃f52))

s5,L s5,R

a50 b50

c50

g51 b51 c51 d51 e51 f51a51

begin

end

new

begin

end

begin

end

begin

end

begin

end

begin

end
begin

begin

end
begin

begin

end
begin

s′
5,L s′

5,R

begin

end

new
begin

end

Fig. 6. The interaction scheme transitionStep
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teraction scheme is only applicable a finite number of times. The same holds for
the multi rule p43 which deletes double edges, since the number of current- and
new-edges is decreased. Thus, the transformation terminates.

Fact 1 (Termination of initialization step). For well-behaved statecharts,
the initialization step terminates.

A semantical step, i.e. switching from one state to another, is done by apply-
ing the interaction scheme transitionStep shown in Fig. 6 followed by the inter-
action schemes enterRegions!, leaveState1!, leaveState2!, and leaveRegions!

given in Fig. 5, Fig. 7, and Fig. 8 in this order, where ! means that the corre-
sponding interaction scheme is applied as long as possible.

For a semantical step, the first trigger element (or one of the first if more
than one action of different orthogonal substates may occur next) is chosen and
deleted, while the corresponding state transitions are executed. exit trigger el-
ements are handled with priority ensured by the application condition ac50. A
transition triggered by its trigger element is active if the state it begins at is
active, its guard condition state is active, and it has no active substate where a
transition triggered by the same event is active. These restrictions are handled
be the application conditions ac51 and ac52. Moreover, if an action is provoked,
it has to be added as one of the first next trigger elements. The two multi rules
of transitionStep handle the state transition with and without action, respec-
tively. The application condition ac52 is not shown explicitly, but the morphisms
a52, . . . , f52 are similar to a51, . . . , f51 containing an additional node 8:A.

The interaction schemes leaveState1, leaveState2, and leaveRegions
handle the correct selection of the active states. When for a yet active state
with regions, by state transitions all states in one of its regions are no longer ac-
tive, also this superstate is no longer active, which is described by leaveState1.
The interaction scheme leaveState2 handles the case that, when a state become
inactive by a state transition, also all its substates become inactive. If for a state
with orthogonal regions the final state in each region is reached then these final
states become inactive, and if the superstate has an exit-transition it is added
as the next trigger element. This is handled by leaveRegions.

leaveState1 = (idp60)

ac60 = ∃(a60,¬∃b60) L60

1:S 2:P

R

1:S 2:P

R S

1:S 2:PL60
1:S 2:PR60

leaveState2 = (s7)

ac70 = ¬∃a70
L70 1:S 2:P

1:S 2:PL70
1:S 2:PR70

1:S 2:P3:S

L71

1:S 2:P3:S

R71

ac71 = true

a70

s7,L s7,R

a60 b60

Fig. 7. The interaction schemes leaveState1 and leaveState2
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leaveRegions = (s8, s
′
8)

ac80 = ∀(a80, ∃b80) ∧ ¬∃c80 ∧ ¬∃d80

L80 1:S 2:P TE 3:TE

L80

1:S 2:P 3:TE

R
4:S

isFinal=true

1:S 2:P 3:TE

R
4:S

isFinal=true

L80

1:S 2:P 3:TE

4:S

isFinal=false

1:S 2:P 3:TE

L80

1:S 2:P 3:TE

R80

1:S 2:P 3:TE

4:SL81

1:S 2:P 3:TE

4:SR81

ac81 = true

L80 R80

1:S 2:P

3:TE4:T
5:E

name=”exit”
L82

1:S 2:P

3:TE
4:T 5:E

name=”exit”

TE

name=”exit”

R82

ac82 = ¬∃a82 L82 1:S2:P
3:TE

name=”exit”
4:T

5:E

name=”exit”

begina82

s8,L s8,R

d80

c80b80a80

begin begin

s′
8,L s′

8,R

Fig. 8. The interaction scheme leaveRegions

For the termination of a semantical step it is sufficient to show that the four
interaction schemes enterRegions, leaveState1, leaveState2, and leaveRegions

are only applicable a finite number of times. The interaction scheme enterRegions

terminates as shown in Fact 1. The interaction schemes leaveState1, leaveState2
as well as the multi rule p81 of leaveRegions reduce the number of active states
in the statechart by deleting at least one current edge. The application of the
second multi rule p82 of the interaction scheme leaveRegions prevents another
match for itself because it creates the situation forbidden by its application
condition ac82. It follows that the application of each of these four interaction
schemes as long as possible terminates.

Fact 2 (Termination of semantical steps). Given a well-behaved statechart,
each semantical step terminates.

Combining our termination results we can conclude the termination of the
statecharts semantics for well-behaved statecharts.

Theorem 2 (Termination of interpreter semantics). For well-behaved
statecharts with finite event queue, the interpreter semantics terminates.

Proof Idea: Each initialization step and each semantical step terminates acc.
to Facts 1 and 2. Moreover, each semantical step consumes an event from the
event queue. If it triggers an action, the acyclic action–event graph ensures that
there are only chains of events triggering actions, but no cycles, such that after
the execution of this chain the number of elements in the event queue actually
decreases. Thus, after finitely many semantical steps the event queue is empty
and the interpreter semantics terminates.
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5 Application to the Running Example

We now consider an initialization and a semantical step in our statechart example
from Fig. 1. In the top of Fig. 9, we show an incoming event queue as needed for
our system run to be processed. Note that the actions triggered by transitions
do not occur here because they are started internally, while the other events
have to be supplied from the environment. Below, the current states and their
corresponding state transitions are depicted.

For simulation, we apply the rules for the semantics starting with the graph
in abstract syntax in Fig. 3, extended by the event queue from Fig. 9 and all
sub-edges marking that a state is a substate of its superstate.

For the initialization step, we apply the interaction scheme init from Fig. 5
followed by enterRegions as long as possible. With init, we connect the state
machine and the pointer node, and in addition set the pointer to the prod state
using a new edge. Now the only available kernel match for enterRegions is the
match mapping node 1 to the prod state, and with maximal matchings we ob-
tain the bundle of kernel morphisms (idp40 , s4, s4, s4), where node 4 in L41 is
mapped to the states produced, empty, and wait, respectively. After applying the
corresponding amalgamated rule, the current pointer is now connected to the
state machine and state prod, and via new edges to the states produced, empty,
and wait. Further applications of enterRegions using these three states for ker-
nel matches, respectively, lead to the bundle (idp40), thus changing the new to
current edges by its application. As result, the states prod, produced, empty, and
wait are current, which is the initial situation for the statemachine as shown in
Fig. 9. We do not find additional matches for enterRegions as we have only one
level of nesting in our diagram, which means that the initialization is completed.

For a state transition, the interaction scheme transitionStep in Fig. 6 is
applied, followed by the interaction schemes enterRegions!, leaveState1!, leave-
State2!, and leaveRegions! given in Fig. 5, Fig. 7, and Fig. 8.

For the initial situation, the kernel rule p50 in Fig. 6 has to be matched such
that node 2 is mapped to the first trigger element next and node 3 to produce,
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produced
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wait

current:

prod
prepare
empty
wait

current:

prod
produced

empty
wait

current:
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produced

full
wait

current:
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current:
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current:
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current:
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current:
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current:
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current:
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current:
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produced
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wait

TE

name=”next”

TE

name=”produce”

TE

name=”consume”

TE

name=”next”

TE

name=”produce”

TE

name=”consume”

TE

name=”null”
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name=”finish”

TE

name=”repair”
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name=”arrive”
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name=”fail”
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buff
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bufffail

ar-
rive

re-
pair

fi-
nish

→exit

exit

Fig. 9. Event queue and state transitions
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otherwise the application condition of the rule would be violated. For the multi
rules, there are two events of name next, but since the state consumed is not
current, only one match for L51 is found mapping node 4 to the current state
produced and 6 to the state prepare. All application conditions are fulfilled, since
this transition does not have a guard or action, and the state produced does not
have any substates. Thus, the application of the bundle (s5) deletes the first
trigger element next, which is done by the kernel rule, and redirects the current
pointer from produced to prepare via a new edge. An application of the interaction
scheme enterRegions using the bundle (idp40) changes this new to a current edge.
Since we do not find further matches for L40, L60, L71, L81, and L82, the other
interaction schemes cannot be applied. This means that the states prod, prepare,
empty, and wait are now the current states, which is the situation after the state
transition triggered by next as shown in Fig. 9. The procession of the remaining
trigger elements works analogously.

According to Thm. 2, the simulation of our example terminates because our
statechart is well-behaved and the event queue is finite.

6 Conclusion and Future Work

In this paper, we have defined a formal interpreter semantics for statecharts
leading to a visual interpreter semantics. It is based on the theory of algebraic
graph transformation and hence a solid basis for applying graph transformation-
based analysis techniques. Unfortunately, the classical theory of graph transfor-
mations [12] is not adequate to model the interpreter semantics of statecharts
because we need rule schemes to handle an arbitrary number of transitions in
orthogonal states in parallel. In this paper, we have solved this problem using
amalgamated graph transformation [11] in order to handle the interpreter se-
mantics. As a first step towards the analysis of this semantics we have shown
the termination of initialization and semantical steps and, more general, the
termination of the interpreter semantics for well-behaved statecharts.

Our formal approach is also a promising basis to analyze other properties
like confluence and functional behavior in the future. Since termination and
local confluence implies confluence, it is sufficient to analyze local confluence.
This has been done successfully for algebraic graph transformation based on
standard rules and critical pairs [10]. It remains to extend this analysis from
standard rules to amalgamated rules constructed by interaction schemes and to
take into account maximal matchings as well as all essential amalgamated rules
constructed from one interaction scheme.

Another interesting research area to be considered in future is the nesting of
kernel morphisms, which may lead to a hierarchical interaction scheme such that
a semantical step of the statechart is actually a direct amalgamated transforma-
tion over one interaction scheme, and we no longer need rules for redirecting the
current pointer afterwards.
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