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ABSTRACT
Triple Graph Grammars are a well-established, formal and
intuitive concept for the specification and analysis of bidi-
rectional model transformations. In previous work we have
formalized and analyzed already termination, correctness,
completeness, local confluence and functional behaviour.

In this paper, we show how to improve the efficiency of the
execution and analysis of model transformations in practi-
cal applications by using triple rules with negative applica-
tion conditions (NACs). In addition to specification NACs,
which improve the specification of model transformations,
the generation of filter NACs improves the efficiency of the
execution and the analysis of functional behaviour supported
by critical pair analysis of the tool AGG. We illustrate the
results for the well-known model transformation from class
diagrams to relational database models.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.12 [Software Engineering]: Interoperability;
I.6.5 [Simulation and Modeling]: Model Development -
Modeling methodologies

General Terms
Theory, Design, Verification
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1. INTRODUCTION
Model transformations based on triple graph grammars

(TGGs) have been introduced by Schürr in [19]. Operational
rules are automatically derived from the triple rules and used
to define various bidirectional model transformation and in-
tegration tasks that are mainly focused on model-to-model
transformations Since 1994, several extensions of the origi-
nal TGG definitions have been published [20, 17, 10], and
various kinds of applications have been presented [22, 11,
16]. Besides model transformation TGGs are also applied
for model integration [1] and model synchronization [8] in
order to support model driven interoperability.

For source-to-target model transformations, so-called for-
ward transformations, forward rules are derived which take
the source graph as input and produce a corresponding tar-
get graph. Similarly, backward rules are used for target-to-
source transformations making the transformation approach
bidirectional. Major properties expected to be fulfilled for
model transformations are termination, correctness, com-
pleteness, efficient execution and — for several applications
— functional behaviour. Termination, completeness and
correctness of model transformations have been studied al-
ready in [6, 3, 7, 4]. Functional behaviour of model transfor-
mations based on triple graph grammars has been analyzed
for triple rules without application conditions in [15] using
forward translation rules that use additional translation at-
tributes for keeping track of the elements that have been
translated so far.

The main aim of this paper is to extend the analysis
techniques for functional behaviour in [15] to the case of
triple rules with negative application conditions (NACs)
and to improve the efficiency of analysis and execution of
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model transformations studied in [3, 4, 7, 15]. For this pur-
pose, we distinguish between specification NACs and filter
NACs. Specification NACs have been introduced already in
[7, 4], where triple rules and corresponding derived source
and forward rules have been extended by NACs in order to
improve the modeling power. Exemplarily, we show that
NACs improve the specification of the model transforma-
tion CD2RDBM from class diagrams to relational data base
models presented in [6, 3]. Therefore, we extend the for-
ward translation rules introduced in [15] by corresponding
NACs and show that model transformations based on for-
ward translation rules with NACs are equivalent to model
transformations studied in [7, 4], such that main results con-
cerning termination, correctness and completeness can be
transferred to our new framework (see Thm. 1). In order
to analyze functional behaviour we can use general results
for local confluence of transformation systems with NACs
in [18]. But in order to improve efficiency in the context of
model transformations we introduce so-called filter NACs.
They filter out several misleading branches considered in
the standard analysis of local confluence using critical pairs.
In our second main result (see Thm. 2) we show how to an-
alyze functional behaviour of model transformations based
on forward translation rules by analyzing critical pairs for
forward translation rules with filter NACs. Moreover, we in-
troduce a strong version of functional behaviour, including
model transformation sequences. In our third main result
(see Thm. 3) we characterize strong functional behaviour by
the absence of “significant” critical pairs for the correspond-
ing set of forward translation rules with filter NACs.

In Sec. 2 we introduce model transformations based on
TGGs with specification NACs and show the first main re-
sult on termination, correctness, and completeness. In Sec. 3
we introduce forward translation rules with filter NACs and
present our main results on functional and strong functional
behaviour. Based on these main results we discuss in Sec. 4
efficiency aspects of analysis and execution. Related work
and a conclusion are presented in Sections 5 and 6. The
full proofs of the main results are given in [14].

2. MODEL TRANSFORMATIONS BASED
ON TRIPLE GRAPH GRAMMARS
WITH NACS

Triple graph grammars [19] are a well-known approach for
bidirectional model transformations. Models are defined as
pairs of source and target graphs, which are connected via
a correspondence graph together with its embeddings into
these graphs. In this section, we review main constructions
and results of model transformations based on [20, 4, 15]
and extend them to the case with NACs.

A triple graph G =(GS ←sG−− GC −tG−→ GT ) consists of three
graphs GS , GC , and GT , called source, correspondence,
and target graphs, together with two graph morphisms
sG : GC → GS and tG : GC → GT . A triple graph mor-
phism m = (mS , mC , mT ) : G → H between triple graphs
G and H consists of three graph morphisms mS : GS → HS ,
mC : GC → HC and mT : GT → HT such that mS ◦ sG =
sH ◦mC and mT ◦ tG = tH ◦mC . A typed triple graph G
is typed over a triple graph TG by a triple graph morphism
typeG : G→ TG.

Example 1. Triple Type Graph: Fig. 1 shows the type
graph TG of the triple graph grammar TGG for our exam-
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Figure 1: Triple type graph for CD2RDBM

ple model transformation from class diagrams to database
models. The source component TGS defines the structure
of class diagrams while in the target component the struc-
ture of relational database models is specified. Classes cor-
respond to tables, attributes to columns, and associations
to foreign keys. Throughout the example, originating from
[6], elements are arranged left, center, and right according
to the component types source, correspondence and target.
Morphisms starting at a correspondence part are specified
by dashed arrows. The denoted multiplicity constraints are
ensured by the triple rules in Figs. 3 and 5.

Note that the case study uses attributed triple graphs
based on E-graphs as presented in [6] in the framework of
weak adhesive HLR categories. We refer to [2] for more
details on attributed graphs.
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Figure 2: Triple rule and triple transformation step

Triple rules synchronously build up their source, target
and correspondence graphs, i.e. they are non-deleting. A
triple rule tr (left of Fig. 2) is an injective triple graph
morphism tr = (trS , trC , trT ) : L→ R and w.l.o.g. we
assume tr to be an inclusion. Given a triple graph mor-
phism m : L→ G, a triple graph transformation (TGT) step

G =
tr,m
==⇒ H (right of Fig. 2) from G to a triple graph H is

given by a pushout of triple graphs with comatch n : R→ H
and transformation inclusion t : G ↪→ H. A grammar
TGG = (TG, S, TR) consists of a triple type graph TG,
a triple start graph S = ∅ and a set TR of triple rules.

Example 2. Triple Rules: The triple rules in Fig. 3 are
part of the rules of the grammar TGG for the model trans-
formation CD2RDBM . They are presented in short nota-
tion, i.e. left and right hand side of a rule are depicted in
one triple graph. Elements which are created by the rule are
labeled with green ”++” and marked by green line colour-
ing. The rule “Class2Table” synchronously creates a class
with name “n” together with the corresponding table in the
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Figure 3: Rules for the model transformation
CD2RDBM , Part 1
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Figure 4: Derived operational rules of a TGG

relational database. Accordingly, subclasses are connected
to the tables of its super classes by rule “Subclass2Table”.
Attributes with type “t” are created together with their cor-
responding columns in the database component via the rule
“Attr2Column”.

From each triple rule tr we derive a source rule trS for the
construction resp. parsing of a model of the source language
and a forward rule trF for forward transformation sequences
(see Fig. 4). By TRS and TRF we denote the sets of all
source and forward rules derived from the set of triple rules
TR. Analogously, we derive a target rule trT and a backward
rule trB for the construction and transformation of a model
of the target language leading to the sets TRT and TRB .

A set of triple rules TR and the start graph ∅ gener-
ate a visual language VL of integrated models, i.e. mod-
els with elements in the source, target and correspondence
component. The source language V LS and target language
VLT are derived by projection to the triple components,
i.e. V LS = projS(V L) and V LT = projT (V L). The
set V LS0 of models that can be generated resp. parsed
by the set of all source rules TRS is possibly larger than
VLS and we have VLS ⊆ VLS0 = {GS |∅ =⇒∗ (GS ←
∅ → ∅) via TRS}. Analogously, we have V LT ⊆ V LT0 =
{GT |∅ =⇒∗ (∅← ∅→ GT ) via TRT }.

According to [7, 4] we present negative application condi-
tions for triple rules. In most case studies of model trans-
formations source-target NACs, i.e. either source or target
NACs, are sufficient and we regard them as the standard
case. They prohibit the existence of certain structures ei-
ther in the source or in the target part only, while general
NACs may prohibit both at once.

Definition 1. Triple Rules with Negative Applica-
tion Conditions: Given a triple rule tr = (L → R), a
negative application condition (NAC) (n : L→ N) consists
of a triple graph N and a triple graph morphism n. A NAC
with n = (nS , idLC , idLT ) is called source NAC and a NAC
with n = (idLS , idLC , nT ) is called target NAC.

A match m : L → G is NAC consistent if there is no
injective q : N → G such that q ◦ n = m for each NAC

L −n→ N . A triple transformation G
∗⇒ H is NAC consistent

if all matches are NAC consistent.

:attrs
tr=[F)T]

:cols

:AC

S1:Class

:Attribute

name=n

is_primary=true

:attrs

C1:

CT
T1:Table

++

++

++

++

++

:Column

name=n

type=t

PrimaryAttr2Column(n:String, t:String)

:PrimitiveDataType

name=t

:type
++

:pKey

++

++

:Column

:pKey

:Attribute

is_primary=true

:attrs
NAC1 NAC2

:cols

:AC

S1:Class

tr=T

:Attribute

tr=[F)T]

name=n

tr_name=[F)T]

is_primary=true

tr_is_primary=[F)T]

C1:

CT
T1:Table

++
++

++

:Column

name=n

type=t

PrimaryAttr2ColumnFT(n:String, t:String)

:PrimitiveDataType

tr=[F)T]

name=t

tr_name=[F)T]

:type
tr=[F)T]

:pKey

++

:Column

:pKey

:Attribute

tr=T

is_primary=true

tr_is_primary=T

:attrs
tr=T

NAC1

NAC2

T
rip

le
 R

u
le

F
o

rw
a

rd
 T

ra
n

s
la

tio
n

 R
u

le

:Class :Table

:src

:Class

:dest

:FKey

:Table

:cols:fkeys

:references

:pkey

++

:CT

:AFK

:CT

++

++ ++

++
++

++
++

++

:fcols

:Association

name = an

:Column

type = t

name = an+“_“+cn

Association2ForeignKey(an:String, cn:String)

++

:Column 

type = t

name = cn

Figure 5: Rules for the model transformation
CD2RDBM , Part 2

Example 3. Triple Rules with NACs: Figure 5 shows
the remaining two triple rules for the model transformation
“CD2RDBM ”and additionally a derived forward translation
rule as explained in Ex. 4. NACs are specified in short nota-
tion using the label “NAC” with a frame and red line colour
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within the frame. A complete NAC is obtained by compos-
ing the left hand side of a rule with the red marked elements
within the NAC-frame. The rule “Association2ForeignKey”
creates an association between two classes and the corre-
sponding foreign key and the NAC ensures that there is only
one primary key at the destination table. The parameters
“an” and “cn” are used to set the names of the association
and column nodes. The rule“PrimaryAttr2Column”extends
“Attr2Column”by creating additionally a link of type“pkey”
for the column and by setting “is primary=true”. Further-
more, there is a source and a target NAC, which ensure that
there is no primary attribute nor column currently present.

The extension of forward rules to forward translation
rules is based on additional attributes, called translation
attributes, that control the translation process by keeping
track of the elements which have been translated so far.
While in this paper the translation attributes are inserted
in the source models they can be kept separate as an ex-
ternal pointer structure in order to keep the source model
unchanged as shown in Sec. 5 of [13].

Definition 2. Graph with Translation Attributes:
Given an attributed graph AG = (G, D) and a subgraph
G0 ⊆ G we call AG ′ a graph with translation attributes over
AG if it extends AG with one boolean-valued attribute tr x
for each element x (node or edge) in G0 and one boolean-
valued attribute tr x a for each attribute associated to such
an element x in G0. This means that we have a partition
of the items (nodes, edges, or attributes) of G0 into I1 and
I2 s.t. AG ′ = AG ⊕ AttTI1 ⊕ AttFI2 , where AttTI1 and AttFI2
denotes the translation attributes with value T for I1 and
value F for I2. Moreover, we define Attv(AG) := AG⊕Attv

G

for v ∈ {T, F}. In any case we require that there is at most
one translation attribute tr x or tr x a for each item.

The new concept of forward translation rules as intro-
duced in [15] extends the construction of forward rules by
additional translation attributes in the source component.
The translation attributes keep track of the elements that
have been translated so far, which ensures that each element
in the source graph is not translated twice. The rules are
deleting on the translation attributes and thus, the triple
transformations are extended from a single (total) pushout
to the classical double pushout (DPO) approach [2]. We call
these rules forward translation rules, because pure forward
rules need to be controlled by additional control conditions,
such as the source consistency condition in [6, 4].

Definition 3. Forward Translation Rules with NACs:
Given a triple rule tr = (L→ R), the forward translation

rule of tr is given by trFT = (LFT ←lFT−−− KFT −rFT−−→ RFT )

defined as follows using the forward rule (LF −trF−−→ RF ) and

the source rule (LS −trS−−→ RS) of tr , where we assume w.l.o.g.
that tr is an inclusion:

• LFT = LF ⊕AttTLS
⊕AttFRS\LS

• KFT = LF ⊕AttTLS

• RFT = RF ⊕AttTLS
⊕AttTRS\LS

= RF ⊕AttTRS
,

• lFT and rFT are the induced inclusions.

Moreover, for each NAC n : L→ N of tr we define a forward
translation NAC nFT : LFT → NFT of trFT as inclusion
with NFT = (LFT +L N)⊕AttTNS\LS

.

Remark 1. Note that (LFT +L N) is the union of LFT and
N with shared L and for a target NAC n the forward trans-
lation NAC nFT does not contain any translation attributes
because NS = LS .

Example 4. Forward Translation Rule with NACs:
Fig 5 shows in its lower part the forward translation rule
with NACs “PrimaryAttr2ColumnFT”. According to Def. 3
the source elements of the triple rule“PrimaryAttr2Column”
are extended by translation attributes and changed by the
rule from “F” to “T”, if the owning elements are created
by the triple rule. Furthermore, the additional elements in
the NAC are extended by translation attributes set to “T”.
Thus, the source NACs concern only elements that have
been translated so far.

From the application point of view model transformation
rules should be applied along matches that are injective on
the structural part. But it would be too restrictive to re-
quire injectivity of the matches also on the data and variable
nodes, because we must allow that two different variables are
mapped to the same data value. For this reason we use the
notion of“almost injective matches” [15], which requires that
matches are injective except for the data value nodes. This
way, attribute values can still be specified as terms within a
rule and matched non-injectively to the same value. Next,
we define model transformations based on forward transla-
tion rules based on complete forward translation sequences.

Definition 4. Completely Translated Graphs and
Complete Sequences: A forward translation sequence

G0 =
tr∗FT==⇒ Gn with almost injective matches is called com-

plete if Gn is completely translated, i.e. all translation at-
tributes of Gn are set to true (“ T”).

Definition 5. Model Transformation Based on For-
ward Translation Rules: A model transformation se-

quence (GS , G0 =
tr∗FT==⇒ Gn, GT ) based on forward transla-

tion rules with NACs consists of a source graph GS , a tar-

get graph GT , and a complete TGT-sequence G0 =
tr∗FT==⇒ Gn

with almost injective matches, G0 = (AttF(GS)← ∅→ ∅)
and Gn = (AttT(GS)← GC → GT ).
A model transformation MT : VLS0 V VLT0 based on for-
ward translation rules with NACs is defined by all model
transformation sequences as above with GS ∈ VLS0 and
GT ∈ VLT0. All these pairs (GS , GT ) define the model
transformation relation MTR ⊆ VLS0 × VLT0. The model
transformation is terminating if there are no infinite TGT-
sequences via forward translation rules and almost injective
matches starting with G0 = (AttF(GS)← ∅→ ∅) for some
source graph GS .

Now, we are able to state our first main result concerning
termination, correctness and completeness of model trans-
formations.

Theorem 1. Termination, Correctness and Com-
pleteness: Each model transformation MT : VLS0 V
VLT0 based on forward translation rules is
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• terminating, if each forward translation rule changes
at least one translation attribute from “F” to “T”,

• correct, i.e. for each model transformation sequence

(GS , G0 =
tr∗FT==⇒ Gn, GT ) there is G ∈ VL with G =

(GS ← GC → GT ), and it is

• complete, i.e. for each GS ∈ V LS there is G = (GS ←
GC → GT ) ∈ VL with a model transformation se-

quence (GS , G0 =
tr∗FT==⇒ Gn, GT ).

Proof Idea. The proof (see [14]) is based on a corre-
sponding result in [15] for the case without NACs and a Fact
showing the equivalence of (1) source and NAC-consistent
TGT-sequences based on forward rules and (2) complete
NAC-consistent TGT-sequences based on forward transla-
tion rules.

Applying a rule according to the DPO approach involves
the check of the gluing condition in general. However, in
the case of forward translation rules and almost injective
matches we have that the gluing condition is always sat-
isfied. This means that the condition does not have to
be checked, which simplifies the analysis of functional be-
haviour in Sec. 3.

Fact 1. Gluing Condition for Forward Translation
Rules: Let trFT be a forward translation rule and mFT :
LFT → G be an almost injective match, then the gluing
condition is satisfied, i.e. there is the transformation step

G =
trFT ,mFT======⇒ H.

Proof Idea. Since only attribution edges are deleted
there are no dangling points and almost injective match-
ing ensures that there are no identification points (see [14]
for full proof).

3. ANALYSIS OF FUNCTIONAL
BEHAVIOUR

Functional behaviour of a model transformation means
that each model of the source language LS ⊆ VLS is trans-
formed into a unique model of the target language. This sec-
tion presents new techniques especially developed to show
functional behaviour of correct and complete model trans-
formations based on TGGs.

Definition 6. Functional Behaviour of Model Trans-
formations: A model transformation MT based on for-
ward translation rules has functional behaviour if each execu-
tion of MT starting at a source model GS of the source lan-
guage LS ⊆ VLS leads to a unique target model GT ∈ VLT .
The execution of MT requires backtracking, if there are ter-

minating TGT-sequences (AttF (GS) ← ∅ → ∅) =
tr∗FT==⇒ G′n

with G
′S
n 6= AttT (GS).

The standard way to analyze functional behaviour is to
check whether the underlying transformation system is con-
fluent, i.e. all diverging derivation paths starting at the same
model finally meet again. In the context of model transfor-
mations, confluence only needs to be ensured for transforma-
tion paths which lead to completely translated models. For
this reason, we introduce so-called filter NACs that extend
the model transformation rules in order to avoid mislead-
ing paths that cause backtracking. The overall behaviour
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S3:Class

tr=F
name=n
tr_name=F

:CT :TableS1:Class

tr=T

S3:Class

tr=T
name=n
tr_name=T
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tr=T
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!
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tr=F
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G
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name=n

Figure 6: Step G0 =
Class2TableFT========⇒ G with misleading

graph G

w.r.t. the model transformation relation is preserved. Fil-
ter NACs are based on the following notion of misleading
graphs, which can be seen as model fragments that are re-
sponsible for the backtracking of a model transformation.

Definition 7. Translatable and Misleading Graphs:
A triple graph with translation attributes G is translatable

if there is a transformation G
∗⇒ H such that H is com-

pletely translated. A triple graph with translation attributes
G is misleading, if every triple graph G′ with translation at-
tributes and G′ ⊇ G is not translatable.

Example 5. Misleading Graph: Consider the trans-
formation step shown in Fig. 6. The resulting graph G is
misleading according to Def. 7, because the edge S2 is la-
beled with a translation attribute set to “F”, but there is
no rule which may change this attribute in any larger con-
text at any later stage of the transformation. The only rule
which changes the translation attribute of a “parent”-edge
is “Subclass2TableFT”, but it requires that the source node
“S3” is labeled with a translation attribute set to “F”. How-
ever, forward translation rules do not modify translation
attributes if they are set to “T” already and additionally do
not change the structure of the source component.

Definition 8. Filter NAC: A filter NAC n for a forward
translation rule trFT : LFT → RFT is given by a morphism

n : LFT → N , such that there is a TGT step N =
trFT ,n
====⇒ M

with M being misleading. The extension of trFT by some set
of filter NACs is called forward translation rule trFN with
filter NACs.

Example 6. Forward Translation Rule with Filter
NACs: The rule in Fig. 7 extends the rule Class2TableFT

by a filter NAC obtained from graph G0 of the transforma-

tion step G0 =
Class2TableFT========⇒ G in Fig. 6, where G is mislead-

ing according to Ex. 5. In Ex. 7 we extend the rule by a
further similar filter NAC with “tr = T” for node “S2”.
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Figure 7: A forward translation rule with filter
NAC: Class2TableFN

A direct construction of filter NACs according to Def. 8
would be inefficient, because the size of the considered
graphs to be checked is unbounded. For this reason we now
present efficient techniques which support the generation of
filter NACs and we can bound the size without losing gen-
erality. At first we present a static technique for a subset
of filter NACs and thereafter, a dynamic generation tech-
nique leading to a much larger set of filter NACs. The first
procedure in Fact 2 below is based on a sufficient criteria
for checking the misleading property. Concerning our exam-
ple this static generation leads to the filter NAC shown in
Fig. 7 for the rule Class2TableFT for an incoming edge of
type “parent”.

Fact 2. Static Generation of Filter NACs: Given a
triple graph grammar, then the following procedure applied
to each triple rule tr ∈ TR generates filter NACs for the
derived forward translation rules TRFT leading to forward
translation rules TRFN with filter NACs:

• Outgoing Edges: Check the following conditions

– tr creates a node (x : Tx) in the source component
and the type graph allows outgoing edges of type
“Te” for nodes of type “Tx”, but tr does not create
an edge (e : Te) with source node x.

– Each rule in TR which creates an edge (e : Te)
also creates its source node.

– Extend LFT to N by adding an outgoing edge
(e : Te) at x together with a target node. Add a
translation attribute for e with value F. The in-
clusion n : LFT → N is a NAC-consistent match
for tr .

For each node x of tr fulfilling the above conditions,
the filter NAC (n : LFT → N) is generated for trFT

leading to trFN .

• Incoming Edges: Dual case, this time for an incoming
edge (e : Te).

• TRFN is the extension of TRFT by all filter NACs
constructed above.

Proof Idea. Each generated NAC (n : LFT → N) for
a node x in tr with an outgoing (incoming) for an edge

e in N \ L defines a transformation step N =
trFT ,n
====⇒ M ,

where edge e is still labeled with “F”, but x is labeled with
“T”.By the structure of forward translation rules it follows
that edge e cannot be labeled with “T” at any later model

transformation step for any given source model GS . The full
proof is given in [14].

The following dynamic technique for deriving relevant fil-
ter NACs is based on the generation of critical pairs, which
define conflicts of rule applications in a minimal context.
By the completeness of critical pairs (Lemma 6.22 in [2]) we
know that for each pair of two parallel dependent transfor-
mation steps there is a critical pair which can be embedded.
For this reason, the generation of critical pairs can be used
to derive filter NACs. A critical pair either directly specifies
a filter NAC or a conflict that may lead to non-functional
behaviour of the model transformation.

For the dynamic generation of filter NACs we use the
tool AGG [23] for the generation of critical pairs for a
plain graph transformation system. For this purpose, we
first perform the flattening construction for triple graph
grammars presented in [3, 15] extended to NACs using
the flattening construction for morphisms. A critical pair

P1 ⇐
tr1,FT
==== K =

tr2,FT
===⇒ P2 consists of a pair of parallel de-

pendent transformation steps. If a critical pair contains a
misleading graph P1 we can use the overlapping graph K
as a filter NAC of the rule tr1,FT . However, checking the
misleading property needs human assistance, such that the
generated critical pairs can be seen as filter NAC candi-
dates. But we are currently working on a technique that
uses a sufficient criteria to check the misleading property
automatically and we are confident that this approach will
provide a powerful generation technique.

Fact 3. Dynamic Generation of Filter NACs:
Given a set of forward translation rules, then generate the

set of critical pairs P1 ⇐
tr1,FT ,m1
======= K =

tr2,FT ,m2
======⇒ P2. If P1 (or

similarly P2) is misleading, we generate a new filter NAC
m1 : L1,FT → K for tr1,FT leading to tr1,FN , such that

K =
tr1,FN
====⇒ P1 violates the filter NAC. Hence, the critical

pair for tr1,FT and tr2,FT is no longer a critical pair for
for tr1,FN and tr2,FT . But this construction may lead to
new critical pairs for the forward translation rules with fil-
ter NACs. The procedure is repeated until no further filter
NAC can be found or validated. This construction starting
with TRFT always terminates, if the structural part of each
graph of a rule is finite.

Proof. The constructed NACs are filter NACs, because

the transformation step K =
tr1,FT ,m1
======⇒ P1 contains the mis-

leading graph P1. The procedure terminates, because the
critical pairs are bounded by the amount of possible pair-
wise overlappings of the left hand sides of the rules. The
amount of overlappings can be bounded by considering only
constants and variables as possible attribute values.

For our case study the dynamic generation terminates al-
ready after the second round, which is typical for practical
applications, because the amount of already translated ele-
ments in the new critical pairs usually decreases. Further-
more, the amount of NACs can be reduced by combining
similar NACs differing only on some translation attributes.
The remaining critical pairs that do not specify filter NACs
show effective conflicts between transformation rules and
they can be provided to the developer of the model trans-
formation to support the design phase.

The filter NACs introduced in this paper on the one hand
support the analysis of functional behaviour and on the
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other hand, they also improve the efficiency of the execu-
tion. By definition, the occurrence of a filter NAC at an
intermediate model means that the application of the own-
ing rule would lead to a model that cannot be translated
completely, i.e. the execution of the model transformation
would perform backtracking at a later step. This way, a
filter NAC cuts off possible backtracking paths of the model
transformation. As presented in Fact 2 some filter NACs
can be generated automatically and using Fact 3 a larger
set of them can be obtained based on the generation of crit-
ical pairs. Finally, by Thms. 2 and 3 we can completely
avoid backtracking if TRFN has no significant critical pair
or, alternatively, if all critical pairs are strictly confluent.

As shown by Fact 4 below, filter NACs do not change the
behaviour of model transformations. The only effect is that
they filter out derivation paths, which would lead to mis-
leading graphs, i.e. to backtracking for the computation of
the model transformation sequence. This means that the
filter NACs filter out backtracking paths. This equivalence
is used on the one hand for the analysis of functional be-
haviour in Thms. 2 and 3 and furthermore, for improving
the efficiency of the execution of model transformations as
explained in Sec. 4.

Fact 4. Equivalence of Transformations with Fil-
ter NACs: Given a triple graph grammar TGG =
(TG, ∅, TR) and a triple graph G0 = (GS ← ∅ → ∅)
typed over TG. Let G′0 = (AttF(GS) ← ∅ → ∅). Then,
the following are equivalent for almost injective matches:

1. ∃ a complete TGT-sequence G′0 =
tr∗FT ,m∗FT======⇒ G′ via

forward translation rules.

2. ∃ a complete TGT-sequence G′0 =
tr∗FN ,m∗FT======⇒ G′ via

forward translation rules with filter NACs.

Proof Idea. Sequence 1 consists of the same derivation
diagrams as Sequence 2. The additional filter NACs in se-
quence 2 prevent a transformation rule to create a mislead-
ing graph. Both sequences lead to completely translated
models, such that we know that the matches in sequence 1
also fulfill the filter NACs of the rules in sequence 2. The
full proof is given in [14].

Theorem 2. Functional Behaviour: Let MTbe a
model transformation based on forward translation rules
TRFT and let TRFN extend TRFT with filter NACs such
that TRFN is terminating and all critical pairs are strictly
confluent. Then, MT has functional behaviour. Moreover,
the model transformation MT ′ based on TRFN does not re-
quire backtracking and defines the same model transforma-
tion relation, i.e. MTR′ = MTR.

Remark 2. TRFN is terminating, if TRFT is terminating
and a sufficient condition is given in Thm. 1. Termination of
TRFN with strict confluence of critical pairs implies unique
normal forms by the Local Confluence Theorem in [18].

Proof Idea. The proof (see [14]) is based on a decompo-
sition theorem of triple rule sequences into match-consistent
TGT-sequences based on source and forward rules with
NACs in [7]. The latter are equivalent to complete TGT-
sequences based on forward translation rules without NACs
in [15] and with NACs in Fact 1 in [14]. Finally, by Fact 4
complete TGT-sequences via forward translation rules with
and without filter NACs are equivalent.

If the set of generated critical pairs of a system of for-
ward translation rules with filter NACs TRFN is empty, we
can directly conclude from Thm. 2 that the corresponding
system with forward translation rules TRFT has functional
behaviour. From an efficiency point of view, model transfor-
mations should be based on a compact set of rules, because
large rule sets usually involve more attempts of matching
until finding a valid match. In the optimal case, the rule
set ensures that each transformation sequence of the model
transformation is itself unique up to switch equivalence. For
this reason, we introduce the notion of strong functional be-
haviour.

Definition 9. Strong Functional Behaviour of Model
Transformations: A model transformation based on for-
ward translation rules TRFN with filter NACs has strong
functional behaviour if for each GS ∈ LS ⊆ VLS there
is a GT ∈ VLT and a model transformation sequence

(GS , G0 =
tr∗FN==⇒ Gn, GT ) and each two terminating TGT-

sequences G′0 =
tr∗FN==⇒ G′n and G′0 =

tr∗FN==⇒ G
′
m are switch-

equivalent up to isomorphism.

Remark 3. 1. The sequences are terminating means
that no rule in TRFN is applicable any more, but it
is not required that the sequences are complete, i.e.

that G′n and G
′
m are completely translated.

2. Strong functional behaviour implies functional be-

haviour, because G′n and G
′
m completely translated

implies that G′0 =
tr∗FN==⇒ G′n and G′0 =

tr∗FN==⇒ G
′
m are ter-

minating TGT-sequences.

3. Two sequences t1 : G0 ⇒∗ G1 and t2 : G0 ⇒∗ G2 are
called switch-equivalent, written t1 ≈ t2, if G1 = G2

and t2 can be obtained from t1 by switching sequen-
tial independent steps according to the Local Church
Rosser Theorem with NACs [18]. The sequences t1 and
t2 are called switch-equivalent up to isomorphism if t1 :
G0 ⇒∗ G1 has an isomorphic sequence t1′ : G0 → G2

(using the same sequence of rules) with i : G1 −∼−→ G2,
written t1′ = i ◦ t1, such that t1′ ≈ t2. This means
especially that the rule sequence in t2 is a permutation
of that in t1.

The third main result of this paper shows that strong func-
tional behaviour of model transformations based on forward
translation rules with filter NACs can be completely char-
acterized by the absence of “significant” critical pairs.

Definition 10. Significant Critical Pair: A critical

pair P1 ⇐
tr1,FN
===== K =

tr2,FN
====⇒ P2 for TRFN is called signifi-

cant, if it can be embedded into a parallel dependent pair

G′1 ⇐
tr1,FN
===== G′ =

tr2,FN
====⇒ G′2 such that there is GS ∈ VLS

and G′0 =
tr∗FN==⇒ G′ with G′0 = (AttF(GS) ← ∅ → ∅).

G1′
G′0

∗ +3 G′
tr2,FN

)1[[[[[[[[[
[[[[[[[[[

tr1,FN -5ccccccccc ccccccccc
G′2

Theorem 3. Strong Functional Behaviour: A
model transformation based on terminating forward trans-
lation rules TRFN with filter NACs has strong functional
behaviour and does not require backtracking iff TRFN has
no significant critical pair.
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Proof Idea. The proof (see [14]) is based on that of
Thm. 2 and the fact that in the absence of critical pairs two
terminating sequences with the same source can be shown
to be switch-equivalent up to isomorphism using the Local
Church-Rosser and Parallelism Thm. with NACs in [18].
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Figure 8: Triple graph instance

Example 7. Functional Behaviour: We analyze func-
tional behaviour of the model transformation CD2RDBM
with triple rulesTR given in Figs. 3 and 5. First of all,
CD2RDBM is terminating according to Thm. 1. For ana-
lyzing the local confluence we can use the tool AGG [23] for
the generation of critical pairs. We use the extended rule
Class2TableFN as shown in Fig. 7 and extend it by a fur-
ther filter NAC obtained by the static generation acc. to
Fact 2. AGG detects two critical pairs showing a conflict of
the rule “PrimaryAttr2Column” with itself for an overlap-
ping graph with two primary attributes. Both critical pairs
lead to additional filter NACs by the dynamic generation of
filter NACs in Fact 3 leading to a system of forward transla-
tion rules with filter NACs without any critical pair. Thus,
we can apply Thm. 3 and show that the model transforma-
tion based on the forward translation rules with filter NACs
TRFN has strong functional behaviour and does not require
backtracking. Furthermore, by Thm. 2 we can conclude that
the model transformation based on the forward translation
rules TRFT without filter NACs has functional behaviour
and does not require backtracking. As an example, Fig. 8
shows the resulting triple graph (translation attributes are
omitted) of a model transformation starting with the class
diagram GS .

4. EFFICIENT ANALYSIS AND EXECU-
TION

Our approach to model transformations based on triple
graph grammars (TGGs) with NACs will be discussed now
with respect to the efficiency for both, analysis of properties
and execution.

Correctness and Completeness: As shown by Thm. 1
based on [7, 4] model transformations based on TGGs with
NACs are correct and complete with respect to the language
of integrated models VL generated by the triple rules. Thus,
correctness and completeness are ensured by construction.

Termination: As presented in [4] termination is essentially
ensured, if all triple rules are creating on the source compo-
nent. This property can be checked statically, automatically

and efficiently by checking (RS\LS) 6= ∅. In Thm. 1 we have
given an explicit condition for the forward translation rules
to be terminating.

Functional Behaviour: The new concept of filter NACs in-
troduced in this paper provides a powerful basis for reducing
the analysis efforts w.r.t. functional behaviour. Once ter-
mination is shown as explained above, functional behaviour
of model transformations based on forward translation rules
TRFT can be checked by generating the critical pairs of the
transformation system with AGG [23] and showing strict
confluence. The static and dynamic generation of filter
NACs (Facts 2 and 3) allows to eliminate critical pairs. In
the best case, all critical pairs disappear showing the func-
tional behaviour of the model transformation immediately.
The new notion of strong functional behaviour of a system
based on transformation rules TRFN with filter NACs is
completely characterized by the absence of “significant” crit-
ical pairs, such that we can ensure for each source model that
the transformation sequence is unique up to switch equiva-
lence. Furthermore, the critical pairs generated by AGG can
be used to find the conflicts between the rules which may
cause non-functional behaviour of the model transformation.
The modeler can decide whether to change the rules or to
keep the non-functional behaviour.

Model Size 

Model Transformation Sequences of CD2RDBM 

without Filter NACs with Filter NACs 

Time1) Success Rate Time1) Overhead Success Rate 

[Elements2)] [ms] [%] [ms] [%] [%] 

11 143.75 42.86 158.33 10.14 100.00 

25 302.75 16.84 335.45 10.80 100.00 

53 672.68 3.94 742.62 10.40 100.00 

109 1,481.43 0.17 1,584.86 6.98 100.00 

1) Average time of 100 successful model transformation sequences  
2) Nodes and Edges 

Table 1: Benchmark, Tool: AGG [23]

Efficient Execution: Filter NACs do not only improve the
analysis of functional behaviour of a TGG, but also the exe-
cution of the model transformation process by forbidding the
application of misleading transformation steps that would
lead to a dead-end eliminating the need of backtracking for
these cases. Table 1 shows execution times using the trans-
formation engine AGG [23]. The additional overhead caused
by filter NACs is fairly small and lies in the area of 10% for
the examples in the benchmark, which is based on the av-
erage execution times for 100 executions concerning models
with 11, 25, 53 and 109 elements (nodes and edges), respec-
tively. The first model with 11 elements is the presented
class diagram in the source component of Fig. 8. We ex-
plicitly do not compare the execution times of the system
with filter NACs with one particular system with backtrack-
ing, because these times can vary heavily depending on the
used techniques for partial order reduction and the chosen
examples. Instead we present the computed success rates
for the system without NACs which show that backtrack-
ing will cause a substantial overhead in any case. Thus,
the listed times concern successful execution paths only, i.e.
those executions that lead to a completely translated model.
The success rate for transformations without filter NACs de-
creases fast when considering larger models. Times for the
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unsuccessful executions, which appear in the system without
filter NACs, are not considered. However, in order to ensure
completeness there is the need for backtracking for the sys-
tem without filter NACs. This backtracking overhead is in
general exponential and in our case study misleading graphs
appear already at the beginning of many transformation se-
quences implying that backtracking is costly. Backtracking
is reduced by filter NACs and avoided completely in the
case that no “significant critical pair” remains present (see
Thm. 3), which we have shown to be fulfilled for our exam-
ple. The additional overhead of about 10% for filter NACs is
in most cases much smaller than the efforts for backtracking.

Moreover, in order to perform model transformations
using highly optimized transformation machines for plain
graph transformation, such as Fujaba and GrGen.Net [21],
we have presented how the transformation rules and models
can be equivalently represented by plain graphs and rules.
First of all, triple graphs and morphisms are flattened ac-
cording to the construction presented in [3, 15], which can be
extended to NACs using the flattening of morphisms. Fur-
thermore, we presented in this paper how forward rules with
NACs are extended to forward translation rules with NACs,
such that the control condition “source consistency” [6] and
also the gluing condition (Fact 1) are ensured automatically
for complete sequences, i.e. they do not need to be checked
during the transformation.

Summing up, the presented results allow us to combine
the easy, intuitive and formally well founded specification
of model transformations based on triple graph grammars
with NACs with the best available tools for executing graph
transformations while still ensuring correctness and com-
pleteness.

5. RELATED WORK
Since 1994, several extensions of the original TGG defini-

tions [19] have been published [20, 17, 10] and various kinds
of applications have been presented [22, 11, 16]. The formal
construction and analysis of model transformations based
on TGGs has been started in [6] by analyzing information
preservation of bidirectional model transformations and con-
tinued in [3, 5, 4, 7, 15], where model transformations based
on TGGs are compared with those on plain graph gram-
mars in [3], TGGs with specification NACs are analyzed in
[7] and an efficient on-the-fly construction is introduced in
[4]. A first approach analyzing functional behaviour was pre-
sented for restricted TGGs with distinguished kernels in [5]
and a more general approach, however without NACs, based
on forward translation rules in [15]. The results in this pa-
per for model transformations based on forward translation
rules with specification and filter NACs are based on the
results of all these papers except of [5].

In [6] a similar case study based on forward rules is pre-
sented, but without using NACs. This causes that more
TGT-sequences are possible, in particular, an association
can be transformed into a foreign key with one primary
key, even if there is a second primary attribute that will
be transformed into a second primary key at a later stage.
This behaviour is not desired from the application point of
view. Thus, the grammar with NACs in this paper handles
primary keys and foreign keys in a more appropriate way.
Furthermore, the system has strong functional behaviour as
shown in Sec. 3.

In the following we discuss how the presented results can
be used to meet the “Grand Research Challenge of the TGG
Community” formulated by Schürr et.al. in [20]. The main
aims are “Consistency”, “Completeness”, “Expressiveness”
and “Efficiency” of model transformations. The first two ef-
fectively require correctness, completeness w.r.t. the triple
language VL and additionally termination and functional
behaviour. They are ensured as shown in Sec. 3. While we
considered functional behaviour w.r.t. unique target models,
the more general notion in [20] regarding some semantical
equivalence of target models will be part of further exten-
sions of our techniques. “Expressiveness” requires suitable
control mechanisms like NACs, which are used extensively
in this paper and we further extend the technique by addi-
tional control mechanisms. In [9] more general application
conditions [12] are considered, but functional behaviour is
not yet analyzed. In general, the overall usage of complex
control structures should be kept low, because they may
cause complex computations. Finally, we discussed in Sec. 4
that our approach can be executed efficiently based on effi-
cient graph transformation engines. Especially model trans-
formations fulfilling the conditions in Thm. 3 do not need
to backtrack, which bounds the number of transformation
steps to the elements in the source model as required in [20].

6. CONCLUSION
In this paper we have studied model transformations

based on triple graph grammars (TGGs) with negative ap-
plication conditions (NACs) in order to improve efficiency of
analysis and execution compared with previous approaches
in the literature. The first key idea is that model transfor-
mations can be constructed by applying forward translation
rules with NACs, which can be derived automatically from
the given TGG-rules with NACs. The first main result shows
termination under weak assumptions, correctness and com-
pleteness of model transformations in this framework, which
is equivalent to the approach in [7]. The second key idea is to
introduce filter NACs in addition to the NACs in the given
TGG-rules, which in contrast are called specification NACs
in this paper. Filter NACs are useful to improve the analy-
sis of functional behaviour for model transformations based
on critical pair analysis (using the tool AGG [23]) by filter-
ing out backtracking paths and this way, some critical pairs.
The second main result provides a sufficient condition for
functional behaviour based on the analysis of critical pairs
for forward translation rules with filter NACs. If we are
able to construct filter NACs such that the corresponding
rules have no more “significant” critical pairs, then the third
main result shows that we have strong functional behaviour,
i.e. not only the results are unique up to isomorphism but
also the corresponding model transformation sequences are
switch-equivalent up to isomorphism. Surprisingly, we can
show that the condition “no significant critical pairs” is not
only sufficient, but also necessary for strong functional be-
haviour. Finally, we discuss efficiency aspects of analysis and
execution of model transformations and show that our sam-
ple model transformation CD2RDBM based on TGG-rules
with NACs has strong functional behaviour.

The main challenge in applying our main results on func-
tional and strong functional behaviour is to find suitable
filter NACs, such that we have a minimal number of criti-
cal pairs for the forward translation rules with filter NACs.
For this purpose, we provide static and dynamic techniques
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for the generation of filter NACs (see Facts 2 and 3). The
dynamic technique includes a check that certain models are
misleading. In any case, the designer of the model transfor-
mation can specify some filter NACs directly by himself, if
he can ensure the filter NAC property. Furthermore, we can
avoid backtracking completely by Thms. 2 and 3 if TRFN

has no significant critical pair or, alternatively, if all critical
pairs are strictly confluent.

In future work, we will study further static conditions to
check whether a model is“misleading”, because this allows to
filter out misleading execution paths. In addition to that, we
currently develop extensions to layered model transforma-
tions and amalgamated rules, which allow to further reduce
backtracking in general cases and to simplify the underlying
rule sets. Moreover, we study applications to model trans-
formations that partially relate two DSLs, were some node
types are irrelevant for the model transformation.
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[20] Schürr, A., Klar, F.: 15 years of triple graph
grammars. In: Ehrig, H., Heckel, R., Rozenberg, G.,
Taentzer, G. (eds.) Proc. ICGT’08. pp. 411–425.
LNCS, Springer (2008)

[21] Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B.,
Boneva, I., Boronat, A., Geiger, L., Geïs, R., Horvath,
A., Kniemeyer, O., Mens, T., Ness, B., Plump, D.,
Vajk, T.: Generation of Sierpinski Triangles: A Case
Study for Graph Transformation Tools. In: Schürr, A.,
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