Conflict Detection for Model Versioning
Based on Graph Modifications

Gabriele Taentzer!, Claudia Ermel?,

Philip Langer®, and Manuel Wimmer*

! Philipps-Universitit Marburg, Germany, taentzer@mathematik.uni-marburg.de
2 Technische Universitdt Berlin, Germany, claudia.ermel@tu-berlin.de
3 Johannes-Kepler-Universitit Linz, Austria, philip.langer@jku.at
4 Technische Universitat Wien, Austria, wimmer@big.tuwien.ac.at

Abstract. In model-driven engineering, models are primary artifacts
and can evolve heavily during their life cycle. Therefore, versioning of
models is a key technique which has to be offered by an integrated devel-
opment environment for model-driven engineering. In contrast to text-
based versioning systems we present an approach which takes abstract
syntax structures in model states and operational features into account.
Considering the abstract syntax of models as graphs, we define model
revisions as graph modifications which are not necessarily rule-based.
Building up on the DPO approach to graph transformations, we define
two different kinds of conflict detection: (1) the check for operation-based
conflicts, and (2) the check for state-based conflicts on results of merged
graph modifications.

1 Introduction

A key benefit of model-driven engineering is the management of the complex-
ity of modern systems by abstracting its compelling details using models. Like
source code, models may heavily evolve during their life cycle and, therefore,
they have to be put under version control. Especially optimistic versioning is of
particular importance because it allows for concurrent modifications of one and
the same artifact performed by multiple modelers at the same time. When con-
current modifications are endorsed, contradicting and inconsistent changes, and
therewith versioning conflicts, might occur. Traditional version control systems
for code usually work on file-level and perform conflict detection by line-oriented
text comparison. When applied to the textual serialization of models, the result
is unsatisfactory because the information stemming from the graph-based struc-
ture is destroyed and associated syntactic and semantic information is lost.

To tackle this problem, dedicated model versioning systems have been pro-
posed [1,2,3,4]. However, a uniform and effective approach for precise conflict
detection and supportive conflict resolution in model versioning still remains an
open problem. For the successful establishment of dedicated model versioning
systems, a profound understanding by means of formal definitions of potentially
occurring kinds of conflicts is indispensable, but yet missing.

Therefore, we present a formalization of two different kinds of conflicts based
on graph modifications. We introduce this new notion of graph modifications
to generalize graph transformations. Graph modifications are not necessarily
rule-based, but just describe changes in graphs. Two kinds of conflict detection
are defined based on graph modifications: (1) operation-based conflicts and (2)
state-based conflicts. The specification of operations is based on rules. Therefore,
we extract minimal rules from graph modifications and/or select suitable pre-
defined operations and construct graph transformations in that way. Conflict
detection is then based on parallel dependence of graph transformations and the
extraction of critical pairs as presented in [5]. State-based conflicts are concerned
with the well-formedness of the result after merging graph modifications. To
detect state-based conflicts, two graph modifications are merged and the result
is checked against pre-defined constraints. The proposed critical pair extraction
is not complex and corresponds to the procedure of textual versioning systems,
i.e. they are applied whenever graph modifications have occurred and are being
checked in. For each check-in, all those modifications (check-ins) are checked for
conflicts that have taken place since the check-out of the model performed by
the user who is performing the current check-in.

The paper is structured as follows: In Section 2, we introduce the concept
of graph modification and recall the notion of graph transformation. While Sec-
tion 3 is concerned with the detection of operation-based conflicts, Section 4
presents the detection of state-based conflicts. Sections 5 and 6 discuss imple-
mentation issues and related work and finally, Section 7 concludes this paper.

2 Graph Modifications and Graph Transformations

Throughout this paper, we describe the underlying structure of a model by a
graph. To capture all important information, we use typed, attributed graphs
and graph morphisms as presented in [5]. In the following, we omit the terms
“typed” and “attributed” when mentioning graphs and graph morphisms.

All model modifications are considered on the level of the abstract syntax
where we deal with graphs. We introduce graph modifications generalizing the
concept of graph transformation to graph changes which are not necessarily rule-
based. A graph modification is a partial injective graph mapping being defined
by a span of injective graph morphisms.

Definition 1 (Graph modification). Given two graphs G and H, a direct

graph modification G = H is a span of injective morphisms G <*— D Ny
A sequence G = Gy = G, = ... = G,, = H of direct graph modifications is
called graph modification and is denoted by G = H.

Graph D characterizes an intermediate graph where all deletion actions have
been performed but nothing has been added yet.

Ezample 1 (Graph and graph revision). Consider the following model versioning
scenario for statecharts. The abstract syntax of a statechart can be defined by a

typed, attributed graph, as e.g. shown in Fig. 1 (a). The node type is given in the
top compartment of a node. The name of each node of type State is written in the
attribute compartment below the type name. We model hierarchical statecharts
by using containment edges. For instance, in Fig. 1 (a), state SO contains S1
and S2 as substates. (In contrast to UML state machines, we distinguish these
edges which present containment links by composition decorators.) Note that
we abstract from transition events, guards and actions, as well as from other
statechart features. Furthermore, from now on we use a compact notation of
the abstract syntax of statecharts, where we draw states as nodes (rounded
rectangles with their names inside) and transitions as directed arcs between
state nodes. The compact notation of the statechart in Fig. 1 (a) is shown in
Fig. 1 (b). Fig. 1 (c) shows the statechart in the well-known concrete syntax.

: State

®) “
. ‘anget_fame - Siring = 52 m S0
< source : Transition ‘soLirce ’
name : Sting = 51 = m‘m
7 ? B

; State s0urce ; Transition target L State |
ame - String = 53 name : String = 34]

Fig. 1. Sample statechart: abstract syntax graph (a), compact notation (b) and con-
crete syntax (c)

In our scenario for model versioning, three users check out the current state-
chart shown in Fig. 1 and change it in three different ways. User A intends
to perform a refactoring operation on it. She moves state S3 up in the state
hierarchy (cf. Fig. 2).

G mgm D mg Ha mgm
% F =7

Fig. 2. Refactoring step as graph modification gma

User B refines the statechart by adding a new state S5 inside superstate SO
and connects this newly added state S5 to state S2 in the same superstate by
drawing a new transition between them. Moreover, the transition connecting S2
to S4 is deleted in this refinement step. This graph modification is shown in

Fig. 3. Finally, user C deletes state S3 together with its adjacent transition to
state S4 (cf. Fig. 4).

&
L

Fig. 3. Refinement step as graph modification gmp

Fig. 4. Deletion step as graph modification gmc

Obviously, conflicts occur when these users try to check in their changes:
state S3 is deleted by user C but is moved to another container by user A.

Furthermore, user B and user C delete different transitions adjacent to state
S4. This may lead to a problem if the statechart language forbids isolated states
(not adjacent to any transition), although each single change does not create a
forbidden situation.

Since we will use rules to detect conflicts between graph modifications, we re-
call the notions of graph rule and transformation here. We use the DPO approach
for our work, since its comprehensive theory as presented in [5] is especially useful
to formalize conflict detection in model versioning.

Definition 2 (Graph rule and transformation). A graph rule p = L &
K - R consists of graphs L, K and R and injective graph morphisms | and r.
Given a match m: L — G, graph rule p can be applied to G if a double-pushout
(DPO) exists as shown in the diagram below with pushouts (PO1) and (PO3)
n the .category 'of typed, attributed gmphs. Graph D <! k- ".p

is the intermediate graph after removing m(L), and

H is constructed as gluing of D and R along K (see "’l (PO1) % (PO2) lm'

[5]). G 22 H s called graph transformation. e R

Obviously, each graph transformation can be considered as graph modifica-
tion by forgetting about the rule and its match. If the rule and its match are

given, the pushout (PO;) has to be constructed as pushout complement. We
recall the definition of a pushout complement as presented in [5]. From an op-
erational point of view, a pushout complement determines the part in graph G
that does not come from L, but includes K.

Definition 3 (PO complement). Given morphisms i: K — L and m: L —
G, then k: K — D and g: D — G s the pushout complement (POC) of l and
m, if (POy) in Def. 2 is a pushout.

3 Detection of Operation-Based Conflicts

For the detection of operation-based conflicts, we have to find out the operation
resulting in a particular graph modification. Thus, we have to find a correspond-
ing rule and match, i.e. a corresponding graph transformation to the given graph
modification. An approach which is always possible is to extract a minimal rule
[6], i.e. a minimal operation which contains all atomic actions (i.e. creation and
deletion of nodes, edges, and attribute values) that are performed by the given
graph modification. Thus, the extraction of a minimal rule together with its
match leads to a minimal graph transformation performing a given graph mod-
ification.

If the operation which led to a graph modification is not known but can be
specified by a graph rule, a suitable method to identify the right operation is to
extract again the minimal rule and to find the corresponding operation (out of
a set of pre-defined operations) by comparing it with the minimal rule.

After having specified graph modifications by graph transformations, the
parallel independence of transformations can be checked and critical situations
are identified as conflicts. These conflicts can be specified as critical pairs [5].

3.1 Extraction of a minimal rule

As first step, we use the construction of minimal rules by Bisztray et al. [6]. This
construction yields in a natural way a minimal DPO rule for a graph modifica-
tion. Minimal rules contain the proper atomic actions on graphs with minimal
contexts. Bisztray et al. have shown that this construction is unique, i.e. no
smaller rule than the minimal rule can be constructed for a given graph modifi-
cation.

Definition 4 (Minimal graph rule and transformation). Rule p = (L L
K -%s R is minimal over direct graph modification G <>~ D BNy 4 if for each
rule I' «— K' % R’ with injective .
morphism K' — D and pushouts (3) L K R
and (4), there are unique morphisms l/ (1) /J{ (2) l/
L !

L - L', K - K, and R - R v
such that the following diagram com-

mutes and (1), (2), (1) + (8), and (2) 3) \l (i) i/

+ (4) are pushouts. Graph transforma- GQ g D H
tion G == H is also called minimal.

/

The following minimal rule construction extracts all deletion and creation
actions from a given transformation in graphs L; and R; by constructing so-
called initial pushouts. Roughly speaking, an initial pushout extracts a graph
morphism consisting of the changing part of the given graph morphism, i.e. the
non-injective mapping part as well as the codomain part that is not in the image
of the morphism (see [5]). This is done for both sides of a graph modification,
leading to the left and the right-hand sides of the minimal rule. In the middle,
two gluing graphs are constructed which have to be glued together, and the left
and the right-hand sides are potentially extended by further necessary context.

Definition 5 (Initial pushout). Let g: D — G be a graph morphism, an ini-
tial pushout over g consists of graph morphisms ly: L1 — G, by: By — Ly, and
di: By — D (c¢f. diagram below) such that g and 1y are a pushout over by and
dy. For every other pushout over g consisting of l}: L} — G, b}: B{ — L}, and
dy: B} — D, there are unique graph morphisms b: By — B and l: Ly — L}
such that Iy ol =1y and by o b = by. Moreover, (1,b}) is a pushout over (by,b).

Definition 6 (Minimal rule construction).

Given a direct graph modification by
g h 1<— B By — R
G «— D — H , we construct a (1roy) dy (1POw)
r . l 1 2
rule L «— K -5 R which shall be IJ/ g \ / h ‘L
minimal. G D H

1. Construct the initial pushouts (IPO;) over g: D — G and (IPOg) over
h: D — H.

2. Define By +— P — By as pullback of By — D <— By and By — K +—
By as pushout (PO,) of By +— P — By with induced morphism K — D.

3. Construct L1 — L <— K as pushout (POg) of L1 «— B1 — K with
induced morphism L — G. Similarly, construct Ry — R +— K as pushout
(POs) of Ry «— By — K with induced morphism R — H.

4. Since (IPO;) and (POg) are pushouts, (IPO;) + (POg) is also a pushout,
due to pushout composition properties [5]. Similarly, since (IPOz) and (PO5)
are pushouts, (IPOg) + (POs) is also a pushout.

G ! D b H
(IPOq) / \ (IPO3)
Li<=— B (PB) By — Ry
(PO3) P (POs)

\(PO4)
L : K : R

Fig. 5. Minimal rule construction

Proposition 1 (Minimal rule). Given a graph modification G &< ply H,
rule L < K 25 R constructed as in Definition 6, is minimal.

The proof of Prop. 1 is given in [6]. Note that after Step 1, the minimal rule ex-
traction may also be considered as E-concurrent rule constructed from a deletion
rule on the left and a creation rule on the right.

Ezample 2 (Minimal rule construction). The construction of the minimal rule
pa for graph modification gm 4 (the refactoring performed by user A in Fig. 2)
is depicted in Fig. 6. Note that the minimal rule does not contain any attributes,
since they are not changed within the graph modification. The minimal rules

Fig. 6. Construction of minimal rule p4 = (LA — Ka— RA) for gma

pp for gmp (the refinement performed by user B in Fig. 3) and pc for gme
(the deletion by user C in Fig. 4) are constructed analogously. The results are
depicted in Figs. 7 and 8. Note that the initial pushout construction leads to
variables as attribute values of deleted and newly created nodes.

Fig. 7. Minimal rule pp for graph modification gmp

Comparing the applications of minimal rules p4 and pc, we see that minimal
rule po deletes state S3 that is used by minimal rule p4 to perform its refactoring.

Fig. 8. Minimal rule pc for graph modification gmc

Such conflicts are called Delete/Use-conflicts and are defined below. They can
be automatically detected using the graph transformation tool AGG [7].

3.2 Identification of operations

Up to now, we investigated the actual actions performed by different users which
we extracted in minimal rules. This approach does not take any predefined op-
erations into account. Given a set of change operations defined by graph rules,
we can identify the right operation that has been performed for a graph modi-
fication gm by the following method: we extract again the minimal rule for gm
and find the corresponding operation (out of a set of pre-defined operations)
by comparing with the minimal rule. An operation o is executable wrt. a given
graph modification G <— D — H if the extracted minimal rule is a subrule of
operation o and o is applicable to the original graph G in a compatible way.

Definition 7 (Subrule). A minimal rule L e K, = R, is a subrule of

l T

rule L <~ K 5 R if morphisms i;: Ly — L, L~ K,—/>R,
ir: K¢ = K, and i,: Ry — R exist and the _ |)
diagram on the right commutes and (PO1) and ”l (Fou 1&' (PO llr
(PO2) are pushouts. L<—K——R

Definition 8 (Minimal rule-related operation execution). Given a min-
imal rule s = Ly Lo K, = R, applicable to graph G by match mg : Ly — G,
an operation given by rule o = L < K 73 R is ewecutable on graph G wrt.

rule s if s is a subrule of o (as defined in Def. 7) and if o is applicable to G by
a match m: L — G such that moi; = mg with i;: Ly — L.

Note that Def. 8 is useful for identifying single operations per minimal rule.
It cannot be used to identify sequences of operations which relate to one minimal
rule. This problem is left to future work.

Ezample 3. We define an operation enabling the user to move a state s to another
container only if the new container state contains the previous container state
of s. This avoids producing cyclic containments. The operation rule o4 used for
graph modification gm 4 has more context than its minimal rule (cf. Fig. 9 for
the relation between these two rules where the minimal rule p4 is shown in the
upper half and the operation rule 04 in the lower half).

Fig. 9. MoveState operation

Once the executed operations have been identified, we can start the conflict
detection also for these rules. Since they can come with more context, more
conflicts might occur compared to the conflict detection based on minimal rules.

3.3 Detection of operation-based conflicts

After having constructed graph transformations from graph modifications by
minimal rule extraction and/or operation rule selection, we can use critical pairs
as presented in [5] to define operation-based conflicts.

First we check if two graph transformations are parallel independent which
means that rule matches overlap in preserved items only.

Definition 9 (Parallel independent transformations). Two direct graph
p2,m2

transformations G LAl H, and G "==" Hs being applications of rules py =
(L1 L K, Ry) and ps = (Lo 2 Ky, 2 Rs) at matches my : L1 - G
and mo : Ly — G are parallel independent if the transformations preserve all
items in the intersection of both matches, i.e. my(L1) Nma(La) € mq(l1(K1))N
mQ(ZQ(KQ))

To concentrate on the proper conflict, we abstract from unnecessary context of
identified parallel dependent transformations. This leads to the notion of a criti-
cal pair which is defined below. A critical pair consists of two parallel dependent
transformations starting from a smaller graph K now. K can be considered as a
suitable gluing of left-hand sides L; and Lo of corresponding rules. For each two
parallel dependent transformations G 25" H; and G "22* H, a corresponding
critical pair can be found. We consider critical pairs as operation-based conflicts.

Definition 10 (Critical pair). A critical pair consists of two parallel depen-
dent graph transformations K e P and K B P, with matches 01: L1 — K
and oo: Ly — K being jointly surjective.

Proposition 2 (Completeness of critical pairs). Given two direct graph
transformations G PR Hy and G P22 Hy which are parallel dependent, there
is a critical pair K L P oand K 22 P, such that there is a graph morphism
0: K — G withooo; =my and 0003 = may.

The proof can be found in [5]. Note that this proposition is very useful to
find operation-based conflicts. If the pair of transformations considered is parallel
dependent, we get a critical pair, i.e. an operation-based conflict. By proposition
2 we know that we get all operation-based conflicts that way.

This formalization enables us to detect so-called Delete/Use conflicts: one trans-
formation deletes a graph item while the other one reads it. Note that a particular
kind of delete/use conflicts are sometimes called Change/Use conflicts. Here, the
first transformation changes the value of an attribute, while the second one ei-
ther changes it too, or just checks its value. Since attribute value bindings are
modeled by edges, attribute value changes involve the deletion of edges (cf. [5]).

In case we find critical pairs, we can identify the conflict in form of the
minimal context of the critical match overlappings. Note that since we have given
the overlapping of the left-hand sides of the minimal rules already, we need to
check only this overlapping situation for a conflict. This procedure needs much
less effort than the normal critical pair analysis in AGG which computes all
possible contexts.

Ezxample 4. Considering the minimal rules p4 and pc in Figs. 6 and 8 applied
to graph G in Figs. 2 - 4 with the obvious matches, we get a Delete/Use-conflict
based on deletion and usage of state S3.

4 Detection of state-based conflicts

Besides operation-based conflicts, we want to detect state-based conflicts which
can occur in merged modification results. These conflicts occur if a merged mod-
ification result shows some abnormality not present in the modification results
before merging. Detection of state-based conflicts is done by constraint check-
ing. The constraints may be language-specific, i.e. potentially induced by the
corresponding graph language definition.

In the following, we present a procedure to merge two different graph modi-
fications to find state-based conflicts. We show that this merge procedure yields
the expected result if there are no operation-based conflicts. Otherwise, the pro-
cedure cannot be performed. Thus, a natural ordering of conflict detection is

1. to extract minimal rules and analyze minimal transformations for operation-
based conflicts,

2. to find further operation-based conflicts by analyzing operations,

3. to check for state-based conflicts after all operation-based conflicts have been
resolved.

4.1 Merging of graph modifications

To determine the merge graph of two graph modifications, the “least common
denominator” of both modifications is determined. It is called D in the construc-
tion below. Considering both modifications, the least common denominator is
extended by all the changes of modifications 1 and 2, first separately in C; and
(5, and finally glued together in graph X. (Compare the diagram in Def. 11.)

Definition 11 (Merging of graph modifications). Given two modifications

G &L Dy L Hy and G &2 Do g H,, the merged graph X and the merged
graph modification G <— D — X can be constructed as follows:
1. Construct D <d—1 D g D5 as

G
pullback of D1 -2 G <2 D V ‘\g

2. Construct PO-complements D, (PB) Dy
d; D — Oz andci: Cl — Hl

N

\&

"\
/.

rom morphisms d;: D — D; AN
Jrom morphtsims di: B ' (PO D (PO, H,
and h;: D; — H; fori=1,2. PN
3. Construct Cy =2 X &2y :\ L4 dy 4
as pushout of Cy <d—1 D k> Cs. i (POs) Ca
4. The merged graph modification k\ A
z10d) X

is G 20 p " X
Proposition 3 (Existence and uniqueness of merging). The construction

in Def. 11 leads to a unique graph X and furthermore, unique graph modification

d od), >
G%2 p™ up to isomorphism, if graph transformations G PLEY HL and
G p2,m2

=" H, with minimal rules p; = Ly &K R, and Py = Lo d2
Ky =2 Ry uniquely extracted from graph modifications G <2~ D LEN H, and
G & D, LEN Hs are parallel independent.

Proof Idea: While pullback and pushouts always exist uniquely in the category
of graph and graph morphisms, this is not the case for pushout complements.
We show the existence of pushout complements in (PO;) and (POz), using the
assumption that the graph transformations G PLAY Hy and G 227 H, are
independent. The full proof is given in [8].

Ezample 5 (Merging of graph modifications). The merging construction applied
to gmp and gme (the refinement and deletion modifications by users B and C)
is depicted in Fig. 10. We see that the merged graph X at the bottom of Fig. 10
contains a forbidden situation: state S4 is isolated, i.e. it is not adjacent to a
transition anymore. We want to find such a situation automatically by checking
a graph constraint forbidding any situation where a state is isolated.

4.2 Detection of state-based conflicts

Using graph conditions as defined in [9], we can specify well-formedness con-
straints to be checked on the merged graph.

Definition 12 (Graph condition and graph constraint). A graph condi-
tion over graph G is of the form true or I(a,c) where a : P — C is a graph
morphism and c is a condition over C'. Moreover, Boolean formulas over condi-
tions over P yield conditions over P, i.e. =c and Aje yc; are (Boolean) conditions
over P where J is an index set and ¢, (¢;)jes are conditions over P. Addition-
ally, Ja abbreviates I(a,true), VY(a,c) abbreviates —3(a, ~c), false abbreviates
—true, Vjesc; abbreviates - Ajcy —cj, and ¢ = d abbreviates —c V d.

Fig. 10. Merging of graph modifications gmp and gmc

Every graph morphism satisfies true. A morphism p : P — G satisfies condi-
tion 3(a, ¢) if there is an injective graph morphism q : C' — G such that goa = p
and q satisfies c. A graph G satisfies a condition 3(a,c) if this condition is sat-
isfied by graph morphism O — G. In the context of graphs, graph conditions are
called graph constraints. The satisfaction of conditions by graphs and morphisms
1s extended to Boolean conditions in the usual way.

The notation of graph constraints of the form 3(a : § — G, ¢) can be short-
ened to 3(G, ¢) without loss of information. A rule application condition of the
form —3a is usually called negative application condition (see [9]).

Definition 13 (State-based conflict). Given a merged graph modification as
in Def. 11, a state-based conflict (C, H; = X, Hy = X)) consists of a graph
constraint C, and graph modifications Hi = X and Hy = X such that C 1is
satisfied by graphs Hy and Hs but not by X.

Ezample 6. Fig. 10 shows a merged graph X that contains an isolated state
which should not be allowed. This situation can be formalized by a graph con-
straint C' = VGy((3a : Go — G1) V (Ja : Gy — G2)) where Gy consists of a state
contained in some other state, and G; and (G5 show the alternative required

contexts for Gy in Fig. 11. C is satisfied by graphs Hp and H¢ in Fig. 10, but
not by graph X.

vigldeHadvIeHTS

Fig. 11. Graph constraint forbidding isolated states

Further typical state-based conflicts can occur w.r.t. well-formedness con-
straints in meta models. Consider e.g. the constraint that a transition may have
at most one event. If two graph modifications add an event to the same transi-
tion, then this leads to a state-based conflict after merging.

5 Implementation issues

AGG. AGG [5] is an integrated development environment for algebraic graph
transformation systems. It implements basic concepts and constructions such
as graphs, graph morphisms, matching, and pushouts. On top of these, graph
transformation, a restricted form of graph constraint checking as well as parallel
dependency checking of rule applications are supported. This is a solid basis
to implement initial pushouts, pullbacks, and pushout complements as basis for
minimal rule extraction, merging and conflict detection with a convenient user
interface in the near future.

AMOR. We now compare the model versioning system AMOR [1] with the
formal definitions presented in this paper.

Model differencing. Before conflicts are detected, the concurrently performed
changes have to be determined. In this paper, the modifications are extracted
applying the construction of minimal rules (cf. Def. 5). To identify executions
of predefined operations, it is checked whether the extracted minimal rule is a
subrule of a specific predefined operation. In AMOR, all applied changes are
derived by conducting EMF Compare [10]. The resulting difference model is
conceptually equivalent to a minimal graph rule, because it consists of a match
model explicating common elements (cf. D in a graph modification) and a set of
atomic changes describing the differences between G and H. Executions of pre-
defined operations are detected in AMOR by searching for their specific change
patterns in the derived difference model and, subsequently for each match, by
evaluating their pre- and postconditions. Again, this technique is compliant to
the operation identification presented in this paper.

Operation-based conflicts. As proposed in Sect. 3, we check minimal rules and
operations for critical pairs which are considered as operation-based conflicts. In

AMOR, operation-based conflicts are detected by comparing each change applied
by one user to each change applied by another. If two changes are contradicting,
a conflict explicating the contradicting changes is reported. If further opera-
tion executions have been identified before, the preconditions of this operation
are evaluated after all atomic changes of the opposite side are executed. With
this it is checked whether the operation may still be executed (according to its
preconditions) to a model incorporating the opposite changes.

State-based conflicts. These conflicts occur if a merged model bears prohibited
conditions. In this paper, such conditions are defined by graph constraints which
are evaluated on the merged graph (cf. Sec. 4.1). According to Proposition 3, this
is possible only, if there are no parallel dependent modifications. In AMOR, the
merged model is validated against the metamodel and its OCL constraints to find
state-based conflicts as well. However, the applied merge differs slightly from the
merge presented in this paper, since a merged model is also created, if parallel
dependent changes exist. In such cases, only those changes are propagated to the
merged model which are not parallel dependent and the user has to manually
resolve the operation-based conflicts.

6 Related Work

The main contribution of this work is a formal definition of model versioning
conflicts as basis for automatic conflict detection by using the DPO approach
to graph transformations. Therefore, we distinguish two kinds of related work.
First, we discuss the state-of-the-art of current model versioning systems, and
second, we compare our work to other approaches aiming at the formalization
of model versioning conflicts.

Model Versioning Systems. In the last decades a lot of research has been con-
ducted in the domain of software versioning which is profoundly outlined in
[11,12]. Most of the approaches focus on source code versioning, others focus
on two-way comparison of models [13], but there are also some dedicated ap-
proaches aiming at the versioning of models by a three-way merge. For example,
Odyssey-VCS [2] supports the versioning of UML models. This system performs
the conflict detection at a very fine-grained level, hence it is able to merge mod-
ifications concerning different model elements or even different attributes of one
model element. EMF Compare [10] is an Eclipse plug-in, for comparing and
merging models independently of the underlying meta model. CoObRA [4] is in-
tegrated in the Fujaba tool suite and logs the changes performed on a model. The
modifications performed by the modeler who did the later commit are replayed
on the updated version of the repository. Conflicts are reported if an opera-
tion may not be applied due to a violated precondition. Similar to CoObRA,
Unicase [3] also provides three-way merging based on edit logs.

Although delete/use conflicts and change/use conflicts are captured by all
of these systems, they do not take predefined operations like refactorings and,
consequently, their bigger contexts into account. EMF Compare and Unicase also

miss to detect changes causing state-based conflicts. None of the four mentioned
systems aims at providing a precise formalization of conflict detection.

Formalization of versioning conflicts. Another category-theoretical approach
which formalizes model versioning is given in [14]. Similarly to our approach,
modifications are considered as spans of morphisms to describe a partial map-
ping of models and model merging is defined by pushout constructions. Moreover,
syntactic conflicts such as adding structure to an element which has been deleted,
are identified. This kind of conflicts is very close to our delete/use-conflicts which
we can identify after having extracted minimal rules. In contrast to [14], we refer
to a formal analysis of operation-based conflicts. In addition, we consider state-
based conflict detection. This has been indicated as future work in [14], where
conflict detection based on user-specified operations are not mentioned at al.

Alanen and Porres [15] define a difference and merge operator for MOF-
based models from a set-theoretical view. Differences are represented by atomic
changes leading from a base version to the working copy. With their approach,
they are able to detect Delete/Use and Change/Use-conflicts, also incorporating
advanced concepts such as ordered features. However, conflicts going beyond
atomic changes as well as state-based conflicts remain undetected.

The approach by Blanc et al. [16,17] detects state-based inconsistencies using
Prolog empowered first-order logics. Structural and methodological constraints
are formalized in consistency rules as logic formulae over a sequence of model
construction operations. However, they do not consider to detect operations
going beyond atomic changes as it is supported by our approach.

7 Conclusion

Two different kinds of conflicts in model versioning are defined in this paper
based on the notion of graph modifications: operation-based and state-based
conflicts. Graph modifications are not necessarily rule-based, but just describe
changes in graphs. Operation-based conflicts are detected by extracting minimal
rules from modifications first and selecting pre-defined operation rules thereafter
if possible. As a consequence, we can use the well-known conflict characterization
for graph transformations based on parallel dependence checking and extraction
of critical pairs. The detection of state-based conflicts builds directly on merged
graph modifications and constraint checking.

In this paper, operations are specified simply by rules without additional
application conditions. Several extensions are imaginable here: If operations are
specified by rules with negative application conditions, an additional kind of
conflict can be identified namely Produce/Forbid-conflicts. New parallel inde-
pendence results for rules with more complex application conditions and their
applications are currently elaborated by Habel et al. Moreover, the detection of
operation sequences for minimal rules is left to future work.

Throughout this paper, we concentrate on the formalization of conflict de-
tection. What can conflict resolution mean in this setting? The resolution of an

operation-based conflict means to show the confluence of the corresponding crit-
ical pair (see [5]), while state-based conflicts might be solved by the definition
of repair actions. Usually, different conflict resolutions are possible and it is up
to future work to develop adequate resolution strategies for this formal setting.

References

10.

11.

12.

13.

14.

15.

16.

17.

Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kargl,
H.: Adaptable Model Versioning in Action. In: Modellierung 2010. Volume 161 of
LNL, GI (2010)

Murta, L., Corréa, C., Prudéncio, J.G., Werner, C.: Towards Odyssey-VCS 2:
Improvements over a UML-based Version Control System. In: 2nd Int. Workshop
on Comparison and Versioning of Software Models @ ICSE’08. (2008)

Kégel, M.: Towards Software Configuration Management for Unified Models. In:
Workshop on Comparison and Versioning of Software Models @ ICSE’08. (2008)
Schneider, C., Ziindorf, A., Niere, J.: CoObRA - A Small Step for Development
Tools to Collaborative Environments. In: Workshop on Directions in Software
Engineering Environments @ ICSE’04. (2004)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer (2006)
Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings: Rule
extraction and tool support. ECEASST 16 (2008)

TFS-Group, TU Berlin: AGG. (2009) http://tfs.cs.tu-berlin.de/agg.

Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict detection for model
versioning based on graph modfications: Long version. Technical Report 2010/09,
Technische Universitét Berlin (2010) To appear online at http://www.eecs.tu-berlin.
de/menue/forschung/forschungsberichte/2010.

Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. in Comp. Sci. 19(2) (2009) 245-296
Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework.
UPGRADE, The European Journal for the Informatics Professional (2008)
Conradi, R., Westfechtel, B.: Version Models for Software Configuration Manage-
ment. ACM Computing Surveys 30(2) (1998) 232282

Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering 28(5) (2002) 449-462

Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models.
In: Software Engineering 2005. Volume 64 of LNI., GI (2005) 105-116

Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A Category-Theoretical Approach
to the Formalisation of Version Control in MDE. In: Fundamental Approaches to
Software Engineering (FASE’09). Volume 5503 of LNCS., Springer (2009) 64-78
Alanen, M., Porres, I.: Difference and union of models. In: UML 2003—The
Unififed Modeling Language. Volume 2863 of LNCS., Springer (2003) 2-17
Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: ICSE’08—30th Int. Conference
on Software Engineering. (2008)

Blanc, X., Mougenot, A., Mounier, 1., Mens, T.: Incremental Detection of Model
Inconsistencies Based on Model Operations. In: CAiSE’09—21st Int. Conference on
Advanced Information Systems Engineering. (2009)

