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Abstract. Triple graph grammars (TGGs) have been used successfully to ana-
lyze correctness and completeness of bidirectional model transformations, but a
corresponding formal approach to model synchronization has been missing. This
paper closes this gap by providing a formal synchronization framework with bidi-
rectional update propagation operations. They are generated from a TGG, which
specifies the language of all consistently integrated source and target models.
As a main result, we show that the generated synchronization framework is cor-
rect and complete, provided that forward and backward propagation operations
are deterministic. Correctness essentially means that the propagation operations
preserve consistency. Moreover, we analyze the conditions under which the op-
erations are inverse to each other. All constructions and results are motivated and
explained by a small running example using concrete visual syntax and abstract
syntax notation based on typed attributed graphs.

Keywords: Model Synchronization, Correctness, Bidirectional Model Transfor-
mation, Triple Graph Grammars

1 Introduction

Bidirectional model transformations are a key concept for model generation and syn-
chronization within model driven engineering (MDE, see [27,24,2]). Triple graph gram-
mars (TGGs) have been successfully applied in several case studies for bidirectional
model transformation, model integration and synchronization [21,26,11,10], and in the
implementation of QVT [14]. Inspired by Schürr et al. [25,26], we started to develop
a formal theory of TGGs [8,17], which allows us to handle correctness, completeness,
termination, and functional behavior of model transformations.

The main goal of this paper is to provide a TGG framework for model synchro-
nization with correctness guarantees, which is based on the theory of TGGs, work on
incremental synchronization by Giese et al. [11,10], and the replica synchronization
framework [4]. The main ideas and results are the following:
? Supported by the National Research Fund, Luxembourg (AM2a)



1. Models are synchronized by propagating changes from a source model to a cor-
responding target model using forward and backward propagation operations. The
operations are specified by a TGG model framework, inspired by symmetric replica
synchronizers [4] and realized by model transformations based on TGGs [8]. The
specified TGG also defines consistency of source and target models.

2. Since TGGs define, in general, non-deterministic model transformations, the de-
rived synchronization operations are, in general, non-deterministic. But we are able
to provide sufficient static conditions based on TGGs to ensure that the operations
are deterministic.

3. The main result shows that a TGG synchronization framework with deterministic
synchronization operations is correct, i.e., consistency preserving, and complete.
We also give sufficient static conditions for invertability and weak invertability of
the framework, where “weak” restricts invertability to a subclass of inputs.

Deriving a synchronization framework from a TGG has the following practical ben-
efits. Consistency of related domains is defined declaritively and in a pattern-based
style, using the rules of a TGG. After executing a synchronization operation, consis-
tency of source and target models is always ensured (correctness) and the propagation
operations can be performed for all valid inputs (completeness). The required static
conditions of a TGG and the additional conditions for invertibility can be checked au-
tomatically using the existing tool support of AGG [28].

The next section presents our running example and Sec. 3 introduces the TGG
model framework. Therafter, we briefly review model transformations based on TGGs
in Sec. 4 and define the general synchronization process in Sec. 5. Section 6 presents the
main result on the correctness of model synchronization. Finally, Secs. 7 and 8 discuss
related work, conclusions, and future work. The proof of our main result and necessary
technical constructions as well as results are given in App. A, while App. B presents the
TGG of our case study together with the corresponding details of the analysis results.

2 Running Example

Throughout the paper, we use a simple running example, which is based on previous
work [3]. The example considers the synchronization of two organizational diagrams as
shown in Fig. 1. Diagrams in the first domain—depicted left—provides details about the
salary components and is restricted to persons of the marketing department. The second
domain provides additional information about birth dates (marked by “*”) and does not
show the salary components. Therefore, both domains contain exclusive information
and none of them can be interpreted as a view—defined by a query—of the other. Both
diagrams together with some correspondence structure build up an integrated model,
where we refer by source model to the first and by target model to the second diagram.
Such an integrated model is called consistent, if the diagrams coincide on names of
corresponding persons and the salary values are equal to the sums of the corresponding
base and bonus values.

Example 1 (Integrated Model). The first row of Fig. 1 shows a consistent integrated
model M in visual notation. The source model of M consists of two persons belonging
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Fig. 1. Forward propagation

to the marketing department (depicted as persons without pencils) and the target model
additionally contains the person “Bill Gates” belonging to the technical department (de-
picted as a person with pencil). The fifth row of Fig. 7 in Sec. 5 shows the corresponding
underlying formal graph representation of the integrated model.

The synchronization problem is to propagate a model update in a way, such that
the resulting integrated model is consistent. Looking at Fig. 1, we see a source model
update that specifies the removal of person “Bill Clinton” and a change of attributes
LastName and Bonus of person “Melinda French”. The executed forward propaga-
tion (fPpg) removes person “Bill Clinton” and updates the attribute values of “Melinda
French” in the target model, while preserving the unchanged birth date value.

3 Model Synchronization Framework Based on TGGs

Model synchronization aims to achieve consistency among interrelated models. A gen-
eral way of specifying consistency for models of a source and a target domain is to
provide a consistency relation that defines the consistent pairs (MS ,MT ) of source and
target models. We argue that triple graph grammars (TGGs) are an adequate technique
for this purpose. For this reason, we first review main concepts of TGGs [26,8].

In the framework of TGGs, an integrated model is represented by a triple graph
consisting of three graphs GS , GC , and GT , called source, correspondence, and target
graphs, respectively, together with two mappings (graph morphisms) sG : GC → GS

and tG : GC → GT . Our triple graphs may also contain attributed nodes and edges [8,7].
The two mappings in G specify a correspondence r : GS ↔ GT , which relates the
elements of GS with their corresponding elements of GT and vice versa. However, it is
usually sufficient to have explicit correspondences between nodes only. For simplicity,
we use double arrows (↔) as an equivalent shorter notation for triple graphs, whenever
the the explicit correspondence graph can be omitted.

(GS

mS ��

G GCsGoo

mC ��

tG // GT )
mT ��

(HSH
m
��

HC
sH
oo

tH

// HT )

Triple graphs are related by triple graph mor-
phisms m : G → H consisting of three graph
morphisms that preserve the associated correspon-
dences (i.e., the diagrams on the right commute).

Our triple graphs are typed. This means that a type triple graph TG is given (playing
the role of a metamodel) and, moreover, every triple graph G is typed by a triple graph
morphism typeG : G → TG. It is required that morphisms between typed triple graphs
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Fig. 2. Some triple rules of the TGG

preserve the typing. For TG = (TGS ← TGC → TGT ), we use VL(TG), VL(TGS ), and
VL(TGT ) to denote the classes of all graphs typed over TG, TGS , and TGT , respectively.

A TGG specifies a language of triple graphs, which are considered as consistently
integrated models. The triple rules of a TGG are used to synchronously build up source
and target models, together with the correspondence structures.

(LS
� _trS ��

L LCsLoo
� _

trC ��

tL // LT )
� _trT ��

(RSR

� _tr
��

RC
sR
oo

tR
// RT )

L
m ��

� � tr // R
n��(PO)

G �
�

t
// H

A triple rule tr, depicted on the
right, is an inclusion of triple graphs,
represented L ↪→ R. Notice that one
or more of the rule components trS ,
trC , and trT may be empty. In the example, this is the case for a rule concerning em-
ployees of the technical department within the target model. A triple rule is applied to
a triple graph G by matching L to some sub triple graph of G. Technically, a match is a
morphism m : L→ G. The result of this application is the triple graph H, where L is re-
placed by R in G. Technically, the result of the transformation is defined by a pushout di-
agram, as depicted above on the right. This triple graph transformation (TGT) step is de-
noted by G =

tr,m
==⇒ H. Moreover, triple rules can be extended by negative application con-

ditions (NACs) for restricting their application to specific matches [17]. A triple graph
grammar TGG = (TG, S ,TR) consists of a triple type graph TG, a triple start graph S
and a set TR of triple rules and generates the triple graph language VL(TGG) ⊆ VL(TG).

Example 2 (Triple Rules). Figure 2 shows some triple rules of our running exam-
ple using short notation, i.e., left- and right-hand side of a rule are depicted in one
triple graph and the elements to be created have the label “++”. The first rule Per-
son2NextMarketingP requires an existing marketing department. It creates a new per-
son in the target component together with its corresponding person in the source compo-
nent and the explicit correspondence structure. The TGG contains a similar rule (not de-
picted) for initially creating the marketing department together with one person, where
an additional NAC ensures that none of the existing departments is called “Marketing”.
The second rule in Fig. 2 extends two corresponding persons by their first names. There
are further similar rules for the handling of the remaining attributes. In particular, the
rule for the attribute birth is the empty rule on the source component.

A TGG model framework specifies the possible correspondences between models
and updates of models according to Def. 1 below. The framework is closely related
to the abstract framework for diagonal replica synchronizers [4] and triple spaces [5].
In our context, a model update δ : G → G′ is specified as a graph modification δ :
G ←i1−− I −i2−→ G′. The relating morphisms i1 : I ↪→ G and i2 : I ↪→ G′ are inclusions and
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specify the elements in the interface I that are preserved by the modification. While
graph modifications are also triple graphs by definition, it is conceptually important to
distinguish between correspondences and updates δ.

Definition 1 (TGG Model Framework). Let TGG = (TG,∅,TR) be a triple graph
grammar with empty start graph. The derived TGG model framework MF(TGG) =

(VL(TGS ),VL(TGT ),R,C, ∆S , ∆T ) consists of source domain VL(TGS ), target domain
VL(TGT ), the set R of correspondence relations given by R = VL(TG), the set C of
consistent correspondence relations C ⊆ R given by C = VL(TGG), (i.e., R contains
all integrated models and C all consistently integrated ones), and sets ∆S , ∆T of graph
modifications for the source and target domains, given by ∆S = {a : GS → G′S |
GS ,G′S ∈ VL(TGS ), and a is a graph modification} and ∆T = {b : GT → G′T | GT ,
G′T ∈ VL(TGT ), and b is a graph modification}, respectively.

(a1) :

∀ c ∈ C :

GS oo c //

1 �� u:fPpg

GT

1��

GS oo
c
// GT

(a2) :

∀ G′S ∈ VLS :

GS oo r //

a �� u:fPpg

GT

b��

G′S oo
r′:C
// G′T

(b1) :

∀ c ∈ C :

GS oo c //

1 ��w:bPpg

GT

1��

GS oo
c
// GT

(b2) :

∀ G′T ∈ VLT :

GS oo r //

a �� w:bPpg

GT

b��

G′S oo
r′:C
// G′T

(c1) :

GS oo r //

a1
�� u:fPpg

GT

b�� u:bPpg

GS//roo oo r //

a2
�� u:fPpg

GT

b��

GS
1
oo

r1
// G′T GS

2
//

r2
oo oo

r2
// G′T

(d1) :

GS oo r //

a1 �� u:fPpg

GT

b�� u:bPpg

GS//roo

a2��

G′S oo
r′

// G′T G′S//
r′

oo

(c2) :

GT oo r //

b1 �� u:bPpg

GS

a
�� u:fPpg

GT//roo oo r //

b2�� u:bPpg

GS

a
��

GT
1
oo

r1
// G′S GT

2
//

r2
oo oo

r2
// G′S

(d2) :

GT oo r //

b1 �� u:bPpg

GS

a�� u:fPpg

GT//roo

b2��

G′T oo
r′

// G′S G′T//
r′

oo

Fig. 3. Laws for correct and (weak) invertible synchronization frameworks

GS oo r //

a �� u:fPpg

GT

b��

G′S oo
r′
// G′T

GS oo r //

a �� w:bPpg

GT

b��

G′S oo
r′
// G′T

Fig. 4. Synchronization operations

Given a TGG model framework, the syn-
chronization problem is to provide suitable for-
ward and backward propagation operations fPpg
and bPpg, which are total and deterministic (see
Fig. 4, where we use solid lines for the inputs
and dashed lines for the outputs). The required
input for fPpg is an integrated model (correspondence relation) GS ↔ GT together
with a source model update (graph modification) a : GS → G′S . In a common tool
environment, both inputs are either available directly or can be obtained. For exam-
ple, the graph modification of a model update can be derived via standard difference
computation and the initial correspondence can be computed based on TGG integration
concepts [6,21]. Note that determinism of fPpg means that the resulting correspondence
G′S ↔ G′T and target model update b : GT → G′T are uniquely determined. The prop-
agation operations are correct, if they additionally preserve consistency as specified
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by laws (a1) − (b2) in Fig. 3. Law (a2) means that fPpg always produces consistent
correspondences from consistent updated source models G′S . Law (a1) means that if
the given update is the identity and the given correspondence is consistent, then fPpg
changes nothing. Laws (b1) and (b2) are the dual versions concerning bPpg. Moreover,
the sets VLS and VLT specify the consistent source and target models, which are given
by the source and target components of the integrated models in C = VL(TGG).

Definition 2 (Synchronization Problem and Framework). Let MF = (VL(TGS ),
VL(TGT ),R,C, ∆S , ∆T ) be a TGG model framework (see Def. 1). The forward syn-
chronization problem is to construct an operation fPpg : R ⊗ ∆S → R × ∆T

leading to the left diagram in Fig. 4, called synchronization tile, where R ⊗ ∆S =

{(r, a) ∈ R × ∆S |r : GS ↔ GT , a : GS → G′S }, i.e., a and r coincide on GS . The pair
(r, a) ∈ R ⊗ ∆S is called premise and (r′, b) ∈ R × ∆T is called solution of the forward
synchronization problem, written fPpg(r, a) = (r′, b). The backward synchronization
problem is to construct an operation bPpg leading to the right diagram in Fig. 4. The
operations fPpg and bPpg are called correct with respect to consistency function C, if
axioms (a1) and (a2) resp. (b1) and (b2) in Fig. 3 are satisfied.

Giventotal and deterministic propagation operations fPpg and bPpg, the derived
synchronization framework Synch(TGG) is given by Synch(TGG) = (MF, fPpg, bPpg).
It is called correct, if fPpg and bPpg are correct; it is weakly invertible if axioms (c1)
and (c2) in Fig. 3 are satisfied; and it is invertible if additionally axioms (d1) and (d2)
in Fig. 3 are satisfied.

Remark 1 (Correctness and Invertibility). Correctness of fPpg according to (a1) means
that for each consistent correspondence c : GS ↔ GT and identity as modification
1 : GS → GS we have an identical result, i.e. , fPpg(c, 1) = (c, 1). According to (a2), we
have for each general correspondence r : GS ↔ GT and modification a : GS → G′S with
consistent source model G′S ∈ VLS a solution (r′, b) = fPpg(r, a), where r′ : G′S ↔ G′T

is consistent, i.e., r′ ∈ C. Note that also for non-consistent r : GS ↔ GT the result
r′ : G′S ↔ G′T is consistent, provided that G′S is consistent.

Weak invertibility (laws (c1) and (c2)) imply that the operations are inverse of each
other for a restricted set of inputs. Update b in (c1) is assumed to be part of the result
of a forward propagation and update a in (c2) is assumed to be derived from a back-
ward propagation. Invertibility ((d1) and (d2)) means that the operations are essentially
inverse of each other, although the interfaces of a1 and a2 (resp. b1 and b2) may be dif-
ferent. Invertibility requires effectively that all information in one domain is completely
reflected in the other domain.

4 Model Transformation Based on TGGs

The operational rules for implementing bidirectional model transformations can be
generated automatically from a TGG. The sets TRS and TRF contain all source and
forward rules, respectively, and are derived from the triple rules TR as shown in the
diagrams below. The rules are used to implement source-to-target transformations. The
sets of target rules TRT and backward rules TRB are derived analogously and the gen-
eration of operational rules has been extended to triple rules with negative application
conditions [8].
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Fig. 5. Derived source and forward rules

(LS

trS ��

L LCsLoo

trC ��

tL // LT )
trT ��

(RSR
tr ��

RC
sR
oo

tR
// RT )

triple rule tr

(LS

trS ��

∅oo

��

// ∅)
��

(RS ∅oo // ∅)
source rule trS

(RS

id ��

LCtrS ◦sLoo

trC ��

tL // LT )
trT��

(RS RCsRoo
tR // RT )

forward rule trF

Example 3 (Operational Rules). The rules in Fig. 5 are the derived source and forward
rules of the triple rule FName2FName in Fig. 2.

The derived operational rules provide the basis for the definition of model transfor-
mations based on source-consistent forward transformation sequences [8,13]. Source

consistency of a forward sequence (G0 =
tr∗F
==⇒ Gn) via TRF is a control condition which

requires that there is a corresponding source sequence (∅ =
tr∗S
=⇒ G0) via TRS , such that

matches of corresponding source and forward steps are compatible (nS
i,S (x) = mS

i,F(x)).
The source sequence is obtained by parsing the given source model in order to guide the
forward transformation. Moreover, source and forward sequences can be constructed
simultaneously and backtracking can be reduced in order to derive efficient execu-
tions of model transformations [8,17]. Given a source model GS , a model transfor-

mation sequence for GS is given by (GS , G0 =
tr∗F
=⇒ Gn,GT ), where GT is the resulting

target model derived from the source-consistent forward sequence G0 =
tr∗F
==⇒ Gn with

G0 = (GS ← ∅→ ∅) and Gn = (GS ← GC → GT ).
Model transformations based on model transformation sequences are always syntac-

tically correct and complete [8,13,17]. Correctness means that for each source model
GS that is transformed into a target model GT there is a consistent integrated model
G = (GS ← GC → GT ) in the language of consistent integrated models VL(TGG) de-
fined by the TGG. Completeness ensures that for each consistent source model there is
a forward transformation sequence transforming it into a consistent target model.

The concept of forward translation rules [17] provides a simple way of implement-
ing model transformations such that source consistency is ensured automatically. A
forward translation rule trFT extends the forward rule trF by additional Boolean valued
translation attributes, which are markers for elements in the source model and specify
whether the elements have been translated already. Each forward translation rule trFT

turns the markers of the source elements that are translated by this rule from F to T
(i.e., the elements that are created by trS ). The model transformation is successfully
executed if the source model is completely marked with T. We indicate these markers
in the examples by check marks in the visual notation and by bold font face in the graph
representation. Similarly, from the triple rules, we can also create consistency checking
rules [19], which, given an integrated model (GS ↔ GT ), simulate the creation of the
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model by marking its elements. If all elements are marked with T, then (GS ↔ GT )
belongs to VL(TGG).

5 General Synchronization Process Based on TGGs

This section shows how to construct the operation fPpg of a TGG synchronization
framework (see Def. 2) as a composition of auxiliary operations 〈fAln, Del, fAdd〉.
Symmetrically, operations 〈bAln, Del, bAdd〉 are used to define the operation bPpg.
As a general requirement, the given TGG has to provide deterministic sets of opera-
tional rules, meaning that the algorithmic execution of the forward translation, back-
ward translation, and consistency checking rules ensures functional behavior (unique
results) and does not require backtracking. For this purpose, additional policies can be
defined that restrict the matches of operational rulesas presented in App. A by Fact 7
and as discussed in Ex. 5 in Sec. 6. Fact 1 in Sec. 6 provides sufficient conditions for
deterministic operational rules. We provide additional static conditions and automated
checks in the technical report [19].

The general synchronization process is performed as follows (see Fig. 6; we use
double arrows (↔) for correspondence in the signature of the operations, and the ex-
plicit triple graphs for the construction details). Given two corresponding models GS

and GT and an update of GS via the graph modification a = (GS
←

a1
−− DS

−
a2
−→ G′S ) with

G′S ∈ VLS , the forward propagation fPpg of δS is performed in three steps via the auxil-
iary operations fAln, Del, and fAdd. At first, the deletion performed in a is reflected into
the correspondence relation between GS and GT by calculating the forward alignment
remainder via operation fAln. This step deletes all correspondence elements whose el-
ements in GS have been deleted. In the second step, performed via operation Del, the
two maximal subgraphs GS

k ⊆ GS and GT
k ⊆ GT are computed such that they form a

consistent integrated model in VL(TGG) according to the TGG. All elements that are
in GT but not in GT

k are deleted, i.e., the new target model is given by GT
k . Finally, in

the last step (operation fAdd), the elements in G′S that extend GS
k are transformed to

corresponding structures in G′T , i.e., GT
k is extended by these new structures. The result

of fAdd, and hence also fPpg, is a consistent integrated model.

Definition 3 (Auxiliary TGG Operations). Let TGG = (TG,∅,TR) be a TGG with
deterministic sets of operational rules and let further MF(TGG) be the derived TGG
model framework.

1. The auxiliary operation fAln computing the forward alignment remainder is given
by fAln(r, a) = r′, as specified in the upper part of Fig. 6. The square marked by
(PB) is a pullback, meaning that DC is the intersection of DS and GC .

2. Let r = (s, t) : GS ↔ GT be a correspondence relation, then the result of the aux-
iliary operation Del is the maximal consistent subgraph GS

k ↔ GT
k of r, given by

Del(r) = (a, r′, b), which is specified in the middle part of Fig. 6.
3. Let r = (s, t) : GS ↔ GT be a consistent correspondence relation, a = (1, a2) :

GS → G′S be a source modification and G′S ∈ VLS . The result of the auxiliary
operation fAdd, for propagating the additions of source modification a, is a consis-
tent model G′S ↔ G′T extending GS ↔ GT , and is given by fAdd(r, a) = (r′, b),
according to the lower part of Fig. 6.
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Remark 2 (Auxiliary TGG Operations). Intuitively, operation fAln constructs the new
correspondence graph DC from the given GC by deleting all correspondence elements
in GC whose associated elements in GS are deleted via update a and, for this reason, do
not occur in DS . Operation Del is executed by applying consistency checking rules (cf.
Sec. 4) to the given integrated model until no rule is applicable any more. If, at the end,
GS ↔ GT is completely marked, the integrated model is already consistent; otherwise,
the result is the largest consistent integrated model included in GS ↔ GT . Technically,
the application of the consistency checking rules corresponds to a maximal triple rule
sequence as shown in the right middle part of Fig. 6 and discussed in more detail in
App. A. Finally, fAdd is executed by applying forward translation rules (cf. Sec. 4) to
G′S ↔ GT until all the elements in G′S are marked. That is, these TGT steps build a
model transformation of G′S extending GT . Technically, the application of the forward
translation rules corresponds to a source-consistent forward sequence from G0 to G′,
as shown in the right lower part of Fig. 6. By correctness of model transformations [8],
the sequence implies consistency of G′ as stated above. The constructions for these
auxiliary operations are provided in full detail in App. B.1.

Example 4 (Forward Propagation via Operation fPpg). Figure 7 shows the application
of the three steps of synchronization operation fPpg to the visual models of our running
example. After removing the dangling correspondence node of the alignment in the first
step (fAln), the maximal consistent subgraph of the integrated model is computed (Del)
by stepwise marking the consistent parts: consistent parts are indicated by grey boxes
with checkmarks in the visual notation and by bold font faces in the graph representa-
tion. Note that node “Bill Gates” is part of the target graph in this maximal consistent
subgraph, even though it is not in correspondence with any element of the source graph.

Signature Definition of Components

GS oo
r=(s,t)

//

a=

(a1 ,a2)
��

u:fAln

GT

1
��

G′S oo
r′=(s′ ,t′)

// GT

GS

(PB)

GCsoo t // GT

DS
?�

a1

OO

DC
?�

a∗1

OO

s∗
oo

s′ = a2 ◦ s∗,
t′ = t ◦ a∗1

GS oo
r=(s,t)

//

a=

( f S ,1)
��
⇓:Del

GT

b=

( f T ,1)
��

GS
k
oo

r′=(sk ,tk):C
// GT

k

G = (GS GCsoo t // GT )

∅
tr∗ +3 Gk = (GS

k

?�
f S

OO

?�
f

OO

GC
k

?�
f C

OO

skoo
tk // GT

k )
?�

f T

OO ∅ =
tr∗
=⇒ Gk

is maximal w.r.t.
Gk ⊆ G

∀ G′S ∈ VLS :

GS oo
r=(s,t):C

//

a=

(1,a2)
��

u:fAdd

GT

b=
(1,b2)
��

G′S oo
r′=(s′ ,t′)

// G′T

(GS
� _

a2 ��

G GCsoo t //
� _

1
��

GT )
� _

1
��

(G′S
� _

1 ��

G0

� _
g
��

GC
� _

��

a2◦soo t // GT )
� _

b2 ��

(G′SG′
tr∗F ��

G′C
s′oo t′ // G′T )

G0 =
tr∗F
==⇒ G′

with G′ ∈ VL(TGG)

Fig. 6. Auxiliary operations fAln, Del and fAdd
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Fig. 7. Forward propagation in detail: visual notation (top) and graph representation (bottom)
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Signature Definition of Components

∀ G′S ∈ VLS :

GS oo r //

a
��
u:fPpg

GT

b
��

G′S oo
r′
// G′T

GS oo r //

aA �� u:fAln

a

//

GT

1��

b

oo

DS oo r1 //

aD �� ⇓:Del

GT

bD��

GS
k
oo r2 //

a f �� u:fAdd

GT
k
b f��

G′S oo
r′
// G′T

a = (a1, a2)
= (GS

←
a1
−− DS

−
a2
−→ G′S )

aA = (a1, 1)
aD = (a′1, 1)
a f = (a1 ◦ a′1, a2)
b = b f ◦ bD

1 /* == alignment remainder == */
2 forall(correpondence nodes without image in the source model){
3 delete these elements }
4 /* ==== delete === */
5 while(there is a triple rule p such that R\L is unmarked){
6 apply to G the consistency checking rule corresponding to p }
7 forall(unmarked nodes and edges from the target model){
8 delete these elements }
9 /* ===== add ===== */

10 while(there is a forward translation rule applicable to G){
11 apply to G the forward translation rule }

Fig. 8. Synchronization operation fPpg - top: formal definition, bottom: algorithm

In the final step (fAdd), the inconsistent elements in the target model are removed and
the remaining new elements of the update are propagated towards the target model by
model transformation, such that all elements are finally marked as consistent.

Definition 4 (Derived TGG Synchronization Framework). Let TGG = (TG,∅,TR)
be a TGG with deterministic sets of derived operational rules and with derived model
framework MF(TGG), then operation fPpg of the derived TGG synchronization frame-
work is given according to Def. 2 by the composition of auxiliary operations (fAln, Del,
fAdd) with construction in Rem. 3. Symmetrically—not shown explicitly—we obtain
bPpg as composition of auxiliary operations (bAln, Del, bAdd).

Remark 3 (Construction of fPpg according to Fig. 8). Given a not necessarily con-
sistent integrated model r : GS ↔ GT and source model update a : GS → G′S with
G′S ∈ VLS , we compute fPpg(r, a) as follows. First, fAln computes the correspondence
(DS ↔ GT ), where DS is the part of GS that is preserved by update a. Then, Del com-
putes its maximal consistent integrated submodel (GS

k ↔ GT
k ). Finally, fAdd composes

the embedding GS
k → G′S with correspondence (GS

k ↔ GT
k ) leading to (G′S ↔ GT

k ),
which is then extended into the consistent integrated model (G′S ↔ G′T ) via forward
transformation. If G′S < VLS , then the result is given by b = (1, 1) : GT → GT together
with the correspondence relation r′ = (∅,∅) and additionally, an error message is pro-
vided. The bottom part of Fig. 8 describes this construction algorithmically in pseudo
code, leaving out the error handling; marking is explained in Sec. 4.
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6 Correctness of Model Synchronization Based on TGGs

Based on the derived TGG synchronization framework (Def. 4), we now show our main
result concerning correctness, completeness, and invertibility. According to Def. 2, cor-
rectness requires that the synchronization operations are deterministic, i.e., they have
functional behaviour and ensure laws (a1) - (b2). Concerning the first property, Fact 1
below provides a sufficient condition based on the notion of critical pairs [7], which
is used in the automated analysis engine of the tool AGG [28]. A critical pair speci-
fies a conflict between two rules in minimal context. Solving a conflict means to find
compatible merging transformation steps, which is formalized by the notion of strict
confluence [7]. The result is provided for almost injective matches, which means that
matches are injective on the graph part and may evaluate different attribute expres-
sions to the same values. Completeness requires that operations fPpg and bPpg can
be successfully applied to all consistent source models G′S ∈ VLS and target models
G′T ∈ VLT , respectively. For this reason, additional propagation policies are defined in
order to eliminate non-determinism. They can be seen as a kind of application condi-
tions for the rules and are called conservative, if they preserve the completeness result.
Fact 7 in App. A provides a sufficient static condition for checking this property.

Fact 1 (Deterministic Synchronization Operations). Let TGG be a triple graph
grammar and let matches be restricted to almost injective morphisms. If the critical
pairs of the sets of operational rules are strictly confluent and the systems of rules are
terminating, then the sets of operational rules are deterministic, which implies that the
derived synchronization operations fPpg and bPpg are deterministic as well.

Proof. The proof is given in App. A.5. ut

Remark 4 (Termination). In order to ensure termination of the TGG constructions, we
can check that each operational rule is modifying at least one translation attribute (cf.
Sec. 4), which is a sufficient condition as shown by Thm. 1 in [17] for model transfor-
mation sequences.

Invertibility of propagation operations depends on additional properties of a TGG.
For this purpose, we distinguish between different types of triple rules. By TR+s we de-
note the triple rules of TR that are creating on the source component and by TR1s those
that are identical on the source component and analogously for the target component.
A TGG is called pure, if TR1s ⊆ TRT and TR1t ⊆ TRS meaning that the source-identic
triple rules are empty rules on the source and correspondence components and analo-
gously for the target-identic triple rules. According to Thm. 1 below, weak invertibility
is ensured if the TGG is pure and at most one set of operational rules is restricted by a
conservative policy. In the more specific case that all triple rules of a TGG are creating
on the source and target components (TR = TR+s = TR+t), then the TGG is called tight,
because the derived forward and backward rules are strongly related. This additional
property ensures invertibility meaning that fPpg and bPpg are inverse to each other
when considering the resulting models only.

Theorem 1 (Correctness, Completeness, and Invertibility). Let Synch(TGG) be a
derived TGG synchronization framework, such that the sets of operational rules of TGG
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are deterministic. Then Synch(TGG) is correct and complete. If, additionally, TGG is
pure and at most one set of operational rules was extended by a conservative policy,
then Synch(TGG) is weakly invertible and if, moreover, TGG is tight and no policy was
applied, then Synch(TGG) is also invertible.

Proof. The proof is given in App. A.5. ut

Example 5 (Correctness, Completeness, Invertibility, and Scalability). The initially de-
rived set of backward transformation rules for our running example is not completely
deterministic because of the non-deterministic choice of base and bonus values for prop-
agating the change of a salary value. Therefore, we defined a conservative policy for the
responsible backward triple rule by fixing the propagated values of modified salary val-
ues to bonus = base = 0.5 × salary. By Fact 7 in App. A, we provided a sufficient
static condition for checking that a policy is conservative; we validated our example
and showed that the derived operations fPpg and bPpg are deterministic. For this rea-
son, we can apply Thm. 1 and verify that the derived TGG synchronization framework
is correct and complete. Since, moreover, the TGG is pure and we used the conserva-
tive policy for the backward direction only, Thm. 1 further ensures that Synch(TGG)
is weakly invertible. However, it is not invertible in the general sense, as shown by a
counter example in App. A, which uses the fact that information about birth dates is
stored in one domain only. The automated validation for our example TGG with 8 rules
was performed in 25 seconds on a standard consumer notebook via the analysis en-
gine of the tool AGG [28]. We are confident that the scalability of this approach can be
significantly improved with additional optimizations.

In the case that the specified TGG does not ensure deterministic synchronization
operations, there are still two options for synchronization that ensure correctness and
completeness. On the one hand, the triple rules can be modified in a suitable way, such
that the TGG can be verified to be deterministic. For this purpose, the critical pair anal-
ysis engine of the tool AGG [28] can be used to analyze conflicts between the generated
operational rules. Moreover, backtracking can be reduced or even eliminated by gen-
erating additional application conditions for the operational rules using the automatic
generation of filter NACs [17]. On the other hand, the TGG can be used directly, lead-
ing to nondeterministic synchronization operations, which may provide several possible
synchronization results.

7 Related Work

Triple graph grammars have been successfully applied in multiple case studies for bidi-
rectional model transformation, model integration and synchronization [21,26,11,10],
and in the implementation of QVT [14]. Moreover, several formal results are available
concerning correctness, completeness, termination [8,12], functional behavior [20,12],
and optimization with respect to the efficiency of their execution [17,22,12]. The pre-
sented constructions for performing model transformations and model synchronizations
are inspired by Schürr et al. [25,26] and Giese et al. [10,11], respectively. The construc-
tions formalize the main ideas of model synchronization based on TGGs in order to
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show correctness and completeness of the approach based on the results known for
TGG model transformations.

Perdita Stevens developed an abstract state-based view on symmetric model syn-
chronization based on the concept of constraint maintainers [27] and Diskin described
a more general delta-based view within the tile algebra framework [4]. The construc-
tions in the present paper are inspired by tile algebra and follow the general framework
presented by Diskin et al. [5], where propagation operations are defined as the compo-
sition of two kinds of operations: alignment and consistency restoration. In the current
paper, operations fAln and bAln take care of the alignment by removing all correspon-
dence nodes that would be dangling due to deletions via the given model update. Then,
operations Del and fAdd resp. bAdd provide the consistency restoration by first mark-
ing the consistent parts of the integrated model and then propagating the changes and
deleting the remaining inconsistent parts.

Giese et al. introduced incremental synchronization techniques based on TGGs in
order to preserve consistent structures of the given models by revoking previously per-
formed forward propagation steps and their dependent ones [11]. This idea is gen-
eralized by the auxiliary operation Del in the present framework, which ensures the
preservation of maximal consistent substructures and extends the application of syn-
chronization to TGGs that are not tight or contain rules with negative application con-
ditions. Giese et al. [10] and Greenyer et al. [15] proposed to extend the preservation
of substructures by allowing for the reuse of any partial substructure of a rule causing,
however, non-deterministic behavior. Moreover, a partial reuse can cause unintended
results. Consider, e.g., the deletion of a person A in the source domain and the addi-
tion of a new person with the same name, then the old birth date of person A could be
reused.

In order to improve efficiency, Giese et al. [11,10] proposed to avoid the computa-
tion of already consistent substructures by encoding the matches and dependencies of
rule applications within the correspondences. In the present framework, operation Del
can be extended conservatively by storing the matches and dependency information sep-
arately, such that the provided correctness and completeness results can be preserved
as presented in App. A.

8 Conclusion and Future Work

Based on our formal framework for correctness, completeness, termination and func-
tional behavior of model transformations using triple graph grammars (TGGs) [8,17],
we have presented in this paper a formal TGG framework for model synchronization
inspired by [11,10,25,26]. The main result (Thm. 1) shows correctness, completeness
and (weak) invertibility, provided that the derived synchronization operations are deter-
ministic. For this property, sufficient static conditions are provided in App. A based on
general results for TGGs in [17].

In future work, the tool Henshin based on AGG [28] will be extended to imple-
ment the synchronization algorithm for forward propagation in Fig. 8. Moreover, the
relationship with lenses [27] and delta based bidirectional transformations [5] will be
studied in more detail, especially in view of composition of lenses leading to composi-
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tion of synchronization operations. Furthermore, we will study synchronization based
on non-deterministic forward and backward propagation operations in more detail.
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1. Corradini, A., Hermann, F., Sobociński, P.: Subobject Transformation Systems. Applied
Categorical Structures 16(3), 389–419 (February 2008), http://www.springerlink.
com/content/1648jx522426p053/
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A Detailed Constructions and Proofs

This appendix A provides full technical details of the constructions for the auxiliary
operations fAln,Del and fAdd and shows the main result as stated by Thm. 1 in Sec. 6.

At first, we present in Sec. A.1 extended constructions and results for model trans-
formations and consistency checks based on TGGs in general. Since negative applica-
tion conditions (NACs) already allow the specification of expressive TGGs while still
ensuring efficient executions we provide the results for transformation rules with NACs.
The extension to the cases with nested application condition will be part of future work.
Based on these general constructions and results, we provide in Sec. A.4 full details of
the constructions concerning the auxiliary operations fAln,Del and fAdd and show the
main results.

A.1 TGG Operations and Analysis

This section first reviews further details on model transformations based forward rules
and the equivalent approach based on forward translation rules, which extend forward
rules by additional translation attributes. Forward translation rules are used for effi-
ciently execute and analyze TGG model transformations as presented in [17].

According to Sec. 4 and Def. 5 below, model transformations MT : VL(TGS ) V
VL(TGT ) based on forward rules map valid source models to target models by com-
puting TGT sequences via the derived forward rules, such that the additional control
condition source consistency is respected.

Definition 5 (Model Transformation based on Forward Rules). A model transfor-

mation sequence (GS , G0 =
tr∗F
=⇒ Gn,GT ) consists of a source graph GS , a target graph

GT , and a source consistent forward TGT-sequence G0 =
tr∗F
=⇒ Gn with GS = GS

0 and
GT = GT

n . A model transformation MT : VL(TGS ) V VL(TGT ) is defined by

all model transformation sequences (GS ,G0 =
tr∗F
=⇒ Gn,GT ) with GS ∈ VL(TGS ) and

GT ∈ VL(TGT ).

From the application point of view a model transformation should be injective on
the structural part, i.e. the transformation rules are applied along matches that do not
identify structural elements. But it would be too restrictive to require injectivity of the
matches also on the data and variable nodes, because we must allow that two differ-
ent variables are mapped to the same data value. For this reason we use the notion
of almost injective matches, which requires that matches are injective except for the
data value nodes. This way, attribute values can still be specified as terms within a rule
and matched non-injectively to the same value. For the rest of this paper we generally
require almost injective matching for the transformation sequences.

Definition 6 (Almost Injective Match). An attributed triple graph morphism m : L→
G is called almost injective match, if it is non-injective at most for the set of variables
and data values.
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Using the concept of translation attributes we provide extended operational rules,
such that transformations via these rules do not need to be controlled by a separate
control condition. The operational rules TRFT (forward translation rules), TRBT (back-
ward translation rules) and TRCC (consistency creating rules) are derived from the set
TR of TGG-triple rules by an extension with Boolean valued marking attributes with
prefix “tr” as introduced for forward translation rules TRFT in [17]. For this purpose,
we review the constructions for triple graphs with translation attributes.

Given an attributed graph AG and a family of subsets M ⊆ AG for nodes and
edges, we call AG′ a graph with translation attributes over AG if it extends AG with
one Boolean-valued attribute tr x for each element x (node or edge) in M and one
Boolean-valued attribute tr x a for each attribute associated to such an element x in
M. The family M together with all these additional translation attributes is denoted by
AttM . Note that we use the attribution concept of E-graphs as presented in [7], where
attributes are possible for nodes and edges. An E-graph EG extends a directed graph
G = (V, E, (s, t : E → V)) by a set of attribute value nodes VD together with sets of
attribution edges ENA and EEA for assigning attribute values to structural graph nodes V
and edges E. An attributed graph AG = (G,D) is given by an E-graph G together with
a data algebra D, such that the attribute values VD are given by the disjoint union of the
carrier sets of D.

Definition 7 (Family with Translation Attributes). Given an attributed graph AG =

(G,D) we denote by |AG| = (VG
G ,V

D
G , E

G
G , E

NA
G , EEA

G ) the underlying family of sets con-
taining all nodes and edges. Let M ⊆ |AG| with (VG

M ,V
D
M , E

G
M , E

NA
M , EEA

M ), then a family
with translation attributes for (AG,M) extends M by additional translation attributes
and is given by AttM = (VG

M ,V
D
M , E

G
M , E

NA, EEA) with:

– ENA = ENA
M
·∪ {tr x | x ∈ VG

M}
·∪ {tr x a | a ∈ ENA

M , srcNA
G (a) = x ∈ VG

G },

– EEA = EEA
M
·∪ {tr x | x ∈ EG

M}
·∪ {tr x a | a ∈ EEA

M , srcEA
G (a) = x ∈ EG

G}.

Definition 8 (Graph with Translation Attributes). Given an attributed graph

M �
� //
� _

��
(PO)

AttM

��
|AG| // |AG′|

AG = (G,D) and a family of subsets M ⊆ |AG| with {T,F} ⊆ VD
M

and let AttM be a family with translation attributes for (G,M)
according to Def. 7. Then, AG′ = (G′,D) is a graph with trans-
lation attributes over AG, where the domains |AG′| of AG′ are
given by the gluing via pushout of |AG| and AttM over M and the
source and target functions of G′ are defined as follows:

– srcG
G′ = srcG

G, trgG
G′ = trgG

G,

– srcX
G′ (z) =

{
srcX

G(z) z ∈ EX
G

x z = tr x or z = tr x a for X ∈ {NA,EA},

– trgX
G′ (z) =

{
trgX

G(z) z ∈ EX
G

T or F z = tr x or z = tr x a for X ∈ {NA,EA}.

Attv
M , where v = T or v = F, denotes a family with translation attributes where all

attributes are set to v. Moreover, we denote by AG ⊕ AttM that AG is extended by the
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translation attributes in AttM , i.e. AG ⊕ AttM = (G′,D) for AG′ = (G′,D) as defined
above. We use the notion AG ⊕ Attv

M for translation attributes with value v and we use
the short notion Attv(AG) := AG ⊕ Attv

|AG|.

The concept of forward translation rules, which we introduced in [20], extends the
construction of forward rules by additional translation attributes in the source compo-
nent. The translation attributes are used to keep track of the elements that have been
translated so far. This way, we can ensure that each element in the source graph is not
translated twice, but exactly once. At the beginning, the source model of a model trans-
formation sequence is extended by translation attributes that are all set to “F” and they
are set to “T” when their containing elements are translated by a forward translation
rule. Whenever the model transformation stops at a model whose translation attributes
are all set to “T”, the sequence specifies a source consistent forward sequence by re-
moving all translation attributes and a valid target model is obtained from the resulting
triple graph. Due to the modification of the translation attributes, the rules are delet-
ing and thus, the triple transformations are extended from a single (total) pushout to
the classical double pushout (DPO) approach [7]. We call these rules forward transla-
tion rules, because pure forward rules need to be controlled by the additional control
condition source consistency [9].

Consistency creating rules are used to compute maximal subgraphs Gk of a given
triple graph G typed over TG, such that Gk ∈ VL(TGG). In the special case that
G ∈ VL(TGG) we have that Gk � G. For this purpose, each consistency creating rule
switches labels form false to true for those elements that would be created by the cor-
responding TGG-rule in TR. This means that elements in the left hand side LCC = R
are labelled with true, if they are also contained in L, and they are labelled with false
otherwise. Accordingly, all elements in the right hand side RCC are labelled with true.

main components new NAC for each
n : L→ N of tr

trCC LCC KCC
? _

lCCoo � � rCC // RCC

(R ⊕ AttT
L ⊕ AttF

R\L) (R ⊕ AttT
L ) (R ⊕ AttT

L ⊕ AttT
R\L)

NCC = (LCC +L N)
⊕AttT

N\L

trFT LFT KFT
? _

lFToo � � rFT // RFT

(LF ⊕ AttT
LS
⊕ AttF

RS \LS
) (LF ⊕ AttT

LS
) (RF ⊕ AttT

LS
⊕ AttT

RS \LS
)

NFT = (LFT +L N)
⊕AttT

NS \LS

trBT LBT KBT
? _

lBToo � � rBT // RBT

(LB ⊕ AttT
LT
⊕ AttF

RT \LT
) (LB ⊕ AttT

LT
) (RB ⊕ AttT

LT
⊕ AttT

RT \LT
)

NBT = (LBT +L N)
⊕AttT

NT \LT

Fig. 9. Components of derived operation rules
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Definition 9 (Operational Rules). Given a triple rule tr = (L→ R) and its derived
source rule trS = (LS → RS ), target rule trT = (LT → RT ), forward rule trF = (LF →

RF) and backward rule trB = (LB → RB), the derived translation rules of tr are given
by consistency creating rule trCC = (LCC ←

lCC
−−− KCC −

rCC
−−→ RCC), forward translation rule

trFT = (LFT ←
lFT
−− KFT −

rFT
−−→ RFT ), and backward translation rule trBT = (LBT ←

lBT
−− KBT −

rBT
−−→

RBT ) defined in Fig. 9 using the notation of Def. 8. By TRCC, TRFT , TRBT we denote the
sets of all derived consistency creating, forward translation and backward translation
rules, respectively.

Remark 5. Note that (B +A C) is the union of B and C with shared A, such that for
instance (LFT +L N) is the union of LFT and N with shared L.

Since forward translation rules are deleting only on attribution edges, the gluing
condition is always satisfied, because dangling points and identification points are pre-
served for almost injective matches. Now, we define model transformations based on
forward translation rules in the same way as for forward rules in Def. 5, where source
consistency of the forward sequence is replaced by completeness of the forward trans-
lation sequence. As shown in [17], model transformation sequences based on forward
and forward translation rules, respectively, are equivalent. This ensures that the derived
model transformation relations are the same.

Definition 10 (Complete Forward Translation Sequence). A forward translation se-

quence G0 =
tr∗FT
==⇒ Gn with almost injective matches is called complete if Gn is completely

translated, i.e. all translation attributes of Gn are set to true (“T”).

Definition 11 (Model Transformation Based on Forward Translation Rules). A

model transformation sequence (GS , G′0 =
tr∗FT
==⇒ G′n,G

T ) based on forward translation
rules TRFT consists of a source graph GS , a target graph GT , and a complete TGT-

sequence G′0 =
tr∗FT
==⇒ G′n typed over TG′ = TG ⊕ AttF

|TGS |
⊕ AttT

|TGS |
based on TRFT with

G′0 = (AttF(GS )← ∅→ ∅) and G′n = (AttT(GS )← GC → GT ).
A model transformation MT : VL(TGS ) V VL(TGT ) based on TRFT is defined by all
model transformation sequences as above with GS ∈ VL(TGS ) and GT ∈ VL(TGT ). All
the corresponding pairs (GS ,GT ) define the model transformation relation MTRFT ⊆

VL(TGS ) × VL(TGT ) based on TRFT . The model transformation is terminating if there
are no infinite TGT-sequences via TRFT starting with G′0 = (AttF(GS ) ← ∅ → ∅) for
some source graph GS ∈ VL(TGS ).

Consistency creating sequences as defined in Def. 12 below, are used for computing
a maximal consistent part of a given triple graph, which is used for the auxiliary op-
eration Del. A consistency creating sequence starts at a triple graph G′0 = AttF(G), i.e.
at a triple graph where all elements are marked with F. Each application of a consis-
tency creating rule modifies some translation attributes of an intermediate triple graph
G′i from F to T and preserves the structural part G contained in G′i . Therefore, the the
resulting triple graph G′n extends G with translation attributes only, i.e. some are set to
T and the remaining ones to F.
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Definition 12 (Consistency Creating Sequence). Given a triple graph grammar
TGG = (TG,∅,TR), a triple graph G typed over TG and let TRCC be the set of consis-

tency creating rules of TR. A consistency creating sequence s = (G,G′0 =
tr∗CC
==⇒ G′n,Gn)

is given by a TGT sequence G′0 =
tr∗CC
==⇒ G′n via TRCC with G′0 = AttF(G) and G′n =

G⊕AttT
Gn
⊕AttF

G\Gn
, where Gn is the subgraph of G derived from G′0 =

tr∗CC
==⇒ G′n by restrict-

ing G′n to all T-marked elements. Consistency creating sequence s is called terminated,
if there is no rule in TRCC which is applicable to the result graph G′n. In this case, the
triple graph G′n is called a maximal consistency marking of G. A triple graph G′ is
called completely T-marked, if G′ = AttT(G) for a given triple graph G, i.e. all trans-
lation attributes in G′ are “T”.

Remark 6 (Termination). In order to ensure termination, the operational rules TR+s
FT for

forward transformations are derived from a subset TR+s of source creating triple rules
of TR given by TR+s = {tr ∈ TR | trS , id}. Accordingly, we consider a subset TR+t of
target creating triple rules of TR for the operational rules TR+t

BT for backward transfor-
mations, i.e. TR+t = {tr ∈ TR | trT , id}. Let TR be a set of triple rules. We distinguish
the following subsets.

– The set of source creating rules TR+s = {tr ∈ TR | trS , id},
– The set of source identic rules TR1s = {tr ∈ TR | trS = id},
– The set of target creating rules TR+t = {tr ∈ TR | trT , id},
– The set of target identic rules TR1t = {tr ∈ TR | trT = id}, and
– The set of identic rules TR1 = {tr ∈ TR | tr = id}.

The consistency creating rules TRCC are derived from TR\TR1. Since TR+s and TR+t

usually differ from each other, there is usually only a loose correspondences between
operational rules in TR+s

FT and TR+t
BT . In the special case that all triple rules in a TGG

are creating on the source and target components we have TR = TR+s = TR+t. In
particular, this means that for each triple rule tr there is a derived forward translation
rule trFT ∈ TR+s

FT and a derived backward translation rule trBT ∈ TR+t
BT . In this case, the

TGG is called tight.

Definition 13 (Tight TGG). A TGG TGG = (TG,∅,TR) is called tight, if the sets of
source and target creating rules TR+s and TR+t coincide with the set of triple rules TR,
i.e. TR = TR+s = TR+t.

A.2 General Results for Transformation Systems

In order to compose the auxiliary operations Del and fPpg we first show two fundamen-
tal results for transformation systems based on the notion of sequential independence.
At first we characterize sequential independence of rules. Sequential independence of
a pair (p1, p2) of rules means that any two subsequence transformation steps with p1
applied in the first and p2 applied in the second step are sequentially independent, i.e.
the rules are sequentially independent in any context concerning the specified order.
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Definition 14 (Independence of Rules). A pair of rules (p1, p2) is called sequentially
independent, if any two transformation steps G0 =

p1,m1
===⇒ G1 =

p2,m2
===⇒ G2 are sequentially

independent.

The following two facts are required in order to use AGG for static analysis of
sequential independence based on critical pairs for parallel independence [7]. This is
important, because we need to ensure sequential independence of the source-identic
FT-rules TR1s

FT towards the effective FT-rules TR+s
FT in order to ensure termination of the

propagation process. The key idea for this purpose is that the termination critical source
identic FT-rules do not need to be applied, because they do not change any translation
attribute and we require that they are sequentially independent from the effective FT-
rules. Hence, we show by Fact 3 that sequentially independent rules can be shifted to
the end.

Fact 2 (Characterization of Independent Rules). A pair of rules (p1, p2) is sequen-
tially independent if and only if there is no critical pair for (p−1

1 , p2), where p−1 =

((R←r− K −l→ L),N′) denotes the inverted rule of the rule p = ((L←l− K −r→ R),N) and N′ is
obtained by shifting all NACs in N over the rule p.

Proof. Direction “⇐”: By contraposition, assume (r1, r2) is a pair of sequentially de-
pendent rules. This implies that there are the sequentially dependent transformation

steps G0 =
r1,m1
===⇒ G1 =

r2,m2
===⇒ G2. This means that the steps G0 ⇐

r−1
1 ,n1

===== G1 =
r2,m2
===⇒ G2 are

parallel dependent, where n1 is the comatch of G0 =
r1,m1
===⇒ G1. Thus, by completeness of

critical pairs (Thm. 3.7.6 in [23]) there is a critical pair for (r−1
1 , r2).

Direction “⇒”: By contraposition, assume there is a critical pair for (r−1
1 , r2), i.e. there

are parallel dependent transformation steps (P1 ⇐
r−1

1 ,m1

===== K =
r2,m2
===⇒ P2). This implies that

there are sequentially dependent transformation steps (P1 =
r1,n1
===⇒ K =

r2,m2
===⇒ P2), where n1

is the comatch of K =
r−1

1 ,m1

====⇒ P1. Therefore, (r1, r2) is a pair of dependent rules.

Fact 3 (Shifting of Independent Steps). Given two sets P1 and P2 of rules such that
each pair (p1, p2) ∈ P1×P2 is sequentially independent. Then, there is a transformation

sequence (G =
r∗
=⇒ H) via (P1 ∪ P2) if and only if there are transformation sequences:

s1 = (G =
p∗
=⇒ G1) via P2 and s2 = (G1 =

q∗
=⇒ H) via P1 with same G1.

Proof. By Def. 14, each neighbouring pair of steps via first rule q ∈ P1 and then p ∈ P2
is sequentially independent. Therefore, we can stepwise apply the Local Church-Rosser
Theorem and switch the steps via P2 forward in s and derive the sequences s1 and s2.
For the inverse direction, the sequences s1 and s2 can be composed leading to sequence
s via (P1 ∪ P2).

A.3 Results for TGGs

Based on the following Fact 4, we can ensure termination for forward translation se-
quences, because the source-identic rules can be neglected, since they can be applied
equivalently at the end and do not change the source model.
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Fact 4 (Shifting of Independent FT-Steps). Let TGG = (TG,∅,TR) be a triple graph
grammar, TR1 ⊆ TR be a subset of triple rules and TR1 = TR\TR1 be the complement of
TR1 with respect to TR. Let TRFT , TR1,FT and TR1,FT be the derived forward translation
rules of TR, TR1 and TR1, respectively. If there is no pair (trFT , trFT ) ∈ TR1,FT × TR1,FT

of sequentially dependent rules, then the following are equivalent for almost injective
matches

1. There is a TGT-sequence H′k =
tr∗FT
==⇒ H′n.

2. There are TGT-sequences H′k =
tr∗1,FT
===⇒ H′l via TR1,FT and H′l =

tr1
∗

,FT
===⇒ H′n via TR1,FT .

Proof. The result follows directly by Fact 3. ut

Fact 5 (Completeness of Model Transformations Based on Reduced Operational
Rules). Let TGG be a triple graph grammar and TR+s

FT and TR+t
BT the operational

rules derived from the source creating triple rules TR+s resp. the target creating
triple rules TR+t of TR, such that the following conditions hold. There is no pair
(tr1, tr2) ∈ (TR1s

FT × TR+s
FT ) of sequentially dependent rules and there is no pair

(tr1, tr2) ∈ (TR1t
BT × TR+t

BT ) of sequentially dependent rules. Then, the derived model
transformation relations MTR+s

FT ⊆ VLS × VLT via TR+s
FT and MTR+t

BT ⊆ VLT × VLS via
TR+t

BT are left total.

Proof. By Thm. 1 in [17] the model transformation relation MTRFT derived from the
complete set TRFT of forward translation rules is left total. Let (GS ,GT ) ∈ MTRFT , then

there is a model transformation sequence (GS ,G′0 =
tr∗FT
==⇒ G′n,G

T ) via TRFT . Using the
preconditions concerning sequentially independence of the rules we can apply Fact 4

leading to the sequences s1 = (G′0 =
tr∗1,FT
===⇒ G′k) via TR+s

FT and s2 = (G′k =
tr∗1,FT
===⇒ G′n) via

TR1s
FT . Sequence s1 is source consistent, because the complete sequence (s1; s2) is source

consistent and the corresponding source sequence for s2 contains only identical steps.
Therefore, (GS , s1,GT

k ) is a model transformation sequence, where G′k = (AttT(GS ) ←
GC

k → GT
k ). This means that (GS ,GT

k ) ∈ MTR+s
FT and thus, MTR+s

FT is left total.
The result for MTR+s

BT follows analogously due to the symmetric definition of TGGs.

Fact 6 (Extension of FT-sequences). Let TGG = (TG,∅,TR) be a triple graph

G′0
tr∗FT +3

��

in0

��

G′n��
inn

��

H′0
tr∗FT +3 H′n

grammar with derived forward translation rules TRFT . Let s1 =

(G′0 =
tr∗FT
==⇒ G′n) be a TGT-sequence via TRFT with almost injective

matches, where G0 = (GS ← ∅ → ∅) G′0 = AttF(G0), and G′n =

Gn ⊕ AttT
GS

0
. Let in0 : G0 → H0 be an injective embedding with

H0 = (HS ← ∅ → ∅) ∈ VL(TG) and let H′0 = AttF(H0). Then,
there is a sequence of injective embeddings (ini : G′i → H′i )(i=1..n)

and a TGT-sequence s2 = (H′0 =
tr∗FT
==⇒ H′n) via TRFT with almost injective matches m′i,FT :

Li,FT → H′i−1 given by m′i,FT = ini ◦ mi,FT , such that H′Sn = HS
0 ⊕ AttT

|GS
0 |
⊕ AttF

|HS
n |\|GS

0 |
,

H′Cn = G′n
C and H′Tn = G′n

T .

23



Proof. The almost injective match m1,FT : L1,FT → G′0 of the first step G′0 =
tr1,FT ,m1,FT
=======⇒ G′1

is extended via the injective morphism in0 : G0 � H0 leading to an almost injective
match m′1,FT = in0 ◦ m1,FT : L1,FT → H0,FT .
L1,FT

� � //

m1,FT

��

R1,FT

��

L2,FT
� � //

m2,FT

��

R2,FT

��

. . . . . . Ln,FT
� � //

mn,FT

��

Rn,FT

��

G′0
� � //

��

in0

��

(PO)

G′1
� � //

��

in1

��

(PO)

G′2
� � //

��

in2

��

. . .
� � // G′n−1

� � //

��

inn−1

��

(PO)

G′n��
inn

��

H′0
� � // H′1

� � // H′2
� � // . . .

� � // H′n−1
� � // H′n

We show that the rule tr1,FT is applicable at m′1,FT . By Fact 2 in [17] the gluing condi-
tion is always satisfied for almost injective matches. Let (nFT : L1,FT → N) be a NAC of
tr1,FT . The NAC nFT is satisfied by m1,FT and the NAC-only elements (N \nFT (L1,FT )) in
nFT are labeled with “T” (see Fig. 9). The only way to derive a compatible occurrence of
N in an extension of G′0 would require that additional “T”-labeled elements are added.
All translation attributes in H′0\in0(G′0) are set to “F”. Therefore, m′1,FT |= nFT leading to

the transformation step H′0 =
tr1,FT ,m′1,FT
=======⇒ H′1 with almost injective match m′1,FT and injec-

tive morphism in1 : G′1 � H′1. Moreover, all translation attributes in H′1 \ in1(G′1) are set
to “F”, because the match m′1,FT does not reach these elements and they are preserved.

This procedure is repeated for the subsequent steps leading to s2 = (H′0 =
tr∗FT
==⇒ H′n), such

that all translation attributes in H′n \ inn(G′n) are set to “F”. Recall that G′n = Gn ⊕ AttT
GS

0

by general assumption. This implies that H′Sn = HS
0 ⊕ AttT

|GS
0 |
⊕ AttF

|HS
n |\|GS

0 |
. Each inC

i and

inT
i is an isomorphism using that inC

0 = inT
0 : ∅ → ∅ and the preservation of isomor-

phisms along pushouts. This implies that H′Cn = G′n
C and H′Tn = G′n

T . ut

Since transformation systems are not deterministic in general, we introduce the con-
cept of policies in order to obtain deterministic sets of operational rules for the synchro-
nization operations. The main idea is to restrict the matches of a transformation rule
using additional attribute conditions in order to eliminate ambiguous results.

An attribute condition attCon for a (triple) rule tr : L → R is a set of equations
for attribute values. A match m : L → G satisfies attCon—written m |= attCon—if
the evaluation of attribute values satisfies each equation. In our case study, we use one
attribute condition.

Definition 15 (Policy for Operational Rules). Given a TGG and let TRFT be the de-
rived set of forward translation rules. A policy pol : TRFT → TR′FT for restricting
the applications of the rules in TRFT maps each rule trFT ∈ TRFT to an extended rule
tr′FT ∈ TR′FT , where tr′FT is given by trFT extended by a set of additional attribute condi-
tions AttCpol(trFT ). The policy pol is called conservative, if the derived model transfor-
mation relation MTR′FT ⊆ VLS ×VLT based on TR′FT is left total and is contained in the
model transformation relation MTRFT derived from TRFT , i.e. MTR′FT ⊆ MTRFT .

A policy for backward translation rules TRBT is defined analogously by replacing
FT with BT and it is conservative if the derived model transformation relation MTR′BT ⊆

VLT × VLT is left total and contained in MTRBT .
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Fact 7 (Conservative Policy). Given a policy pol : TRFT → TR′FT , such that for each
rule tr′FT = pol(trFT ) in TR′FT with tr : L→ R the following condition holds.

– Given a match m : L → G for trFT , then there is also a match m′ : L → G for tr′FT
satisfying AttCpol.

– If AttCpol(trFT ) , ∅, then for each rule tr2 ∈ TRFT with trFT , tr2 the pair (trFT , tr2)
is sequentially independent according to Def. 14.

Then, the policy pol is conservative (see Def. 15). A similar fact holds for a policy
pol : TRBT → TR′BT concerning backward translation rules.

Proof. First of all, MTR′FT ⊆ MTRFT , because the additional attribute conditions only
restrict the possible transformation sequences and no additional ones are possible. The
relation MTRFT is left total by the completeness result for TGGs according to Thm. 1
in [17]. It remains to show that MTR′FT ⊆ VLS × VLT is left total as well.

Let GS ∈ VLS . Since MTRFT is left total this implies that there is a complete forward

translation sequence s = (G′0 =
tr∗FT
==⇒ G′n) via TRFT (Def. 10). This means that G′n =

G′n ⊕ AttT(G0), i.e., G′Sn is completely marked with T. It remains to show that there is a

complete forward translation sequence s′ = (G′0 =
tr∗FT
==⇒ H

′

n) via TR′FT .
Let pol(trFT ) = tr′FT with AttCpol , ∅ and let TR1,FT = TRFT \ {trFT }. Using the sec-

ond item of the precondition and Fact 4 we derive from sequence s two subsequences

s1 = (G′0 =
tr∗1,FT
===⇒ G′k) via TR1,FT and s2 = (G′k =

tr∗1,FT
===⇒ G′n) via {trFT }. By the first item of

the precondition we derive for the last step in sequence s2 that there is a corresponding

step G′n−1 =
tr′FT ,m

′

====⇒ H′n via tr′FT , but with possibly different match m′ leading to a new se-
quence s3 by replacing in s2 the last step with the new one. Moreover, the rules tr′FT and
trFT change the same amount of translation attributes from F to T and do not perform
other changes on translation attributes. This implies that H′Sn = G′Sn , because the source
component of a forward translation rule modifies translation attributes only. Therefore,
H′Sn is completely marked with T, because G′Sn is completely marked with T.

Now, recall that the policy pol eliminates some possible matches for the for-
ward translation rules, but does not lead to new ones, because it defines additional
attribute conditions only. Therefore, no additional dependencies between rules are
caused by pol. Thus, item 2 of the precondition implies the following property (∗) :
If AttCpol(trFT ) , ∅, then for each rule tr2 ∈ TRFT with trFT , tr2 the pair (trFT , tr2) and
the pair (trFT , pol(tr2)) is sequentially independent according to Def. 14.

By property (∗), the other steps via trFT in s2 can be shifted beyond the new step

(G′n−1 =
tr′FT ,m

′

====⇒ H′n) as described for the last step before. They are iteratively replaced
with their corresponding steps via tr′FT leading to a sequence s′2 via {tr′FT }. The resulting
last triple graph of the sequence is again completely marked with T as explained before
for the first replacement of a step. By composing sequences s1 and s′2 we derive the new
sequence s′. This procedure for trFT can be repeated and applied to the derived new
sequences s′ for each rule in TR′FT with AttCpol , ∅. Therefore, we derive a sequence

s : G′0 =
tr′∗FT
===⇒ H

′

n via TR′FT . Moreover, H
′S
n = G′Sn is completely marked with T, because

each modification of the sequence s preserved this property. By definition, this implies
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that s is a complete forward translation sequence. Finally, s specifies a valid sequence
via TRFT , because only additional attribute conditions are added to the rules via pol.
Therefore, (GS ,HT ) ∈ MTR′FT .

Concerning backward translation rules the proof is analogous, where FT is replaced
by BT . ut

Definition 16 (Deterministic Sets of Operational Rules and Tight TGG). Let
TGG = (TG,∅,TR) be a triple graph grammar leading to the following derived sets
of operational rules with translation attributes.

– Consistency creating rules TRCC derived from TR
– Forward translation rules TR+s

FT derived from TR+s

– Backward translation rules TR+t
BT derived from TR+t

Let the pairs (TR1s
FT ,TR+s

FT ) and (TR1t
BT ,TR+t

BT ) be sequentially independent acc. to
Def. 14. Then the sets of operational rules TRCC,TRFT , and TRBT (possibly extended by
conservative policies) are called deterministic, if they have functional behavior and do
not require backtracking. A TGG is called tight, if each triple rule tr ∈ TR is source and
target creating, i.e. TR = TR+s = TR+t.

In order to check that the sets of operational rules are deterministic we first describe
how the preconditions of Def. 16 are checked using the tool AGG. Moreover, we can
apply the presented results for showing that the derived model transformation relations
are left total.

1. Sequential independence of the pairs (TR1s
FT ,TR+s

FT ) and (TR1t
BT ,TR+t

BT ): we can use
the tool AGG for the analysis of rule dependencies based on the generation of
critical pairs according to Fact 2.

2. Applied policies are conservative: We apply Fact 7. This requires that the addi-
tional application conditions according to the policy restricts the evaluation of at-
tribute values only, i.e., the assignement of variables. We have to show that the
existence of matches is preserved for each rule and that other rules are not sequen-
tially dependent. For the latter, we can again use the tool AGG and validate that
the corresponding table entries show the value 0. The preservation of the existence
of matches can be ensured by checking that the affected variables are free in the
unmodified rule (trFT or trBT ), i.e. they are not part of a term that is connected to
a node in the LHS (LFT or LBT ).

3. Left totality of derived model transformation relations: By Fact 5 we can conclude
that the derived model transformation relations MTRFT (for TR+s

FT ) and MTRBT (for
TR+t

BT ) are left total. According to Def. 15, the conservative policy ensures that the
derived model transformation relations MTR′FT and MTR′BT are left total.

We now show how to check that the derived sets of operational rules have functional
behavior and do not require backtracking. For this purpose, we apply results known
for the analysis of confluence of transformation systems. A transformation system is
confluent, if it is locally confluent and terminating.

We generally assume that the input models are finite on the structure part, i.e. the
carrier sets of the data values can be infinite, but the graph nodes and all sets of edges are
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finite. As shown in [17] for forward translation rules, this allows to ensure termination
if all operational rules modify at least one translation attribute. The reason is that an
operational rule may change the value of a translation attribute from F to T, but not vice
versa. Moreover, the amount of elements that are marked with translation attributes is
not changed by any operational rule and the input models are finite.

Fact 8 (Termination). Let TGG = (TG,∅,TR) be a triple graph grammar and
TRCC.TRFT ,TRBT are the derived sets of operational rules for consistency creating,
forward translation and backward translation, respectively according to Def. 9 and
possibly extended by some policies. Then, the transformation systems TRCC.TRFT ,TRBT

are terminating for any finite input triple graph.

Proof. According to Def. 9, all triple rules that are identical on the translation attributes
are neglected for the sets of operational rules. Therefore, each operational rule turns
at last one translation attribute value from F to T and none of them creates a new
translation attribute. Using the general assumption that all input graphs are finite on the
graph part, we can deduce that termination is ensured, because each rule reduces the
amount of translation attributes with value F and the start triple graph contains finitely
many translation attributes.

In order to show local confluence, it is sufficient to analyze all critical pairs of the
transformation system. A critical pair specifies a conflict of two rules in minimal con-
text. The aim is to find a compatible solution for each conflict. This means that, given
two dependent and diverging transformation steps described by the critical pair, then
there shall be compatible merging transformation sequences leading to the same result-
ing triple graph.

In the context of model transformations it is sufficient to consider significant critical
pairs only as shown in [17]. A critical pair is significant, if the diverging transformation
steps can be embedded in transformation sequences starting at a graph that can be a pos-
sible input. For this purpose, we denote by LS ⊆ VL(TGS ) the source domain language
and by LT ⊆ VL(TGT ) the target domain language. We usually assume LS ⊆ VLS and
LT ⊆ VLT .

Definition 17 (Significant Critical Pair). A critical pair p = (P1 ⇐
tr1,X
=== K =

tr2,X
==⇒ P2)

for a set TRX of operational triple rules is called significant, if it can be embedded

into a parallel dependent pair (G′1 ⇐
tr1,X
=== G′ =

tr2,X
==⇒ G′2), such that one of the following

conditions hold depending on X.

G′0
��

G′
tr2,X
��

tr1,X
��

G′1 G′2

– Consistency creating rules (X = CC): no restriction
– Forward translation rules (X = FT): there is GS ∈ LS and

G′0 =
tr∗FT
==⇒ G′ with G′0 = (AttF(GS )← ∅→ ∅)

– Backward translation rules (X = BT): there is GT ∈ LT and

G′0 =
tr∗BT
==⇒ G′ with G′0 = (∅← ∅→ AttF(GT ))
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Fact 9 (Functional Behavior and Backtracking). Let TGG = (TG,∅,TR) be a triple
graph grammar and TRCC.TRFT ,TRBT are the derived sets of operational rules for con-
sistency creating, forward translation and backward translation, respectively, such that
termination is ensured for finite triple graphs. The computation of a consistency cre-
ating sequence (Def. 12) based on TRCC has functional behavior and does not require
backtracking, if all significant critical pairs of TRCC are strictly NAC confluent. Let
X ∈ {FT ,BT}, then the model transformation based on TRX has functional behavior
and does not require backtracking, if all significant critical pairs of TRX are strictly
NAC confluent.

Proof. The fact is shown for forward translation rules in [17]. By the symmetric charac-
ter of TGGs we directly derive the result for backward translation rules as well. We now
consider the consistency creating rules. All critical pairs are also significant by Def. 17.
This allows to apply the local confluence theorem for transformation rules with NACs
(Thm. 3.10.8 in [23]) and we can conclude that the system is locally confluent. By
combining local confluence and termination from the precondition we derive that the
system is confluent. This means that the system has functional behavior. Moreover, con-
fluence implies that the computation of consistency creating markings based on TRCC

does not require backtracking. In particular, according to Def. 12, each terminated TGT
sequence via TRCC provides a maximal consistency marking, i.e. no terminating se-
quence is omitted or declared as invalid. ut

Definition 18 (Maximal Triple Sequence). Given an injective morphism i : G → H,

G // i //
��

t
��

H

G′
>> i′
|

>>

then a TGT sequence s = (∅ =
tr∗
=⇒ G) is i-maximal, if for any extended

TGT sequence s′ = (∅ =
tr∗
=⇒ G =

tr,m
==⇒ G′) with derived transformation

inclusion t : G → G′ there is no injective morphism i′ : G′ → H
compatible with i, i.e. with i′ ◦ t = i.

We first proof the equivalence of consistency creating sequences via TRCC and TGT
sequences via TR for single steps as stated by Lemma 1.

Lemma 1 (Equivalence of Consistency Creating Step and Triple Step). Let TR be a
set of triple rules with tri ∈ TR and let TRCC be the derived set of consistency creating
rules. Given a triple graph Gi−1, a triple graph H, and an inclusion gi−1 : Gi−1 ↪→ H.
Let further G′i−1 = H ⊕ AttT

Gi−1
⊕ AttF

H\Gi−1
. Then the following are equivalent:

1. ∃ TGT-step Gi−1 =
tri,mi
===⇒ Gi with trace morphism (inclusion) ti : Gi−1 ↪→ Gi and

inclusion gi : Gi ↪→ H, such that gi ◦ ti = gi−1(∗).

2. ∃ consistency creating TGT-step G′i−1 =
tri,CC ,mi,CC
=======⇒ G′i

Moreover, the equivalent steps correspond via G′i = H ⊕ AttT
Gi
⊕ AttF

H\Gi
.

Proof. At first we consider the transformation steps without NACs. For simpler notation
we assume w.l.o.g. that rule morphisms are inclusions and matches are inclusions except
for the data value component.
Constructions:

28



Li
mi ��

� � tri // Ri
ni��(1)

Gi−1
� �

ti
// Gi

Li,CC

�� (POa)

Ki,CC

��

oo //

(POb)

Ri,CC

��
G′i−1 D′i−1

oo // G′i

1. TGT-step Gi−1 =
tri,mi
===⇒ Gi is given by pushout (1) above.

2. Consistency creating TGT-step G′i−1 =
tri,CC ,mi,CC
=======⇒ G′i is given by (POa) and (POb)

above with
Li,CC = Ri ⊕ AttT

Li
⊕ AttF

Ri\Li

Ki,CC = Ri ⊕ AttT
Li

Ri,CC = Ri ⊕ AttT
Li
⊕ AttT

Ri\Li
= Ri ⊕ AttT

Ri
according to Fig. 9.

Direction 1. ⇒ 2. : We construct (PO1), (PO2), (PO3), and (PO4) as follows from
diagram (1):

Li,CC

�� (PO1)

Ki,CC

��

oo //

(PO2)

Ri,CC

��
G′i−1,0

(PO3)��

D′i−1,0
oo //

(PO4)��

G′i,0
��

G′i−1 D′i−1
oo // G′i

These pushouts consist of the following components concerning translation at-
tributes, where ni : Ri → Gi is defined by PO (1) and gi : Gi ↪→ H is given by as-
sumption.

Ri ⊕ AttT
|Li |
⊕ AttF

|Ri |\|Li |

ni

��
(PO1)

�� ��

Ri ⊕ AttT
|Li |

ni

��
(PO2)

��

rFT //
lFT

oo Ri ⊕ AttT
|Ri |

ni

�� ��
Gi ⊕ AttT

|Gi−1 |
⊕AttF

|Gi |\|Gi−1 |
� _

��
(PO3)

Gi ⊕ AttT
|Gi−1 |

//oo
� _

��
(PO4)

Gi ⊕ AttT
|Gi |
� _

��
H ⊕ AttT

|Gi−1 |
⊕AttF

|H|\|Gi−1 |
H ⊕ AttT

|Gi−1 |
⊕AttF

|H|\|Gi |
//oo H ⊕ AttT

|Gi |
⊕AttF

|H|\|Gi |

The match mi,CC is constructed as follows:

mi,CC(x) =


mi(x), x ∈ Li

tr mi(y), x = tr y, srcLCC (x) = y
tr mi(y) a, x = tr y a, srcLCC (x) = y

The match mi is injective except for the data value nodes. For this reason, the match
mi,CC is an almost injective match, i.e. possibly non-injective on the data values.

Disregarding translation attributes, diagrams (PO1) and (PO2) are trivially pushouts
along lFT resp. rFT , which are identities in this restricted view. We now consider the
translation attributes.
Thus, we have the following pushouts for the translation attributes:
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|Li|

��
POT

1

|Li|oo

��
|Gi−1| |Gi−1|oo

(|Ri| \ |Li|)

��
POF

1

∅oo

��
(|Gi| \ |Gi−1|) ∅oo

|Li|
tr //

mi

��
POT

2

|Ri|

ni

��
|Gi−1| ti

// |Gi|

∅ //

��
POF

2

∅

��
∅ // ∅

Pushout (POT
1 ) is a trivial pushout. (POF

1 ) is a pushout, because (1) is a pullback
(pushout along an injective morphism). (POT

2 ) is a pushout by (1) and (POF
2 ) is a trivial

pushout.
By precondition (∗) we know that gi ◦ ti = gi−1, where all morphisms are inclusions

(see diagram (∗) below). This implies that the sets |Gi| \ |Gi−1| and |H| \ |Gi| do not
overlap, i.e., (|Gi| \ |Gi−1|)∩ (|H| \ |Gi|) = ∅. Therefore, diagram POF

3 is a pushout in sets
and thus, diagram (PO3) is a pushout. Moreover, diagram (PO4) is trivially a pushout.

Gi−1
� � ti //

(∗)

� p

gi−1
!!

Gi� _

gi

��
H

AttF
Gi\Gi−1

��
POF

3

∅oo

��
AttF

H\Gi−1
AttF

H\Gi
oo

Finally, pushouts (POa) and (POb) are derived by composition: (POa) = (PO1) +

(PO3) and (POb) = (PO2) + (PO4).
Direction 2. ⇒ 1. : Since G′i−1 = H ⊕ AttT

Gi−1
⊕ AttF

H\Gi−1
by general assumption and

mCC : LCC → G′i−1 is an almost injective match we can conclude that there is an
inclusion i : mCC(R) ↪→ Gi−1, because LCC = AttT(R). Moreover, the inclusion gi−1 :
Gi−1 ↪→ H is compatible with match mCC : LCC → G′i−1, i.e. mCC = gi−1 ◦ i ◦ m0 with
m0 : LCC → mCC(LCC) given by m0(x) = mCC(x). This leads to pushouts (PO1), (PO2),
(PO3), and (PO4) as depicted before using the Restriction Thm. (Thm. 6.18 in [7] and
Thm. 3.7.5 for the case with NACs in [23]).

We now construct pushout (1) from pushout (PO2), where we assume w.l.o.g. that
t′i : D′i,0 → G′i is an inclusion. (POT

2 ) and (POF
2 ) are pushouts for families of sets and

they do not overlap, because the have different types according to the construction of
the type graph with attributes by Def. 8. The match is almost injective and thus, it is
injective on all components except the data value nodes. Therefore, (1) is a pushout
for families of sets, where morphsms ni,mi, ti are derived uniquely from the attribute
values. We show that the morphisms are graph morphisms. Since Gi−1 is given as graph
and ti : Gi−1 → Gi is an inclusion, we have that ti is a graph morphism. Using additional
graph morphisms tri and ni together with commutativity of (POT

2 ) we derive that mi is a
graph morphism, because ti is injective. Therefore, (1) is a pushout in Graphs. Finally,
graph morphism gi : Gi → H is given by inclusion G′i,0 ⊆ H in (PO4) and compatibility
with ti and gi−1 is ensured by commutativity of (PO4).

NACs: For each step, we have transformations Gi−1 =
tri,mi
===⇒ Gi, G′i−1 =

tri,CC ,mi,CC
=======⇒ G′i with

G′i−1 = H ⊕ ⊕AttT
Gi−1

AttF
H\Gi−1

, G′i = H ⊕ AttF
H\Gi
⊕ AttT

Gi
, and mi,CC |Li = mi. For a NAC

n : L→ N we have to show that, mi |= n iff mi,CC |= nCC.
If mi,CC 6|= nCC, there is an injective morphism q′ : N′ → G′i−1 with q′ ◦nCC = mi,CC.

We can restrict q′ to N and Gi−1 leading to the injective morphism q : N → Gi−1. This
implies that q ◦ n = mi, i.e. mi 6|= n. Vice versa, if mi 6|= n, there is an injective morphism
q with q◦n = mi. Now, let q′ be defined with q′(x) = mi,CC(x) for x ∈ Li,CC, q′(x) = q(x)
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for x ∈ N\Li, and for each x ∈ N\Li we have that q(x) ∈ Gi−1. From the definition of
G′i−1 by general assumption it follows that the corresponding translation attributes tr x
and tr x a are set to T in G′i−1. Thus, q′ is well-defined and q′ ◦ nCC = mi,CC, i.e.
mi,CC 6|= nCC. ut

Fact 10 (Equivalence of Triple and Extended Consistency Creating Sequences).
Let TGG = (TG,∅,TR) be a triple graph grammar with derived consistency creat-
ing rules TRCC and given G ∈ VL(TG). Then, the following are equivalent for almost
injective matches

1. There is a TGT-sequence s = (∅ =
tr∗
=⇒ Gk) via TR with injective embedding f :

Gk → G.

2. There is a consistency creating sequence s′ = (G′0 =
tr∗CC
==⇒ G′k) via TRCC with G′0 =

AttF(G).

Moreover, the sequences correspond via G′k = H ⊕ AttT
Gk
⊕ AttF

H\Gk
.

Proof. The equivalence of both sequences follows by applying stepwise Lem. 1. More-
over, stepwise application of Lem. 1 ensures the correspondence of both sequences via
G′k = H ⊕ AttT

Gk
⊕ AttF

H\Gk
. ut

Fact 11 (Equivalence of Maximal Triple and Complete Extended Consistency
Creating Sequences). Let TGG = (TG,∅,TR) be a triple graph grammar with de-
rived consistency creating rules TRCC and given G ∈ VL(TG). Then, the following are
equivalent for almost injective matches

1. There is a TGT-sequence s = (∅ =
tr∗
=⇒ Gk) via TR with injective embedding f :

Gk → G, such that s is f -maximal.

2. There is a terminated consistency consistency creating sequence s′ = (G′0 =
tr∗CC
==⇒ G′k)

via TRCC with G′0 = AttF(G).

Moreover, the sequences correspond via G′k = H ⊕ AttT
Gk
⊕ AttF

H\Gk
.

Proof. Direction 1 ⇒ 2 : We derive consistency creating sequence s′ by Fact 10.
Assume that s′ is not terminated, i.e. there is a further TGT step G′k =

trCC
==⇒ G′k+1. This

implies by Lem. 1 that there is an extension of sequence s with step Gk =
tr
=⇒ Gk+1

with inclusion gk+1 : Gk+1 → G compatible with f = gk. This is a contradiction to
the precondition that s is f -maximal. Therefore, the assumption is incorrect and s′ is
complete.
Direction 2 ⇒ 1 : We derive consistency creating sequence s by Fact 10. Assume that
s is not f -maximal, i.e. there is a further TGT step Gk =

tr
=⇒ Gk+1 with inclusion gk+1 :

Gk+1 → G compatible with f = gk. This implies by Lem. 1 that there is an extension of
sequence s′ with step G′k =

trCC
==⇒ G′k+1. This is a contradiction to the precondition that s′

is complete. Therefore, the assumption is incorrect and s is f -maximal.
The correspondence of both sequences via G′k = H ⊕ AttT

Gk
⊕ AttF

H\Gk
follows by

Fact 10. ut
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A.4 Constructions and Results for Auxiliary operations

Remark 7 (Detailed Construction of Auxiliary operation Del).
Let r = (s, t) ∈ R = VL(TG) be a correspondence relation, then the result of the

auxiliary operation Del for computing the maximal consistent subgraph and deleting
the remainder is given by Del(r) = (a, r′, b) according to Fig. 6 via the following con-
struction. From r, we obtain a triple graph G = (GS

←
s
− GC

−
t
→ GT ). If G ∈ VL(TGG),

then we can directly define Gk = G. In the general case, we are able to construct a max-

imal TGT-sequence ∅ =
tr∗
=⇒ Gk with Gk ∈ VL(TGG) and inclusion f : Gk → G, where

maximality means that there is no extension ∅ =
tr∗
=⇒ Gk =

tr
=⇒ Gk+1 with Gk ⊆ Gk+1 ⊆ G.

Then, we have Del(r) = (a, r′, b), where a = ( f S , 1), r′ = (sk, tk) with consistent r′ ∈ C
and b = ( f T , 1).

For this purpose, we use the construction of consistency creating sequences accord-
ing to Def. 12. Intuitively, we start with the triple graph G and extend it with translation
attributes set to “F” and we call this initial graph G′0. Thereafter, we apply the consis-
tency creating rules as long as possible. The resulting marked graph G′k then consists
of G and additional translation attributes. We derive Gk by removing all translation
attributes and additionally all elements from G that are labelled with “F” in G′k.

In more detail, at first the initial triple graph is given by G′0 = AttF(G). Thereafter,
the consistency creating rules trCC ∈ TRCC are applied as long as possible starting

at G′0 leading to a terminated consistency creating sequence G′0 =
tr∗CC
==⇒ G′k. The triple

graph Gk is obtained by removing all elements in G′k that are labelled with false and
by removing all remaining translation attributes. More formally, by Fact 11 we derive

the triple sequence ∅ =
tr∗
=⇒ Gk with with injective embedding f : Gk → G, such that

s is f -maximal (see Def. 18). Therefore, Gk ∈ VL(TGG) and an f -maximal consistent
subgraph of G.

By Def. 3 the sets of operational rules are required to be deterministic. This implies
by Def. 16 that no backtracking is necessary. Therefore, the triple graph Gk is unique. If

additionally G ∈ VL(TGG) then there is a triple sequence ∅ =
tr∗
=⇒ G and by Fact 11 there

is a corresponding consistency creating sequence G′0 =
tr∗M
==⇒ G′k implying that Gk = G.

This implies that operation Del is a total function (see Fact 12).

Fact 12 (Functional Behavior of TGG Operation Del). Let TGG be triple graph
grammar with deterministic sets of operational rules, then the execution of operation
Del based on the derived consistency creating rules TRCC has functional behavior, i.e.
it terminates and leads to unique results.

Proof. According to Rem. 7, the f -maximal TGT sequence s = (∅ =
tr∗
=⇒ Gk) with

embedding f : Gk ↪→ G is constructed using the derived set TRCC of consistency
creating rules. By Fact 11, the existence of the f -maximal sequence s is equivalent to the
existence of the corresponding complete consistency creating sequence via TRCC. By
Def. 16, the set TRM has functional behavior. Therefore, the construction of sequence s
terminates and yields a unique result. ut

Remark 8 (Detailed Construction of Auxiliary operation fAdd).
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Let r = (s, t) ∈ C = VL(TGG) be a consistent correspondence relation, a = (1, a2) :
GS → G′S be a source modification and G′S ∈ VLS . The result of the auxiliary opera-
tion fAdd for propagating the additions of source modification a is given by fAdd(r, a) =

(r′, b) according to Fig. 6 via the following construction. Using r = (s, t) : GS ↔ GT

with r ∈ C we obtain a consistent triple graph G = (GS
←

s
− GC

−
t
→ GT ). By completeness

of model transformations via forward rules (Thm. 1 in [8]) there is a corresponding

source consistent forward sequence (GS ← ∅ → ∅) =
tr∗F
==⇒ G. Due to completeness

of forward transformations via forward translation rules (Thm. 1 in [17]) there is a
corresponding forward translation sequence s1,FT . From a = (1, a2) : GS → G′S we
obtain a2 : GS → G′S , such that G0 = (G′S ←a2◦s

−−−− GC
−
t
→ GT ). Since backtrack-

ing is not necessary, there is a continuing forward translation sequence s2,FT , which
can be composed with s1,FT to a complete forward translation sequence s3,FT . Due to
equivalence of forward transformations via forward translation rules and forward rules
(Fact 1 in [17]) there is a corresponding source consistent forward sequence for s3,FT

with G′ = (G′S ←s
′

−− G′C −t
′

→ G′T ), b2 : GT → G′T , and G′ ∈ VL(TGG) due to correct-
ness of model transformations via forward rules (Thm. 1 in [8]). Hence, we obtain a
correspondence relation G′S −

r′=(s′,t′)
−−−−−−→ G′T and b = (1, b2) : GT → G′T . G′ ∈ VL(TGG)

implies that r′ = (s′, t′) : G′S ↔ G′T is consistent. Moreover, operation fAdd is a total
function (see Fact 12).

Lemma 2 (Construction via Operation fAdd). Let Synch(TGG) = (MF(TGG),
fPpg, bPpg) be a derived TGG synchronization framework, where the sets of opera-
tional rules of TGG are deterministic. Let r = (GS ← GC → GT ) ∈ C = VL(TGG) be a
consistent correspondence relation, a = (GS ← GS → G′S ) be a source model update.

Then, the execution of operation fAdd yields a forward sequence sF,2 = 〈G0 =
tr∗F,2
==⇒ Gn〉

with G0 = (G′S ← GC → GT ), Gn = G′ = (G′S ← G′C → G′T ), and G′ ∈ VL(TGG).

Moreover, there is a forward sequence sF,1 = (G′S ← ∅ → ∅) =
tr∗F,1
==⇒ G0, such that the

composed forward sequence sF = (sF,1; sF,2) is source consistent.
A similar result holds for operation bAdd, concerning an induced target consistent

backward sequence.

Proof. At first we consider the operation fAdd and assume that no conservative policy
is applied. Since G ∈ VL(TGG) there is source consistent forward sequence sF,0 =

〈G0,0 = (GS ← ∅ → ∅) =
tr∗F,0
==⇒ (GS ← GC → GT ) = G0,k〉 according to Thm. 2 in [13]

(correctness). This sequence corresponds to a complete forward translation sequence

sFT ,0 = G′0,0 =
tr∗FT ,0
===⇒ G′0,k according to Fact. 1 in [18] with G′0,0 = (AttF(GS ) ← ∅ → ∅)

and G′0,k = (AttT(GS )← GC → GT ).
Using Fact 6 (extension of FT sequences) and inclusion g : G → G′ we derive

the forward translation sequence sFT ,1 = 〈G′1,0 =
tr∗FT ,1
===⇒ G′1,k with G′1,0 = (AttF(G′S ) ←

∅ → ∅) and G′1,k = (HS ← GC → GT ), where HS = G′S ⊕ AttT
GS ⊕ AttF

G′S \GS . Now,
we can extend the sequence by applying further forward translation rules of TR+s

FT as

long as possible leading to sFT = (sFT ,1; sFT ,2) = 〈G′1,0 =
tr∗FT ,1
===⇒ G′1,k =

tr∗FT ,2
===⇒ G′2,n, where
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termination is ensured by functional behavior of the sets of operational rules using the
precondition that sets of the operational rules are deterministic. Moreover, the deter-
ministic sets of operational rules ensure by Def. 16 that the pair (TR1s

FT ,TR+s
FT ) is se-

quentially independent acc. to Def. 14. By Fact 4 we can shift the steps via TR1s
FT to the

end leading to a sequence s′FT = (sFT ,3; sFT ,4) with sequences sFT ,3 = G′1,0 =
tr∗FT ,3
===⇒ H′l

via TR+s
FT and sFT ,4 = H′l =

tr∗FT ,4
===⇒ G′2,n via TR1s

FT . Since the pair (TR1s
FT ,TR+s

FT ) is se-
quentially independent acc. to Def. 14 we can conclude that no further rule in TR+s

FT
is applicable to H′l , because none was applicable to G′2,n in the sequence before. By
Fact 5 we can conclude that sFT ,3 is a model transformation sequence via FT rules, i.e.,
H′l = (H′Sl ← H′Cl → H′Tl ) with H′Sl = AttT(G′S ). Therefore, also s′FT = (sFT ,3; sFT ,4)
is a complete forward translation sequence, i.e., G′2,n = (AttT(G′S ← G′C2,n → G′T2,n).
Thus, we derive G′ = (G′S ← G′C2,n → G′T2,n) by removing the translation attributes
from G′2,n. This allows us to apply Thm. 1 in [17] (correctness of forward translation)
and we derive that G′ ∈ VL(TGG).

Moreover, sequences sFT and s′FT are shift equivalent implying that also sFT is a
complete forward translation sequence. By Fact 1 in [18] (equivalence to source con-
sistent forward sequences) we conclude that there is a corresponding source consistent
forward sequence sF of sFT with sF = (sF,1; sF,2), where sF,1 is the forward sequence
corresponding stepwise to forward translation sequence sFT ,1 and sF,2 is the forward
sequence corresponding stepwise to forward translation sequence sFT ,2.

Now, since the modification of the rules via a conservative policy only restricts the
model transformation relation MTRFT and preserves the left totality property of MTRFT

according to Fact 7, we can conclude that the execution of operation fAdd ensures that
the above sequences exist.

The result for operation bAdd follows by the symmetric definition of TGGs and of
the dual nature of operational rules TR+t

BT with respect to TR+s
FT . ut

Fact 13 (Functional Behavior of TGG Operation fAdd). Let TGG be a triple graph
grammar with deterministic sets of operational rules, then the execution of operations
fAdd and bAdd based on the derived operational rules TR+s

FT and TR+t
BT has functional

behavior, i.e. it terminates and leads to unique results.

Proof. According to Lemma 2 we derive that the execution of operation fAdd termi-
nates with a unique resulting correspondence r′ = G′ ∈ C = VL(TGG). The resulting
update b is given by b = (GT ← GT → G′T ) derived from the trace morphism of

the forward sequence G0 =
tr∗F
==⇒ Gn computed by operation fAdd. Therefore, fAdd has

functional behavior.
The result for operation bAdd follows by the symmetric definition of TGGs. ut

A.5 Correctness of TGG Synchronization Operations

This section presents the proof of the main result of this paper: Thm. 1 concerning cor-
rectness and invertibility of model synchronizations based on TGGs. At the beginning,
we discuss the notion of completeness for model synchronization inspired by the notion
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of completeness for model transformations based on TGGs. Thereafter, we prove Fact 1
of Sec. 6 concerning the deterministic character of the synchronization operations. The
subsequent Lemma 3 shows the correctness and completeness results and is used in the
last part of this section to show our main result Thm. 1 concerning also invertibility.

Remark 9 (Completeness of Synchronization Operations). The notion of completeness
according to Def. 19 requires the applicability of the synchronization operations to an
arbitrary correspondence together with a given consistent result of an update in one
domain. This means that the operations are total with respect to the possible inputs
according to Def. 2. This notion corresponds to completeness for model transforma-
tions [8,17] based on the derived model transformation relations, where completeness
additionally requires totality with respect to the possible output models GT ∈ VLT . The
additional requirement is not considered in the case of model synchronization, because
we require fPpg and bPpg to be functions and do not allow general relations. This
would be a possible further generalization of our framework.

Definition 19 (Completeness of Synchronization Operations). Let TGG = (TG,∅,TR)
be a TGG with deterministic sets of derived operational rules and with derived TGG-
synchronization framework Synch(TGG) = (MF, fPpg, bPpg). The synchronization op-
erations fPpg and bPpg are called complete, if the following condition hold. The ex-
ecution of forward propagation operation fPpg can be performed for each consistent
source model GS ∈ VLS . Vice versa, the execution of backward propagation operation
bPpg can be performed for each consistent target model GT ∈ VLT .

Fact 1 (Deterministic Synchronization Operations) Let TGG be a triple graph
grammar and let matches be restricted to almost injective morphisms. If the critical
pairs of the sets of operational rules are strictly confluent and the systems of rules are
terminating, then the sets of operational rules are deterministic, which implies that the
derived synchronization operations fPpg and bPpg are deterministic as well.

Proof. First of all, the sets of operational rules are deterministic according to Fact 9.
Operations fAln and bAln are given by pullback construction, which is unique up to
isomorphism by definition. Therefore, they are deterministic. By Facts 12 and 13 for
Del and fAdd we can conclude that fPpg has functional behavior. Operation bPpg has
functional behavior by the symmetry of the definitions. ut

Lemma 3 (TGG Synchronization Framework). Let Synch(TGG) be a derived TGG
synchronization framework, such that the sets of operational rules of TGG are deter-
ministic. Then Synch(TGG) is correct and complete.

Proof. Correctness: By Fact 1 the provided constructions of operations fPpg and bPpg
based on forward translation rules and backward translation rules, respectively, have
functional behavior, i.e., for each input the computation results in a unique output.

(a1) :

∀ c ∈ C :

GS oo c //

1 �� u:fPpg

GT

1��

GS oo
c
// GT

(a2) :

∀ G′S ∈ VLS :

GS oo r //

a �� u:fPpg

GT

b��

G′S oo
r′:C
// G′T

(b1) :

∀ c ∈ C :

GS oo c //

1 ��w:bPpg

GT

1��

GS oo
c
// GT

(b2) :

∀ G′T ∈ VLT :

GS oo r //

a �� w:bPpg

GT

b��

G′S oo
r′:C
// G′T
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Signature Definition of Components

∀ G′S ∈ VLS :

GS oo r //

a
��
u:fPpg

GT

b
��

G′S oo
r′
// G′T

GS oo r //

aA �� u:fAln

a

//

GT

1��

b

oo

DS oo r1 //

aD �� ⇓:Del

GT

bD��

GS
k
oo r2 //

a f �� u:fAdd

GT
k
b f��

G′S oo
r′
// G′T

a = (a1, a2)
= (GS

←
a1
−− DS

−
a2
−→ G′S )

aA = (a1, 1)
aD = (a′1, 1)
a f = (a1 ◦ a′1, a2)
b = b f ◦ bD

Law (a1): According to Def. 4, operation fPpg is composed by the following three
steps. At first, fAln performs a pullback along the given identity modification lead-
ing to the resulting corresponding relation r′ = r. Since r ∈ C = VL(TGG), there is

a triple sequence sD = 〈∅ =
tr∗
=⇒ G〉 with r = G. Therefore, operation Del results in

(a, r′, b) = (1, r, 1) using that the sets of operational rules are deterministic according
to Def. 4 implying in particular functional behavior. The triple sequence sD induces a

corresponding source consistent forward sequence sA = 〈(GS ← ∅ → ∅) =
tr∗
=⇒ G〉 via

the composition result (Thm. 1 in [13]). Due to the functional behavior of the set of
forward translation rules this ensures that fAdd yields the same triple graph, i.e., the
resulting correspondence is given by r′ = r and the resulting update is given by b = id.
with G ∈ VL(TGG).

Law (a2): By Lemma 2, the computed sequences via operation Del and fAdd induce
the corresponding composed source consistent forward sequence sA = (sA,1; sA,2) =

〈(G′S ← ∅ → ∅) =
tr∗F
==⇒ G′〉. Source consistency of sA ensures that r′ = G′ ∈ C =

VL(TGG) due to correctness of model transformation sequences (Thm. 2 in [13]).
The laws (b1) and (b2) follow from laws (a1) and (a2) by the symmetric character

of TGGs as well as by the definitions for forward and backward translation rules.
Completeness: By Def. 19, we have to show that the synchronization operations

can be executed for all consistent source resp. target models that are the result of a
given update. According to Fact 1, the propagation operations are total functions. By
Def. 3, the operation fPpg is defined for all input models and provides a consistent
result for consistent source models G′S ∈ VLS , i.e. no error occurs. Therefore, fPpg can
be successfully applied for given source models G′S ∈ VLS . Analogously, operation
bPpg ensures completeness for target models G′T ∈ VLT due to the symmetry of the
definitions.

Theorem 1 (Correctness and Weak Invertability (See Thm. 1 in Sec. 6)). Let
Synch(TGG) be a derived TGG synchronization framework, such that the sets of op-
erational rules of TGG are deterministic. Then Synch(TGG) is correct and complete.
If, additionally, TGG is pure and at most one set of operational rules was extended by
a conservative policy, then Synch(TGG) is weakly invertible and if, moreover, TGG is
tight and no policy was applied, then Synch(TGG) is also invertible.

Proof. Correctness and Completeness are shown by Lemma 3.
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(c2) :
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b1 �� u:bPpg
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// G′S G′T//
r′

oo

Weak Invertibility: Law (c1): At first, we show that the derived maximal markings
(correspondences after applying fAln and Del) of the last two diagrams are the same.
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OO
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DC
2

?�
OO
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GT
k

?� 1
OO

GC
k

?�
OO

oo

(2c)

gg

(D2 − Inc)

(D2)

Diagrams (D1) and (D2) above concern the first two tiles of law (c1) (fPpg and
bPpg, respectively). Moreover, the diagrams consider the auxiliary operations fAln,
bAln, and Del only. In diagram (D1), the maximal consistent triple graph Gk is com-
puted via applying first fAln and then Del. In particular, no further source identic con-
sistency creating rule is applicable (∗) - a property that we will use for the last diagram.

Since diagram (1a + 1b) commutes and (PB2) is a pullback we derive a compatible
inclusion GC

k → DC
2 in diagram (D2 − Inc), i.e., (2b) and (2c) commute. By equiva-

lence of triple and consistency creating sequences according to Fact 10, we derive the
corresponding consistency creating sequence. Since GT

k in (D2 − Del) is already com-
pletely created by the triple sequence respectively marked by the consistency creating
sequence, there is no further consistency creating rule applicable apart from target iden-
tic ones. The TGG is pure by precondition. This implies that the only available target
identic rules are empty rules on the target and correspondence component. By precon-
dition, no backtracking is necessary for the sets of operational rules. Therefore, the
completion of the consistency creating sequence by applying consistency creating rules
as long as possible yields a triple graph Gl = (GT

k ← GC
k → GS

l ) ∈ VL(TGG) and the
extended consistency creating sequence is terminated.

37



GS

(PB3)
GCsoo t //

(3a)
GT

GS
l

?�
a1
OO

DC
3

?�
OO

oo // GT
?� 1
OO

(D3 − fAln)

GS

(PB3)
GCoo

GS
l

?�
OO

(3b)

DC
3

?�
OO

oo

GS
l

?� 1
OO

GC
k

?�
OO

oo

(3c)

gg

(D3 − Inc)

GS
l DC

3
oo //

(3b)

GT

GS
l

?�
OO

GC
k

?�
OO

oo // GT
k

?�

OO

(D3 − Del)

(D3)
Diagram (D3) concerns the last tile of law (c1). Similarly to Diagrams (D1)− (D2),

we derive that there is an inclusion GC
k → DC

3 in (D3 − Inc) with commutative (3b)
and (3c), because (PB3) is a pullback and (2a + 2e) commutes. Again, by Fact 10 we
derive the corresponding consistency creating sequence for triple graph Gl ∈ VL(TGG).
Since GT

l in (D3 − Del) is already completely created by the triple sequence respectively
marked by the consistency creating sequence, there is no further consistency creating
rule applicable apart from source identic ones. The TGG is pure by precondition. This
implies that the only available source identic rules are empty rules on the source and
correspondence component. If one of them is still applicable, then it would have been
applicable already for GT

k in digram (D1), because it is empty on the source and cor-
respondence component. This would be a contradiction to the terminated consistency
creating sequence in diagram (D1) (see property (∗) for (D1)). Therefore, we derive
again the triple graph Gl = (GT

k ← GC
k → GS

l ) as result of the terminated consistency
creating sequence.
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��
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As visualized in diagram (A1), operation fAdd yields the sequence sF,1 = 〈GA =

(G1
S ← GC

k → GT
k ) =

tr∗F
==⇒ (G1

S ← G1
C → G′T )〉 via TR+s

F with G′ ∈ VL(TGG). By

Lem. 2 there is a corresponding forward sequence s f A = 〈(G1
S ← ∅ → ∅) =

tr∗F, f A
===⇒

(G1
S ← GC

k → GT
k ), such that sA; sF,1 is source consistent.

By the composition and decomposition result for TGGs (Thm. 1 in [13]) we derive

the corresponding backward sequences sbA = 〈(∅ ← ∅ → G′T ) =
tr∗B,bA
===⇒ (GS

k ← GC
k →

G′T )〉 via TRB and sB,1 = 〈(GS
k ← GC

k → G′T ) =
tr∗B
=⇒ (G1

S ← G1
C → G′T )〉 via TR+s

B ,
such that sbA; sB,1 is target consistent.

Since the sets of operational rules of the TGG are deterministic (Def. 16), the pair
(TR1t

BT ,TR+t
BT ) is sequentially independent and by Fact 2 we can shift the target identic

steps to the end and since the TGG is pure we have TR1t = TR1t
S leading to sequences
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s1 = 〈(GS
k ← GC

k → G′T ) =
tr∗B,1
==⇒ (Gm

S ← G1
C → G′T )〉 via TR+t

B , and s2 = 〈(GS
m ←

G1
C → G′T ) =

tr∗B,2
==⇒ (G1

S ← G1
C → G′T ) = G′〉 via TR1t

B . Now, the original forward
sequence used rules in TR+s

FT , which implies that the rules in sequence s1 are source and

target creating, i.e. we have sequence s1 = 〈(GS
k ← GC

k → G′T ) =
tr∗B,1
==⇒ (Gm

S ← G1
C →

G′T )〉 via TR+t
B ∩ TR+s

B (∗∗).
As visualized in diagram (A2), operation bAdd yields the sequence sA,2 = 〈GB =

(GS
l ← GC

k → G′T ) =
tr∗B,3
==⇒ (G2

S ← G2
C → G′T )〉 via TR+t

B . By Lem. 2 there is a

corresponding backward sequence sbA = 〈(∅ ← ∅ → G′T ) =
tr∗B,bA
===⇒ (GS

l ← GC
k → G′T ),

such that (sbA; sA,2) is target consistent.

Moreover, operation Del yields the two triple sequences sD,1 = 〈∅ =
tr∗
=⇒ Gk〉 via

TR and sD,2 = 〈Gk =
tr∗
=⇒ (GS

l ← GC
k → GT

k )〉 via TR1t ∩ TR+s as shown for Diagram
(D2). Applying stepwise the composition and decomposition result (Thm. 1 in [13])
we derive that sequence sD,2 corresponds to the last part of sequence sbA. Let sbA,2 =

〈(GS
k ← GC

k → G′T ) =
tr∗B,bA
===⇒ (GS

l ← GC
k → G′T ) be this last part and sbA,1 the remaining

first part. Since the TGG is pure by precondition we have that TR1t = TR1t
S and using

that sD,2 is a sequence via TR1t ∩ TR+s we derive that sbA,2 is a sequence via TR+s
S .

We can compose sequences sbA,2 and sA,2 to s5 = (sbA,2; sA,2). Recall that
(sbA; sA,2) = (sbA,1; sbA,2; sA,2) is target consistent. Since the TGG is deterministic, we
have by Def. 16 that the pair (TR1t

BT ,TR+t
BT ) is sequentially independent, such that we

can shift the steps of sbA,2 beyond sA,2 according to Fact 3 and derive the sequences

s6 = 〈(GS
k ← GC

k → G′T ) =
tr∗B,1
==⇒ (G#

S ← G2
C → G′T )〉 and s7 = 〈(GS

# ← GC
k →

G′T ) =
tr∗B,2
==⇒ (G2

S ← G2
C → G′T )〉. Using (∗∗) from before concerning diagram (A1),

we know that there is also the backward sequence s1,B = (GS
k ← GC

k → G′T ) =
tr∗B,1
==⇒

(Gm
S ← G1

C → G′T ) via TR+t
B ∩ TR+s

B . Since the TGG is deterministic, we know that
backtracking is not required and we have functional behavior. Functional behavior en-
sures unique results for model transformation sequences, i.e., we have unique results for
target consistent backward transformation sequences. Sequence (s0,B; s1,B) is target con-
sistent according to property (∗∗). Analogously, we can compose s0,B and s6 and derive
derive the target consistent backward sequence (s0,B; s6), because s7 uses only target
identic rules. If no policy is applied we can already conclude that (Gm

S ← G1
C → G′T )

of sequence s1,B coincides with (G#
S ← G2

C → G′T ) of s6.
By precondition, at most one conservative policy was applied. We have to show that

the derived backward transformation sequences via the composition and decomposition
result are not eliminated by the policy.

case 1: A conservative policy was applied for the set of forward translation rules.
We can conclude that s1,B and s6 coincide on the resulting triple graph, because there is
no restriction on the matches for the backward steps. Thus, the corresponding forward
sequence s1,F of s1,B (from Diagram (A1)) is a possible transformation sequence for
Diagram (3), but additionally, some target identic steps can be applied according to
s7. Now, since the operational forward rules are identic on the source component this
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means that the resulting triple graph of Diagram (A3) is given by (GS
2 ← GC

2 → G′T )
as required.

case 2: A conservative policy was applied for the set of backward translation rules.
We can conclude that s6 might not be the directly corresponding sequence to s1,B, but
according to the definition of a conservative policy we know that if there is a match
for an original operational rule then there is also one for the rule that is extended by
attribute conditions. Therefore, the sequences coincide on the applied rules, but the
matches may be different. Thus, we have that s6 is performed via rules that are source
and target creating, because it corresponds to s1,B concerning the applied rules. This
means that we can derive from (s6; s7) the corresponding forward sequence via source
creating rules as shown in diagram (A3). Since, in this case no policy is applied for the
set of forward translation rules, this sequence is possible. Due to functional behavior,
the resulting triple graph is ensured to be the one of (s6; s7) in Diagram (A2).
Law (c2): The result for law (c2) follows by the symmetry of the definitions.
Invertibility: Concerning law (d1) we can use the precondition that all operational

rules are source and target creating and no policy was applied. This ensures for the
diagrams above that graph GS

l = GS
k in Diagram (D2) and the derived sequences s1,B

and s3 directly correspond by the composition and decomposition result for TGGs. The
result for law (d2) follows by the symmetry of the definitions. ut

A.6 Incremental computation of consistency creating sequences via operation
Del

In order to reduce the effort for computing consistent parts of a triple graph, we can
store an already executed consistency creating sequence and reuse this sequence for the
next computation. For this purpose, all involved rules and matches have to be stored.
By construction the corresponding subobject transformation system (STS) as presented
in [1,16], we do not need to also store all intermediate graphs, but only one so-called
super object that is obtained by gluing together the intermediate graphs along their
common parts. All matches are then embeddings into the super object.

Moreover, the provided dependency analysis in [16] can be used to efficiently sep-
arate the invalid steps and their dependent ones from the remaining valid steps. Now,
a stored consistency creating sequence can be reused by removing the invalid steps
(caused by the deletion of elements in the right hand side of the rule or by violation
of application conditions by the new graph) and their dependent steps. Thereafter, the
obtained consistency creating sequence is continued, such that further still consistent
substructures can be reused. The derived new maximal marking via consistency creat-
ing is then used for executing the operation fAdd.
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B Details of the Case Study

In this section, we provide the details of our case study. At first we present the complete
TGG in App. B.1. Thereafter, in App. B.3, we show the analysis results concerning
functional behaviour of the TGG operations. Finally, in App. B.4, we show that the
derived synchronization framework is not invertible in the general sense by a counter
example. However, as shown in Sec. 6, the synchronization framework is weakly in-
vertible.

B.1 Components of the TGG

The triple graph grammar TGG = (TR,∅,TR) of our case study is given by the triple
type graph TG in Fig 10, the empty start graph and the triple rules in the subsequent
figures.

Fig. 10. Triple type graph TG

Example 6 (Type Graph). According to the triple type graph TG in Fig. 10, the models
of the source domain contain persons including their detailed salary information (bonus
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and base salary) and their names. Models of the target domain additionally contain the
departments to which a person is assigned to, the birth date of a person, and a single
value for the complete salary of a person, while the details about bonus and base salary
are not provided.

Fig. 11. Triple rules - part 1

Fig. 12. Triple rules - part 2
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Example 7 (Triple Rules (Parts 1 and 2)). The triple rules of the TGG are depicted
in short notation in Figs. 11 to 14 and in we first explain Figs. 11 and 12. The first
rule (Empty2OtherDepartment) is depicted additionally with explicit left and right hand
side. It creates a new department in the target model, but does not change the source
model. The negative application condition (NAC) ensures that this rule cannot be ap-
plied for creating a department with name “Marketing”. For this purpose, rule 2 (Per-
son2FirstMarketing) is used, where the NAC ensures that the given target model does
not contain already a department with name “Marketing”. This rule additionally cre-
ates a person of the new department in the target model and a corresponding person
in the source model. Rule “Person2NextMarketingP” is applied in order to extend both
models with further persons in the marketing department. Note that the attributes of the
created persons are not set. This is possible in our formal framework of attributed graph
transformation based on the notion of E-graphs [7]. The main advantage is that we can
propagate changes of attribute values without the need for deleting and recreating the
owning structural nodes. This is important from the efficiency and application point of
view.

Fig. 13. Triple rules - part 3

Example 8 (Triple Rules (Parts 3 and 4)). The further triple rules of the TGG are de-
picted in Figs. 13 to 14. The four rules in Fig. 13 concern the creation of attribute values
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Fig. 14. Triple rules - part 4

only. Rules “FName2FName” and “LName2LName” create new corresponding values
for first and last names, respectively. The next rule “Empty2Birth” assigns the birth
date of a person in the target component and does not change the source component. Fi-
nally, rule “DetailedSalary2Salary” assigns the detailed salary values (bonus and base)
in the source component and the sum of them in the target component. The last rule
“Empty2OtherPerson” of the TGG is presented in Fig. 14 and creates a new person of a
department that is not in the marketing department. Therefore, there are no correspon-
dence to the source model and the rule directly creates the person including all attribute
values.

B.2 Derived and Modified Sets of Operational Rules

Based on the specified TGG defining the language of consistent integrated models
VL(TGG) we automatically derive the operational rules for consistency creating, for-
ward translation and backward translation according to Def. 9. Moreover, we define
a conservative policy for one backward translation rule (Def. 15) in order to ensure
functional behavior. In the following, we present the resulting sets of operational rules
including the conservative policy.

Example 9 (Derived Sets of Consistency Creating Rules). Figures 15-16 show the set
of the consistency creating rules derived from the TGG in Sec. B.1 according to Def. 9.
Intuitively, for each element x ∈ R (node, edge, or attribute) of a triple rule tr = (L→ R)
a separate translation attribute (tr or tr x) is added for the consistency creating rule
trCC. If an element x ∈ R is preserved by the triple rule tr (x ∈ R\L), then the consistency
creating rule preserves it as well and the translation attribute has value T. Otherwise, if
x ∈ R is is created by tr (x ∈ L), then it becomes a preserved element in the consistency
creating rule trCC and the corresponding translation attribute is changed from F to T.
In visual notation, this means that all plus signs are replaced by additional translation
attributes whose values are changed from F to T.
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Fig. 15. Derived Operational Triple rules: TRCC (part 1)
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Fig. 16. Derived Operational Triple rules: TRCC (part 2)
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Fig. 17. Derived Operational Triple rules: TRFT (part 1)

Example 10 (Derived Sets of Forward Translation Rules). Figures 17-18 show the set
of the forward translation rules derived from the TGG in Sec. B.1 according to Def. 9.
Intuitively, for each element x in the source component RS (node, edge, or attribute)
of a triple rule tr = (L → R) a separate translation attribute (tr or tr x) is added for
the forward translation rule trFT . If an element x ∈ RS is preserved by the triple rule
tr, then the forward translation rule preserves it as well and the translation attribute has
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Fig. 18. Derived Operational Triple rules: TRFT (part 2)

value T. Otherwise, if x ∈ RS is is created by tr, then it becomes a preserved element in
the forward translation rule trFT and the corresponding translation attribute is changed
from F to T. In visual notation, this means that all plus signs in the source component
are replaced by additional translation attributes whose values are changed from F to T.

Note that the rules 6-8 are identities on the source component and not used for fPpg
in order to ensure termination. This is possible as shown in Sec. B.3 according to Fact 4
using the automated analysis via the tool AGG for dependency analysis.

Example 11 (Derived Sets of Backward Translation Rules). Figures 19-20 show the set
of the backward translation rules derived from the TGG in Sec. B.1 according to Def. 9
and using an additional conservative policy. They are derived dually to the case of for-
ward translation rules. Intuitively, for each element x in the target component RT (node,
edge, or attribute) of a triple rule tr = (L → R) a separate translation attribute (tr or
tr x) is added for the backward translation rule trBT . If an element x ∈ RT is preserved
by the triple rule tr, then the backward translation rule preserves it as well and the trans-
lation attribute has value T. Otherwise, if x ∈ RT is is created by tr, then it becomes a
preserved element in the backward translation rule trBT and the corresponding transla-
tion attribute is changed from F to T. In visual notation, this means that all plus signs in
the target component are replaced by additional translation attributes whose values are
changed from F to T.

Rule 5 : “DetailedSalary2SalaryBT ()” is extended by a policy in the form of an
additional positive application condition. Since the left hand side of this rule specifies
only the sum of the salary of a person, the values of the base and bonus components
are not fixed via a match. The application condition PAC requires that both values are
set to half times the amount of the salary sum. Now, this is possible for each number,
such that we can conclude that the policy is conservative (Def. 15), which is important

48



Fig. 19. Derived Operational Triple rules: TRBT (part 1)
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for ensuring completeness of the propagation operation bPpg (see Thm. 1). Note that
all backward translation rules are used for bPpg in contrast to operation fPpg before.

Fig. 20. Derived Operational Triple rules: TRBT (part 2)

B.3 Analysis of the Sets of Operational Rules and Functional Behaviour

If all significant critical pairs of TRCC are strictly confluent, then we do not need to per-
form backtracking for consistency creating and there is a unique maximal consistency
marking for any input. This means especially that the result is unique, if there are no
critical pairs for TRCC. Termination is ensured, if each rule created at least one element,
which is practically always given, because otherwise there would be a superfluous triple
rule tr : L→ R in TR with L = R.
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Fig. 21. Dependency analysis with AGG for TRFT - blue fields contain dependencies

Fact 14 (Case Study: Deterministic TGG Synchronization Operations - Termina-
tion). We verified that the synchronization operations of our case study terminate. For
this purpose, we used the critical pair analysis engine of AGG for analyzing all depen-
dencies.

Concerning the set TRCC, we have that each rule is marking changing, which en-
sures termination.

Concerning the set TRFT , we derived the resulting table depicted in Fig. 21. The
source identic rules are the rules with number 6 to 8. According to the table there is no
dependency (blue entry) for any pair (p, q) with p ≥ 6 and q ≤ 5. Therefore, termination
is ensured, because the source identic rules are not used for the forward translation.

Finally, there are no target identic backward translation rules, because all triple
rules are creating on the target component. Therefore, termination is ensured for the
set of backward translation rules.

Fig. 22. Critical pair analysis with AGG for TRCC - red fields contain conflicts
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Fig. 23. Critical pair analysis with AGG for TRFT - red fields contain conflicts

Fig. 24. Critical pair analysis with AGG for TRBT - red fields contain conflicts

Fig. 25. Dependency analysis with AGG for TRBT - blue fields contain dependencies
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Fact 15 (Case Study: Deterministic TGG Synchronization Operations - Unique
Results). For our case study we verified that the synchronization operations are func-
tions using the result of termination from before. For this purpose we used the critical
pair analysis engine of AGG.

Concerning the set TRCC, we derived the resulting table depicted in Fig. 22. The
only generated critical pair is (p1, p1) for p1 = Person2FirstMarketingPCC and it is
strictly confluent by applying rule p2 = Person2NextMarketingPCC to the remaining
structure and since p2 does not contain any NAC we automatically have NAC-strict
confluence.

Concerning the set TRFT , we derived the resulting table depicted in Fig. 23 us-
ing that the language VL(TGG) ensures that there are no two departments with
name “Marketing” (ensured by the NACs of the first two rules). the only signifi-
cant critical pair is again strictly confluent via one transformation step using rule
p2 = Person2NextMarketingPFT , where no NAC is involved.

The set TRBT is not functional directly, because there is the choice how to split
the salary into base and bonus. We can restrict the choice for the rule “Detailed-
Salary2Salary” to base = bonus = 1/2salary as a policy pol as shown by the ad-
ditional positive application condition in Fig. 19. The policy is conservative, because
no other rule depends on this rule as shown by the generated dependency table by
AGG in Fig. 25 and moreover, if there is a match for the original rule, then there
is a match for the restricted rule because the restricted values are real numbers and
therefore always possible. We derive the table depicted in Fig. 24, where the only sig-
nificant critical pair is again strictly confluent via one transformation step using rule
p2 = Person2NextMarketingPBT , where no NAC is involved.

B.4 Invertibility

As presented in Sec. 6, the case study ensures weak invertibility. However, it does not
ensure invertibility in the more general sense and we now provide an explicit counter
example.

Fact 16 (Case Study: Weak Invertibility). In order to apply Thm. 1 concerning weak
invertibility we have to show that the TGG is pure and a at most one set of operational
rules was restricted by a conservative policy. The used policy for the set of backward
translation rules is conservative, which we have shown already in Fact. 15. No further
policy is applied and the TGG is pure, because each rule is either creating on the source
and target component, or it is creating either on the source or the target component
and empty on the other components. Therefore, we can apply Thm. 1 and derive weak
invertibility.

Fact 17 (Case Study: Invertibility). The derived synchronization framework for our
case study is not invertible in the general notion (laws (d1) and (d2)) according to
the following counter example, where we consider law (d2). Consider a model update
b as depicted in Fig. 26, where a new person is added leading to the resulting target
model G′T . The propagation via bPpg yields the source model G′S , but the subsequence
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Fig. 26. Counter example for invertibility

propagation via operation fPpg yields the target model G′′T , which does not contain
any information about the birth date. Therefore, G′T , G′′T meaning that Synch(TGG)
is not invertible. However, Synch(TGG) is weak invertible according to Fact 16 above.
This means that the process is invertible if G′T is generated by fPpg, which means that
G′T has no birth date for persons that are added by the update.
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