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Abstract. The more graph transformations are applied in various ap-
plication domains, the more questions about the quality of these applica-
tions arise. In this paper, we present a first approach towards improving
the quality of graph transformation systems based on refactorings. Af-
ter discussing possible quality aims for graph transformation systems,
a first selection of refactorings is presented showing a variety of poten-
tial improvements of graph transformation systems. Each refactoring is
presented in a systematic way including an explanation how the qual-
ity is improved, a description of its pre- and post-conditions, a possible
refactoring strategy, and finally an example. Moreover, we discuss how
the presented refactorings preserve semantics. All discussed refactorings
can be directly implemented in HENSHIN, a model transformation engine
based on graph transformation concepts, using HENSHIN in combination
with the Eclipse plug-in EMF REFACTOR.

1 Introduction

Graph transformation is being applied to various domains of computer science
such as domain-specific language engineering, model and program transforma-
tion, concurrent system design, service-oriented and self-adaptive systems. More-
over, it has also been applied to areas like logistics, biology, multimedia, etc. (For
an overview see e.g. [SI2T11].)

According to that wide variety of application areas, the group of graph trans-
formation system developers grows continuously. Especially, the group of new-
comers not coming from established sites of the graph transformation community
is growing. Thus, experiences on the development of graph transformation sys-
tems cannot easily be forwarded to new developers. Therefore, it is worthwhile to
make expert knowledge on how to write graph transformation systems explicit.
We start this task in this paper by using a well-known technique: refactoring.
Originally, refactoring means to improve program structures without changing
their behavior [12]. Meanwhile, this technique has also been used to improve
other kinds of software artifacts such as models. Here, we consider the refactor-
ing of graph transformation systems and present a first collection.



Since graph transformation systems can be considered as some kind of soft-
ware and system models, we aim to adapt well-known quality assurance tech-
niques to this kind of models. In [3] we present a two-stage quality assurance pro-
cess where first quality aspects are determined and domain- and project-specific
quality assurance techniques based on metrics, smells, and refactorings are spec-
ified. Thereafter, they are applied to specific models as long as their quality is
not good enough. Adapting this approach to graph transformation systems, we
need quality aspects for graph transformation systems and have to think about
well-suited metrics, smells, and refactorings that make existing knowledge about
how to write graph transformation systems explicit. We implemented supporting
tools for this quality assurance process helping us to automate its specification
and execution to a large extentﬂ They will be reused in the context of graph
transformation systems improvements.

Our selection of refactorings is guided by mainly two aspects: First of all,
we concentrate on what we consider the kernel features of graph transformation
systems which are typed, attributed graphs allowing node type inheritance, and
rules with left- and right-hand sides as well as positive and negative application
conditions. Furthermore, refactorings have been selected according to selected
quality aspects. We concentrate on conciseness and changeability of graph trans-
formation systems as well as on the simplicity of used transformation features.
Quality improvements are indicated by a variety of metrics.

The main contribution of this paper is a first collection of useful refactorings
for graph transformation systems, described in a systematic way. To integrate
these refactorings into a systematic quality assurance process, we define main
quality aspects for graph transformation systems and smells (indicators of low
quality) based on metrics. Each refactoring description is presented by means
of a short description, an explanation in which ways the quality is improved, a
description of its pre- and post-conditions, a possible refactoring strategy, and
an example. The presented collection shows a variety of refactorings serving
different quality aims.

While the collection of refactorings is presented pretty independently of a
specific graph transformation approach (although influenced by the algebraic
approach [7] as presented in AGG), we discuss their implementation on the basis
of HENSHIN, a model transformation engine for the Eclipse Modeling Framework
(EMF) [22] based on graph transformation concepts. HENSHIN transformation
systems can be refactored in a straightforward way, since the HENSHIN trans-
formation model is an EMF model and we developed a tool for EMF model
refactoring. The implementation of HENSHIN refactorings is model-driven mean-
ing that the specification of a HENSHIN refactoring can be done by HENSHIN
again and is translated to Java code thereafter.

Structure of the paper: In the kernel features of algebraic graph
transformation systems are recalled. Valuable quality aims for graph transfor-
mation systems are motivated in [Section 3| . [Section 4] presents our refactoring

4 See |http://www.mathematik.uni-marburg.de/~arendt /scico/| for more information
on the quality assurance process and to download the tools.
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collection, and different forms of semantics preservation are discussed in
[tion 5] In[Section 6| we present the implementation of a sample refactoring using
the tool HENSHIN. Finally, we consider related work and conclude the paper.

2 Kernel Features of Graph Transformation Systems

In object-oriented modeling, graph transformation has proven to be a suitable
formal framework for a controlled manipulation and evolution of models [20[8].
As inheritance is an important and widely spread concept for the elegant ex-
pression of hierarchy [6/17], typed (attributed) graphs with inheritance have been
introduced enabling a formal description of hierarchy[I6l7]. For transformations
of typed (attributed) graphs with inheritance, called abstract transformations,
abstract nodes in transformation rules can be refined to concrete ones in the
model.

In this section, we introduce the notion of typed (attributed) graphs and
define algebraic graph transformation with NACs [7].

2.1 Typed Graphs

Definition 1 (Graph). A graph G = (Gn,GE, sg,tg) consists of a set Gy of
nodes, a set Gg of edges, as well as source and target functions sg,tg : Gg —

Gn.

Remark 1. The main idea of an attributed graph is that nodes and edges of a
graph may carry attribute values. These are defined in an underlying data struc-
ture, given by an algebra, where only distinguished attribute value sorts are used
for attribution. For the formal definition, the attributes are represented by edges
into the corresponding data domain, which is given by a node set called attribute
nodes. For the most of the presented refactorings of graph transformations in this
paper, the formalization of attributes plays a minor role and is neglected in the
following due to space limitations. But all concepts and definitions have also
been extended to the case of typed attributed graphs and graph transformations
(see [7]).

Definition 2 (Type graph with inheritance). A type graph with inher-
itance TG = (T,1,A) consists of a graph T = (I'n,Tg,sr,tr), called type
graph, a graph I = (I, Ig, sy, t1), called inheritance graph and a set A C T of
abstract nodes. We require that Iy = T and Ig N Tg = 0. Moreover, I has to
be a forest, i.e. acyclic and for all e,e’ € Iy we have that si(e) = sy(e’) implies
e=¢€.

For each node n in Ty, the inheritance clan is defined by clany(n) = {m |
(m,n) € It. We write m < n for m € clany(n) and say that m inherits from n.

Definition 3 (TG-typed graph). Given a type graph with inheritance TG =
(T,1,A), a tuple GT = (G, type) of a graph G together with a typing morphism



typeg: G — TG is called a TG-typed graph if the following condition holds:

(correct typing)  The typing morphism typeg: G — TG consists of a pair of
functions (typeay : GN — T, typec, : Gg — Tg) with

typec, © sg(e) < st otypea,(e) and typeg, o ta(e) < tr o typeg,(e).

The typing morphism typeg is called concrete if (typegy(n) € A Vn € Gy.

Ezample 1 (TG-typed graph). Consider type graph TG of a Phone model in the
upper leftmost screen shot in Type Phone has two sub-types Mo-
bilePhone and FixedPhone inheriting from Phone. Both sub-type nodes have a
Boolean attribute called isldle. All four graphs shown to the right of TG are
TG-typed instance graphs. They contain one node each. In the two left instance
graphs, the node is typed by MobilePhone, and in the two right instance graphs,
the node is typed over node type FixedPhone. The respective attribute values of
attribute isIdle, which are true or false in the instance graphs, are of data type
Boolean.

2.2 Typed Graph Transformation

In order to define graph transformation rules for typed graphs, we first define
typed graph morphisms, i.e. graph morphisms that are structure and type com-
patible. Typed graph morphisms are needed to define graph rules and their
application to typed graphs.

Definition 4 (TG-typed graph morphism).

Given a type graph TG and two TG-typed graphs G, H, a pair of functions
(fn, [e) with fx : Gy — Hy and fg : Gg — Hg forms a valid TG-typed graph
morphism f: G — H if it has the following properties:

(1) (structure compatibility):
fnosa(e) =smofrle), fnota(e) =tuo fr(e), and

(2) (type compatibility):
typem, (fn(n)) < typegy(n) for alln € Gy and typen, o fr = typeg,.
(We say that typep o f is finer than typeg.)

If fn and fg are inclusions, G is called a subgraph of H, denoted by G C H.

Now we can define transformation rules with negative application conditions
(NACs) modeling graph transformation steps over typed graphs. A rule consists
of a left-hand side graph L (the precondition for the transformation, defining the
pattern to be found in the graph), a right-hand side graph R (the postcondition,
defining the actions to be performed on the pattern), and an intersection graph
with morphisms relating L to R. A NAC further restricts the applicability of a
rule. It consists of an extension of L by a structure which is prohibited to occur
in the graph.



The conditions in [Definition 5| are due to the use of abstract types for rule
elements and express that (1) retyping of elements is not allowed, (2) newly
created object nodes must not be typed over abstract node types, and (8) nodes
in negative application conditions of a rule may be typed finer than in the rule’s
left-hand side.

Definition 5 (Transformation rule). A transformation rule typed over a type
graph TG = (T,1,A) is given by p = (L O K C R, type, NAC), where
L,K and R are TG-typed graphs called left-hand side (L), intersection (K), and
right-hand side (R), type is a triple of typing morphisms type = (typer: L —
TG, typex: K — TG, typer: R — TG), and NAC is a set of pairs nac; =
(N;, typen,),i € N with L C N;, and typen, : N; = TG a typing morphism, such
that the conditions (1)-(3) below hold. We denote the sets of deleted / newly cre-
ated elements, resp., by L'y := Lx —Kx and R’y := Rx —Kx (with X = N,E).

(1) (no retyping of elements in rules): typer, 2 typex C typer
(2) (created nodes are concretely typed): typeg, (Ry) NA =0

(8) (NACs are finer typed than LHS): ¥Y(N;, typen,) € NAC :
Vn € Ly,e € Lg : typen, (n) < typer(n) and typen,(e) = typer(e)

Note that in the transformation rules introduced in the following, we omit
the intersection graph K. Instead, we show a mapping from elements in L to
elements in R by (the elements that are preserved by the rule). Graph K then can
be derived from the mapping of L to R since K contains all elements occurring
in both L and R.

Another (implicit) application condition for a graph transformation rule is
the so-called dangling condition which allows the application of a rule only if
adjacent edges of nodes to be deleted occur in the L, thus are also scheduled for
deletion.

Applying a graph transformation rule to a graph G, a match (typed graph
morphism) from L to G has to be found, i.e. the LHS has to be mapped such
that the dangling condition, the typing constraints and all NACs are satisfied.
The rule application yields a unique result graph H that is constructed by taking
the original graph G, deleting all items in the match of L but not in R, and then
adding all R-items not being in L, to G disjointly.

In we state that a transformation rule may be applied to a graph
if (1) nodes are deleted only if no dangling edges remain, (2) different rule items
may be identified, i.e. matched to one and the same graph item only if they are
both preserved, and (3) all NACs are fulfilled.

Definition 6 (Matching and application of transformation rules). Let
p= (L2 K CR, type, NAC) be a transformation rule as defined z'n
G o TG-typed graph with typeg: G — TG being a concrete type mor-
phism, and m: L — G a TG-typed graph morphism. Then, m is a match with
respect to p and G if the following conditions hold:



(1) (dangling condition): ¥n € Ly : fe € Gg — mp(Lg) with sg(e) = my(n) vV
tg(e) =mpy(n)

(2) (identification condition): Yx1,x9 € Ly with my(z1) = my(x2) : 1,22 €
Ky (analogously for edges)

(8) (m satisfies NAC): for each nac; = (N;, typen,) € NAC,i € J there does
not exist a TG-typed graph morphism o;: N; — G such that o;|l, = m ,
0i|N,—1 1s injective and typeg o o; is finer than typen;, .

By G L% H we denote the direct transformation where rule p is applied to G
at match m leading to the result graph H. The formal construction of a direct
transformation is a double-pushout (DPO) which is shown in the diagram below
with pushouts (PO1) and (PO2) in the category of typed

graphs. Graph D is the intermediate 5 5 c

graph after removing m(L), and H is N;<— L K R
constructed as gluing of D and R along AN ‘

K. Typing morphisms are not shown. 0 ‘\\m (POw) [ (PO2) - | m
The transformation definition is unique G<~—D—>H
up to isomorphism [7]. 7 h
Ezample 2 (Direct transformation,).

The diagram to the right shows an exam-

ple, where rule Lift is applied to graph G e T
containing one MobilePhone node and one PAC "I Lns §| rus
FixedPhone node. The match maps the ab- [Fxeapnons] | | [1:Pnene TPhone
stract Phone node to the concrete Mobile- isldle=false isldle=true
Phone node. The PAC is satisfied since there is [/

/
an additional FixedPhone node in G. The rule |Graph of P G| [Graph "@"99 H
application results in the direct graph trans- |[MebilePhons] |::> MobilePhone

. . isldle=fal isidle=t
formation G => H, where the attribute value |E——== e e

. . . FixedPhone FixedPhone
of the MobilePhone node is set to true in H. Sidie=false Sidie=faise

Note that due to the PAC rule Lift cannot be
mapped to the FixedPhone in G.

3 Quality Aspects and Smells for Graph Transformation
Systems

As with software models in general, correctness of a graph transformation system
can be considered at a syntactic level, w.r.t. a language definition, as well as
semantically, w.r.t. the requirements of the system to be developed and the
application domain. Refactorings should neither affect syntactic nor semantic
correctness because they have to preserve both well-formedness and semantics
of models.

3.1 Quality aspects

As for other software artifacts, the correctness of a graph transformation system
is defined w.r.t. the transformation language used and the understanding of the



domain. While language correctness is considered syntactical the understand-
ing forms the system’s semantics. Refactorings are supposed to produce results
that are again syntactically correct and preserve the system semantics, i.e. the
correctness is preserved.

Conciseness is concerned with the compactness of systems which should be
presented on the right abstraction level. To measure conciseness we can consider
the numbers of node and edge types, rules, rule elements, pre-conditions, etc.
The smaller these numbers the more concise is the system.

By Simplicity, we mean the simplicity of the transformation approach and
not of individual transformation systems (which we consider by conciseness).
We are mainly interested in the number and selection of transformation features
used to specify a graph transformation system.

A graph transformation system is changeable, if it can be evolved rapidly
and continuously. Conciseness and moreover, low redundancy and low coupling
of modules, seem to be necessary prerequisites for changeability.

A graph transformation system is comprehensible if it is understandable by
the intended users. Comprehensibility is increased if a system is simple, concise,
and structured enough to grasp its design. Moreover, comprehensibility is also
influenced by the quality of used graph layouts, however, we do not consider this
quality aspect throughout this paper.

3.2 Selected smells

In the following, we present a small set of selected smells for graph transfor-
mation systems that are all based on some metrics. Smells report on suspicious
system parts which should be inspected closer. Since we are mainly interested in
the conciseness of graph transformation systems and the simplicity of the used
approach, we investigate size and redundancy on the one hand, and the kind of
used features on the other hand.

Smell “Large Rule”

Description: A rule specifies a specific graph pattern and replaces it. Thus,
it should handle a single aspect of the behavior. A rule having too many
elements (nodes or edges) seem to care about too many different concerns.

Metric: This smell can be easily detected by counting the number of elements
in a given rule. For simplicity, we do not count attributes.

Usable refactorings: Extract pre-condition, Loop edges to Boolean attribute,
Split rule into set of action rules;

Affected quality aspects: Large rules do not represent a good modular design
and can contain redundant information. Conciseness and comprehensibility
might be affected.

Smell “Redundant Attributes and Rules”

Description: Several node types have equal attributes (with equal names and
types). Furthermore, there might be several rules which differ in used node
types only.



Metric: This smell can be detected by comparing the number of all attributes
and the number of attributes with equal names and types.

Usable refactorings: Pull up attribute;

Affected quality aspects: Redundant information blows up the type graph and
potentially also the rule set. It affects the conciseness, comprehensibility, and
changeability of graph transformation systems.

Smell “Loop Edges”

Description: Loop edges are often used to encode Boolean information about
nodes.

Metric: This smell can be detected by counting the number of loops of an edge
type.

Usable refactorings: Loop edges to Boolean attribute;

Affected quality aspects: Modeling Boolean information about nodes by loop
edges blows up graphs more than Boolean attributes. Thus, loop edges affect
the conciseness of graph rules and maybe also their comprehensibility.

Smell “Advanced Features”

Description: Advanced features like pre-conditions, attributes, and control
constructs are used for specification.

Metric: This smell can be detected by looking for advanced features, i.e. count-
ing the number of pre-conditions, attribute types, control constructs, etc.

Usable refactorings: Inline pre-condition, Boolean attribute to loop edges;

Affected quality aspects: Advanced features decrease the simplicity of the trans-
formation approach.

4 Selected Refactorings

In this section, we present a collection of refactorings for graph transformation
systems, each described in a systematic way. The collection mirrors our expe-
riences in the application of graph transformation to various domains. It is by
far not complete (in fact, it can never be so), but it shows a pretty represen-
tative selection of refactorings serving different quality aims. Refactoring ”Pull
up Attribute” reduces the amount of redundancy wrt. to attribute definitions
and potentially also reduces the number of rules, while ”Loop Edges to Boolean
Attribute” and ” Extract Pre-Condition” reduce the number of rule elements and
thus improve the conciseness. ”Split Rule into Set of Action Rules” influences
the concurrency of modeled actions.

Here, we do not present a refactoring which is probably most useful, i.e. the
renaming of graphs, rules, types, etc., since it is obvious. Furthermore, most of
the refactorings presented below come along with an inverse one that can take
back the original refactoring effect. E.g. the inverse refactoring of “Pull Up At-
tribute” is "Push Down Attribute” which might be useful to prepare a variation
of attribute definitions in subtypes. The inverse of “Extract Pre-Condition”,



“Inline Pre-Condition”, is able to simplify the approach by getting rid of pre-
conditions, and refactoring “Boolean Attribute to Loop Edges” can also simplify
the approach by reducing the number of attributes or even getting rid of them. In
this article, inverse refactorings are not presented in detail, due space limitations.

4.1 Refactoring “Pull Up Attribute”

An attribute is pulled up to a more abstract type. It is optional to compact the
rule set.

Input parameter: Name of the attribute and name of the node type it shall be
pulled up to;

FEzample: Phones are refined into fixed and mobile phones. Both are attributed
by Boolean attribute isldle. Two rules describe the lifting of fixed resp. mobile
phones (see the upper part of. After the refactoring, attribute isldle
is pulled up to node type Phone. In the lower part of a lift rule for
phones in general is shown which is merged from the two original lift rules.

TypeGraph of Phones TiloTiPhones Lift2 of Phones
LHS 4] RHS
w ¥ LHS : RHS
1:M0biIEPhDUE 1:MobilePhone 1:FixedPhone 1:FixedPhone
MobilePhone | [FixedPhone | isldle=true isldle=false isldle=true
Boolean isldle | |Boolean isldle

TypeGraph of Phones Lift of Phones

Phone ; LHS J| RHS
Boolean isldle 1:Phone 1:Phone
isldle=false isldle=true
[mobitePnone ™| [FixedPhane ™|

Fig. 1: Before and after refactoring “Pull Up Attribute”

Pre-condition: The attribute is contained in all subtypes of the selected node
type and it has always the same type. Moreover, there is not an attribute with
the same name and type in the selected node type and any of its super types.

Strategy:

1. Delete the attribute in all subtypes and create it in their super type.

2. Optional: Condense the rule set by looking for rules which check or set the
attribute and differ in subtypes only; such rules can be merged to one rule
using their super type and performing the same actions on the attribute.

Post-condition: The named attribute is pulled up. Optionally, the rule set is
condensed such that there does not occur two rules which perform the same
actions and differ in subtypes only.
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Quality improvement: After the refactoring the number of redundant attribute
definitions is reduced. Moreover, it can happen that the number of rules is re-
duced. The refactoring improves the conciseness and changeability of the system.

Semantics: The semantics is preserved, since the same transformation sequences

are induced (see [Section 5)).

4.2 Refactoring “Extract Pre-condition”

This refactoring reduces the preserved part of a rule and extracts it as positive
application condition.

Input parameter: name of the rule

Example: A customer takes an item out of the shelf. The rule mainly consists
of context which has to be determined. We extract this context into a positive
application condition which makes the rule considerably smaller (see .

PutinCart of Shopping

LHS g 4
g o

Context 4| PutinCart2 of Shopping
PAC "I ns 4["Rus

:
[2cat] [ttem] | | [2:can}—»fiitem]

Fig. 2: Before and after refactoring “Extract Pre-Condition”

Pre-condition: none

Sf?naf)egtyérmine the preserved part of the input rule.

2. Create a new PAC and put the preserved part into it.

3. Reduce the rule’s preserved part to the boundary nodes needed for inserting
new edges.

Post-condition: The preserved part of the rule is minimal.

Quality improvement: The rule is smaller because of reduced redundancy, thus
it is more concise. It might be better to comprehend, since the pre-condition is
expressed more explicitly.

Semantics: The semantics is preserved, since the same transformation sequences

are induced (see [Section 5)).

4.3 Refactoring “Loop Edges To Boolean Attribute”

It is quite common to use loop edges for modeling flags. A set flag is modeled
by a loop edge. It is unset by deleting the loop edge. The flag is refactored by a
Boolean attribute.
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Input parameter: name of the loop edge type;

Ezample: Before the refactoring, the on-status of a machine is modelled by an
loop edge named on. Rules start and stop add this loop to a machine to start
and delete it to stop (see upper part of After the refactoring, this loop

is replaced by a Boolean attribute called isOn. Rules start and stop are adapted.

(see bottom part of [Figure 3)).

- q i i = =
TypeGraph of Machine| NotStarted ; Start of MachineControlling Stop of MachineControlling
NAC LHS 4]~ RHS LHS 4| RHS
' - W ¥ on on 3
t:Machine| || [1:Machine] 1:Machine] | | ®{t:machine] | | [1:Machine
TypeGraph of Machined Start_of MachineControlling Stop of MachineControlling
LHS : RHS LHS 4| RHS
- - 7
Machine * 1:Machine 1:Machine 1:Machine 1:Machine
Boolean isOn isOn=false isOn=true isOn=true isOn=false

Fig. 3: Before and after refactoring “Loop Edges To Boolean Attribute”

Pre-condition: Edges of the selected type occur in instance graphs and rules as
loop edges only.
Strategy:

1. Change type graph by erasing the loop edge type and inserting a new Boolean
attribute in the node type which has been used as source and target node
type for the erased edge type. The name of the new attribute is constructed
by prefixing the original loop edge type name by “is”.

2. Change instance rule graphs by replacing all loops of the indicated type by a
corresponding attribute with value “True” in the same node which functions
as source and target of the loop.

3. Replace each loop occurring in a NAC by a Boolean attribute with value
”False” in the LHS. If a NAC does not have forbidden elements anymore, it
is erased.

Post-condition: The selected loop edge type and all its instances in graphs and
rules are erased. The corresponding attribute is inserted instead and equipped
with value “True” if a loop edge existed at that node before. If it is equipped
with value “False”, the corresponding node was not equipped with a loop edge.

Quality improvement: In general, the number of rule elements and the number
pre-conditions decrease. If all pre-conditions are concerned with loop edges to be
replaced, the whole transformation system might get rid of pre-conditions and
thus, the used approach might become simpler (improving conciseness). How-
ever, this is not the case, if attributes are introduced instead.

Semantics: A correspondence relation can be established between graphs with
loops and corresponding attributes. It has been shown that a transformation
sequence on graphs with loops can be bijectively translated into a transformation
sequence on graphs with corresponding attributes, and vice versa [9].
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4.4 Refactoring “Split Rule into Set Of Action Rules”

This refactoring transforms a rule into a set of action rules such that each one
models one of the original rule’s actions. An action is defined by one of the
following atomic modifications: (1) insert a node, optionally together with ad-
jacent edges, (2) insert an edge, (3) delete a node, together with all adjacent
edges, (4) delete / move an edge, and (5) update / set / unset an attribute
value. This refactoring is useful for modelling e.g. system errors that may occur
at any time during a system’s normal behavior [I0]. In this case, more complex
rules modeling normal behavior should be split into action rules allowing for
more interleaving with rules modeling exceptions at any possible system state.

Input parameter: name of the rule to be split

Ezxample: In a workflow scenario, two processes execute a task and move to the
next task in the workflow. The task that has been executed before is deleted from
the graph. The rule for this scenario is shown in the upper part of Two
NACs ensure that this rule is applied only if there are not already todo edges
linking the processes to the second task. We identify the actions Mowve edge
(which occurs twice, for each todo edge) and Delete node together with adjacent
edges which is applied to the left Task node. Hence, we split the original rule in

two action rules, shown in the bottom part of

NoTodoFromP3 NoTodoFromP4 4| OriginalRule of GraGra
NAC NAC " Lus i Rs
todo
todd
2Task 2Task
NoTodoFromP3 : MoveEdge of GraGra DeleteNodeAndEdge of GraGra
NAC LHS : RHS LHS : RHS
Task
todo todo next
1:Task| [2Task 1:Task 2:Task 2:Task

Fig. 4: Before and after refactoring “Split Rule into Set Of Action Rules”

Applying the rule sequence (MoveEdge, MoveEdge, DeleteNodeAndEdge) together
with a suitable control structure defining an object flow, we get the same effect
as applying the original rule. This object flow maps 1:Task to 1:Task or Task in
the LHS of the next rule, and 2:Task to 2:Task in the LHS of the next rule.

Pre-condition: The ACs (NACs or PACs) of the original rule r, = (LHS,, RHS,)
must be splittable, i.e. each AC is either embedded completely in the RHS of an
action rule, or the origin of the AC morphism from LHS, into the AC graph
consists of one node only.
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Strategy:

1. Identify the actions of original rule.

2. Split these actions into separate action rules r; = (LHS;, RHS;),i=1,...,n
such that each action rule r; models one of the actions defined above.

3. For each action rule, copy only those PACs and NACs from r, to r;, where
the origin of the PAC (NAC) morphism from LHS, to the PAC (NAC) graph
is contained completely in LHS;.

4. Delete action rules that occur more than once.

Post-condition: If rule r, is applicable to graph G, then there is a sequence of
action rules that is applicable at essentially the same matches as r, such that
the result after applying r, to G is equal to the result of applying the action rule
sequence to G.

Quality improvement: The resulting rule sequence allows for more action in-
terleaving with other rules than the original rule. The action rules are smaller
(improving conciseness and comprehensibility) than the original rule.

Semantics: One concurrent rule constructed from a suitable sequence of the
action rules rq,...,r, yields the original rule r,. The overlappings of rules in
this sequence should best be defined by an object flow, mapping nodes and
attribute values from the RHSs of earlier rules in the sequence to LHSs of later
(not necessarily directly subsequent) rules in the sequence. Without this object
flow, there may be more transformation sequences where the resulting action
rule applications are interleaved with other rule applications. Furthermore, there
may be transformation sequences containing action rules that do mot yield the
same result as any transformation by the original GTS. Hence, the semantics
is preserved only in the sense that each graph pair in the original input/output
relation of the GTS before the refactoring is still present in the relation of the
refactored GTS, but there may be additional pairs after the refactoring (see
Section 5|). Here, an advanced modeling feature like control structures for rule
sequences with object flow is necessary to ensure full semantics preservation.

4.5 Refactoring “Merge Rules Differing in Types Only”

If there are two rules which differ in node types only and these node types
are sub-types of the same super-type, they can be merged to one rule. This
refactoring is a sub-refactoring of “Pull Up Attribute”.

Input parameter: Names of the two rules to be merged

Ezample: Since this refactoring is part of “Pull Up Attribute”, we can reuse the
example of that refactoring. Phones are specialized to fixed and mobile phones.
Two rules describe the lifting of fixed resp. mobile phones. See the upper part of
After the refactoring, a lift rule for phones in general is shown which
is merged from the two original lift rules. (See the lower part of )

Pre-condition: Indicated rules differ in node types only. The set of node types
found contains all sub-types of a common super-type.
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Strategy:

1. Identify all node types with common super type.
2. Construct a new rule by taking one original rule and replacing identified
sub-types by identified super-type.
3. Delete all original rules.
Post-condition: All original rules are replaced by one new rule using identified
super types.
Quality improvement: The number of rules becomes smaller.
Semantics: The semantics is preserved, since the same transformation sequences

are induced (see [Section 5).

4.6 Refactoring “Erase Non-injective Matching”

A rule which may allow for non-injective matching is replaced by a rule set which
allows for injective matching only.

Input parameter: Name of the rule

Ezxample: Using graph transformation for the generation of finite automata,
there is rule “createTransion” which creates transitions between states
The non-injective matching of this rule is needed to create transition loops. After
the refactoring, a set of two rules is created which consists of the original one
(now restricted to injective matching) and a new one, called “creatLoop”, for
the creation of transition loops, i.e. nodes of type State are merged here.

createTransition of AutomataCreation =8| createLoop of AutomataCreation
LHS : RHS LHS il RHS
¥
1:State

Transition

Fig. 5: Example rules for refactoring “Erase Non-injective Matching”

Pre-condition: None
Strategy:

1. Identify node sets with common node type.

2. Identify edge sets with common edge type and common source and target
node types.

3. Create a rule set containing rules for each possible merging of nodes and
edges in these sets.
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Post-condition: The resulting rule set contains rule for each possible merging of
nodes and edges of common types.
Quality improvement: Non-injective matching is not needed anymore.

Semantics: The semantics is preserved in the sense that the same graphs are
created and the same effects are performed (see [Section 5)).

4.7 Refactoring “Move Versus Delete and Create”

Rule elements which are deleted and created in the original rule are moved
afterwards.

Input parameter: Name of the rule

Ezample: Taking up the Phone example again, we consider a rule which replace
a fixed phone at one location by another phone at another location, i.e. the fixed
phone at the original location is deleted and a new one is created at the new
location. After the refactoring, the rule specifies the movement of a fixed phone
from one location to another one |Figure 6

ReplacePhone of Phones ﬁ MovePhone of Phones
LHS : RHS LHS :
FixedPhone [FixedPhone| [2:FixedPhone|
r
|1:L0cati0n| |3:Locatiun| |1:L0cali0n| IS:Locallnnl |1:L0cali0n| |3:Localinn| |1:L0calion| 3:Location

Fig. 6: Refactoring of deletion and creation of a fixed phone to the movement of
that phone

Pre-condition: None

Strategy:

1. Identify nodes and edges which are deleted and created afterwards. If these
nodes and edges are attributed, they are identified only if the attribute values
of the created elements are the same as of the deleted ones. Nodes are iden-
tified only if their adjacent edges are created in the same way they existed
before.

2. Preserved identified elements instead of deleting and creating them.

Post-condition: The rule does not contain any element that is deleted and cre-
ated in the same way and context.

Quality improvement: The resulting rule allows for more concurrency.
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Semantics: The semantics is preserved in the sense that the same graphs are
created, however, the number of transformation effects when applying the refac-

tored rule is reduced (see [Section 5j).

4.8 Refactoring “Unify Rules with Same Actions”

Given a set of rules which show a subset of same actions. This subset is encap-
sulated in a new rule to be applied first. The original rules are reduced to their
remaining actions each.

Input parameter: set of rule names

Ezample: For registering a new phone, it is enough for mobile phones to give the
person who will own it. For fixed phones, their location has to be registered in ad-
dition. These two cases are specified in rules “RegisterMobilePhone” and “Regis-
terFixedPhone”. However, the owner registration is common to both rules. Thus,
we have a kernel for phone registration afterwards containing the owner regis-
tration only (plus flag creation). The remainder rules of the original ones do not
care about the owner registration anymore, i.e. “RegisterFixedPhoneRemainder”
specifies the location registration only and for “RegisterMobilePhoneRemainder”
there is not any original action left. However, both remainder rules have to delete
the flag again.

RegisterFixedPhone of Phones E] RegisterMobilePhone of Phones E

LHS : RHS LHS : RHS

1:FixedPhone 1:FixedPhone -
1:MobilePhone 1:MobilePhone
Y

[2Person]  [3:Location| [2Person]  [3:Location [Person]
RegisterPhoneKernel of Phones E] RegisterfixedPh i of Phones E

LHS 4| RHS LHS 4| RHS

K ¥

1Phone 1:FixedPhone 1:FixedPhone

y
RStart Rstart RegisterMobilePh inder of Phones | &5
| ks i rus
Rstart

Fig. 7: Unify common register phone actions
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Pre-condition: None
Strategy:

1. Identify the set of actions common to all rules in the given set. Identify also
the common preserved part. This identification abstracts from concrete node
types if there are common super types.

2. Create a new rule, called kernel rule, which contains all identified actions
and the identified preserved part. If common actions and preserved parts
differ in node types, their common super types are used instead.

3. Reduce each of the original rules, called remainder rule, by the identified set
of actions. Reduce the preserved part if it is common and not needed for the
remaining actions.

4. Add a flag to the kernel rule. The flag is created by this rule.

5. For each remainder rule: The flag created by the kernel rule is deleted here.
Post-condition: There is a new rule, the kernel rule, that contains all common
actions. All remainder rules do not contain common actions anymore. A remain-
der rule is not applicable without applying the kernel rule beforehand.

Quality improvement: The redundancy within the given rule set is reduced.
Semantics: A concurrent rule consisting of the kernel rule and one remainder
rule yields an original rule. There may be more transformation sequences than
before, since the resulting transformations allow for more interleaving with other
rule applications.

5 Preservation of Semantics

Refactorings in object-oriented programming are usually defined as behavior-
preserving transformations [12]. The idea is that it is possible to change the in-
ternal implementation of a system (to improve its performance, maintainability,
etc.) without affecting the externally visible behavior. Since graph transforma-
tion systems and graph grammars can be used for a number of different purposes,
their notions of “behavior” are varied as well. If a graph grammar GG is used
for the specification of a graph language, representing e.g. the abstract syntax
of visual languages, its semantics is given by the set L(GG) of graphs reachable
from the start graph.

If instead we are interested in the specification and implementation of model
transformations as mappings between graphs, the semantics of a graph transfor-
mation system G can be given by a relation MTg C Grarg, X Grarg, between
sets of graphs over type graphs TGg, TGt C TG representing the abstract syn-
tax of source and target languages. The relation is defined by applying to an
input graph Gg typed over the source fragment T'Gg of the type graph a set
of rules until no further transformation is possible. Then, the projection G of
the resulting graph to the target fragment T'Gr is the output of the transforma-
tion [7], making (Gs, Gr) an element of the transformation relation MTg. In the
case of a graph transformation system modelling a process, such as a workflow,
computation, or network protocol, we are interested in the ongoing behavior
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rather than the end result of the transformation. Here it makes sense to distin-
guish two cases, i.e., whether the structure of states is part of the semantics or if
we focus on observable behavior only, hiding the representation of states. In the
first case, semantic models such as (shift-equivalence classes of) transformation
sequences, graph process and unfoldings are appropriate. In the second case, a
notion of observation or label is required, to be associated with transformations.
Then, models based on traces and labelled transition systems can be derived.

The question, whether a given refactoring is semantics preserving, therefore
depends on the semantic model chosen. However, a common feature of most
of the models is that they are based on transformation steps as basic building
blocks. We will therefore consider preservation of this single-step semantics as
an elementary requirement and discuss the more elaborate notions based on that
assumption. In general, a refactoring step can lead to a change of representation
r : Grarg, — Grarg, mapping graphs over T'G; to graphs over T'Gs. For
example, in changing loops used as markers into Boolean attributes TGy, TG>
are the type graphs declaring the loop or the attribute only. In many examples,
however, such as the Extract Precondition refactoring, this mapping r is the
identity, i.e., the graph representation is unchanged at the instance level. Let
G1/GG1 and G2/GGo be graph transformation systems/grammars before and
after refactoring. Preserving semantics in this case means to

— preserve the generated graph language, i.e., r(L(GG1)) = L(GG>);

— preserve the transformation relation generated by a model transformation
system, i.e., r(MTg,) = MTg, where r extends to pairs of graphs in the
obvious way;

— ensure that r is a suitable bisimulation function between LT'S(GG1) and
LTS(GG2), stating (in the case of the most common notion of strong bisimu-

lation [T4]) that for states s; and so with r(s1) = s2, each transition s; N s]

in LTS(GG,) is matched by a transition so N sy in LTS(GG2), and vice
versa, such that r(s})) = 5.

Let us consider the Extract Pre-condition refactoring (see |[Section 4.2)). For
any graph G, there exists a transformation G 22 H if and only if there exists

a transformation G =2 H where p’ is the result of applying the refactoring
to p and m’ : L' — @G is the restriction of match m : L — G to the smaller
left-hand side L' C L. Based on this preservation of the single-step semantics,
it is obvious that reachability as well as transformation relations are preserved.
In order to establish a bisimulation, we have to assume that G L% H and

G =2 H carry the same labels (or inject a suitable relabelling). It is worth
pointing out that this refactoring may not be consistent with concurrent models
such as shift-equivalence since moving elements from the left-hand side into a
positive precondition may affect notions of independence of transformation steps.

In refactoring Pull Up Attribute we modify the type graph by moving an at-
tribute shared between all subclasses of a common superclass to that superclass.
This change at the type level does not affect the instance graphs or rules (but
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allows for more general rules). Consequently, the step semantics does not change.
As mentioned before, refactoring Loops to Boolean Attribute involves a change
of representation affecting both type and instance level, but should preserve the
step semantics. Finally, refactoring Split Rule into Set Of Action Rules does not
preserve the step semantics because a single step using the original rule is broken
up into a sequence of steps using action rules. In the case of the LTS semantics
this would lead to a transition system having additional states and transitions.
The language and relational semantics, both based on reachability only, can be
preserved if we can control action rules to ensure that they faithfully implement
all and only the original transformations.

6 Prototypical Implementation

This section shortly presents the implementation of a sample refactoring for EMF
model transformation by Henshin being based on graph transformation concepts.
After introducing Henshin, we summarize the implementation of refactoring Ez-
tract Pre-condition as specified in [Section 4] In particular, we discuss the overall
algorithm and describe one single transformation rule used for refactoring exe-
cution in detail.

6.1 Henshin and EMF Refactor

Henshin is a language and associated tool set for in-place transformations of
models that are based on the Eclipse Modeling Framework (EMF). Henshin it-
self is based on graph transformation concepts where rules can be equipped with
nested application conditions and structured into nested transformation units
[1]. EMF Refactor [I8] supports the specification and application of refactorings
to EMF-based models. Since the application module of EMF Refactor uses the
Eclipse Language Toolkit (LTK) technology [23], a refactoring requires up to
three parts. They reflect a primary application check for a selected refactoring
without input parameters, a second one with parameters, and the proper refac-
toring execution. Currently, EMF Refactor supports refactoring specifications
using Java respectively Henshin transformations.

[Figure 8|shows a small part of the Henshin meta-model consisting of concepts
which are affected by refactoring Eztract Pre-condition. A transformation rule
consists of left and right-hand side graphs (LHS and RHS) which describe model
patterns by their underlying (graph) structure. Nodes refer to EClass objects
while Edges refer to EReferences between objects via references called type (not

shown in [Figure 8).
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These type references are used for

B Rule
] P explicit typing. Mappings between LHS
mappIngs 0. x Ihs and RHS can be defined based on

F)I BMapping| '— BGraph L = jodes. Edge mappings are implicitly
N X} given if both, their source and target
nodes are mapped. To conveniently de-
termine where a specified rule should be
applied, application conditions can be

mappings nodes
source\ | target

outgg.a-l;:g/ “\\i%iemgzzes farmula defined. Graphs can be annotated with
W 0.1 application conditions using a Formula
—— 0" [ B formula that is either a logical expression (not

5 NestedCondition K shown in or a Nested Condi-
= pegaleds Eiooltan i conclusion  tion which is an extension of the origi-

nal LHS graph structur The Henshin
Fig. 8: Part of the Henshin meta model model supports a special kind of trans-

formation units, called Amalgamation

Units, which is useful to specify forall-
quantified operations on recurring model patterns. An amalgamation unit con-
sists of one rule which acts as a kernel rule and multiple rules which act as
multi-rules. The effect is that the modification defined in the kernel rule is ap-
plied exactly once while modifications defined in the multi-rules are applied as
often as suitable matches are found. For details on amalgamation concepts we
refer to [9].

6.2 Refactoring of Henshin transformation systems

Henshin transformation systems can be refactored in a straightforward way. A
Henshin transformation model instance is considered as model to be refactored.
The refactorings are implemented based on Henshin rules typed over the Hen-
shin meta model, i.e. Henshin transformation systems are refactored by Henshin
again. Since the Henshin model is an ordinary EMF model, EMF Refactor can
be used to generate refactoring operations for EMF-based editors for Henshin
transformation systems.

The prototype implementation of refactoring Fxtract Pre-condition addresses
the following two modifications of the description made in

— First, we add a precondition that checks whether the original rule does not
have any application conditions.
— Second, we omit attributes on graph nodes, i.e. we consider typed graphs
instead of attributed typed graphs only.
Please note that these limitations are just done in order to keep the refactoring
specification simple. In the following, we concentrate on the execution steps of
the refactoring. This means that the non-existence of application conditions is
already assumed. The entire refactoring specification including a comprehensive
discussion can be found at [2].

5 Note that PACs and NACs are special nested conditions.
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shows the overall structure of the execution part of the exam-
ple refactoring. It consists of a so-called Sequential Unit (named FEztract Pre-
condition) that in turn consists of three further transformation units, more pre-
cisely amalgamation units. These child units are meant to be executed in a
sequential order.

The first amalgamation unit,

addPresNodes2NewPAC, creates |_L Extract Pre-condition Moo
a new PAC (kernel rule) and Nz + Actioat.
adds a copy of each preserved 1 addPresNodes2NewPAC
LHS node to it (multi rule). In \ = Activat..
the second amalgamation unit, ducePreservedEdges
reducePreservedEdges, the pre- - ¥ Activat...
served edges of the original rule ik

(presented as parameter sel_rule
in are moved to the Fig.9: Unit structure of Henshin refactoring
application condition, i.e. after- Extract Pre-condition
wards there are only those edges
left which have to be deleted (LHS edges) or created (RHS edges). Finally, amal-
gamation unit reducePreservedNodes deletes those mapped nodes from the LHS
and RHS graphs that are not associated to any edge left.

shows the multi-rule of amalgamation unit reducePreservedNodes
in an integrated view consisting of LHS, RHS, and four NACs altogether. LHS
objects (nodes and edges) can be identified by tags ((preserve)) or ((delete)),
objects tagged by ((preserve)) or {(create)) from the RHS of the rule (since the
multi-rule does not add any objects to the model, there are no {(create)) tags in
Figure 10). Finally, NAC objects are tagged by ((forbid)). Nodes that are mapped
to corresponding nodes of the kernel rule have a gray background, whereas addi-
tional multi-rule nodes have a white background. They represent so-called multi-
objects. The multi-rule matches preserved nodes (the right and center nodes in
Figure 10) which are not associated to (i) an edge that has to be created by
the rule (NACs ACO and AC1?), or (ii) an edge that has to be deleted by the
rule (NACs AC2 and ACS). Finally, these nodes as well as the corresponding
mappings are deleted from the according LHS respectively RHS graphs.

7 Related Work

There are various approaches using graph transformation to specify model and
program refactorings, but to the best of our knowledge, there is no other work
specifying refactorings for graph transformation systems. Therefore, we concen-
trate our consideration of related work on two aspects: theoretical results for
graph transformations that form the basis for some of our refactorings, and
related approaches and tools for EMF model refactoring.

Refactoring ”Split Rule into Set of Action Rules”, for instance, relies on the
concurrency theorem [7] which states how rules can be composed. Refactoring
”Erase Non-injective Matchings” goes back to results for graph transformation
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= reducePreservedNode multi

<<preserve> > formula <<preserve>> |hs [<<preserves> ths <<preserve> >
. >
:NestedCondition: - :Graph selectedRule:Rule :Graph
<<forbid:AC2>> —

s edges nodes  Mappings {<<delete>> | <<forbid:ACO> >I edges
conclusion P id: <<delete>>

<<forbid:AC3>>| <<forbidAC3>> | | \  s<delete nodes < <forbid:ACO> >
:Edge origin _|<<delete>>|image Edge

:Graph <<forbid:AC3>i Wif%appinq _‘l(
edges target
i <<delete>>| <<delete>> SetEes SOUICE edges

<<preserve>>

nodes <<forbid:AC2>> source :Node <<delete>> |<<delete>> -
Edge < <forbid:AC2> > ‘Node < <forbid:ACO>>
(<< : ’ type type <<forbid:AC1>>
<<preserve>>l origin S target —
:Node «image <<delete>> |<<delete>> <<preserve>> < <forbid:AC1>>
o -Mappin :EClass . :Edge <
<<delete>> mappings [MaPPING | . delete>> [~ | <<forbid:AC1>>|

Fig. 10: Multi-rule of amalgamation unit reducePreservedNodes

systems (dis-)allowing non-injective matchings shown in [I3]. Based on these
results we can clearly specify the intended refactorings and can argue that they
are semantics preserving in a certain sense.

Since EMF has evolved to a well-known and widely used modeling technol-
ogy, it is worthwhile to provide model quality assurance tools for this technology.
To specify EMF model refactorings, there are further tools such as the Epsilon
Wizard Language (EWL) [I5] and a generic approach presented in [19] avail-
able. In contrast to EWL, EMF Refactor provides a specification framework for
refactorings which allows different concrete specification mechanisms. In partic-
ular, EMF Refactor supports Henshin which supports more correctness checks
than EWL (see also [4]). In contrast to EWL, EMF Refactor further uses the
LTK technology for homogeneous refactoring execution in Eclipse including e.g.
a refactoring preview. In [I9], the authors propose the definition of EMF-based
refactoring in a generic way, however do not consider the comprehensive speci-
fication of preconditions. Our experiences in refactoring specification show that
it is mainly the preconditions that cannot be defined generically.

8 Conclusions and Future Work

Refactorings are a well-established means to make development experiences ex-
plicit such that further developers can benefit from these experiences. Therefore,
we start with a selection of interesting refactorings for graph transformation
systems. In this paper, we explicitly restrict this approach to kernel features.
However, further features should be considered, primarily rule parameters and
control structures for rule applications. In addition, it is certainly worthwhile to
define not only metric-based but also pattern-based graph transformation smells.
It is up to future work, to enable developers to define purpose-specific quality
assurance processes for graph transformation systems.
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