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Received 21 February 2011; Revised 5 January 2012

M-adhesive categories provide an abstract framework for a large variety of specification

frameworks for modelling distributed and concurrent systems. They extend the

well-known frameworks of adhesive and weak adhesive HLR categories and integrate

high-level constructs like attribution as in the case of typed attributed graphs.

This article presents M-adhesive transformation systems including negative application

conditions (NACs) for transformation rules, which are often used in applied scenarios.

For this purpose, the classical notion of switch equivalence is generalised to the notion of

permutation equivalence, because there are intuitively equivalent NAC-consistent

transformation sequences which cannot be derived by switching consecutive

NAC-independent transformation steps. Furthermore, this article presents a general

construction of processes of M-adhesive transformation systems based on subobject

transformation systems and permutation equivalence. As main results we show that a

constructed process of a transformation sequence specifies its equivalence class of

permutation-equivalent transformation sequences. Moreover, we show how the analysis

of this process can be reduced to the analysis of the reachability graph of a generated

Place/Transition Petri net. This net encodes the dependencies among rule applications

of the transformation sequence, including the inhibiting effects of the NACs.
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1. Introduction

The notion of M-adhesive transformation systems provides an abstract framework for

transformation systems based on the double pushout (DPO) approach originally devel-

oped for graphs (Ehrig et al.1973) and extended to typed attributed graphs and a large

variety of Petri nets based on the slightly more specific framework of weak adhesive trans-

formation systems with suitable classesM of monomorphisms (Ehrig et al.2006). While

several analysis techniques for the crucial properties of termination and local confluence

have been provided for the general setting, this paper presents general techniques for the

analysis of processes of such systems, i.e. of equivalence classes of executions differing

only for the interleaving of the same transformation steps.

The main problem in this context is to analyse whether a sequence of transformation

steps can be rearranged in order to generate all possible equivalent executions, or some

specific and possibly better ones. If the system is modelled by a Petri net these ques-

tions can be fairly easily answered: processes (or occurrence nets) incorporate a notion

of concurrency (represented as a partial order) that can be exploited to rearrange the

tasks, while still respecting causality; thus the equivalent computations (firing sequences)

are all and only those obtained as linearisations of the process. We are here considering

models with two further dimensions, which considerably complicate the problem: first, we

work in the general setting of M-adhesive categories where we can model systems with

an evolving topology, such as graph transformation systems, in contrast to systems with

a static structure like classical Petri nets. Second, we take into account Negative Appli-

cation Conditions (NACs) that are used to ensure the “absence” of forbidden structures

when executing a transformation step. It is well-known that NACs significantly improve

the specification formalisms based on transformation rules leading to more compact and

concise models as well as increased usability, and they are widely used in non-trivial

applications.

In the case of systems with NACs, we generalise the classical notion of switch equiv-

alence to the notion of permutation equivalence, because there are transformation se-

quences which are intuitively equivalent but which cannot be obtained one from the other

by repeatedly switching independent consecutive steps. As defined in (Hermann2009), two

transformation sequences are called permutation-equivalent, if they respect the NACs and

disregarding the NACs they are switch-equivalent. The notion of permutation equivalence

on transformation sequences with NACs is coarser and more adequate than the classi-
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cal switch equivalence based on the local Church-Rosser theorem in the DPO approach

including NACs (Lambers2009).

Petri nets with inhibitor arcs can be considered as a very simplified version of trans-

formation systems with NACs (the “forbidden context” is made of the places which have

an inhibitor arc to the transition to be fired). The equivalence on linear computations of

a net with inhibitor arcs obtained as linearizations of the process semantics (as defined

in (Baldan et al.2004)) does not suffer of the problems identified for the switch equiva-

lence with NACs, because it does not need a notion of “local switch” of transitions. With

the notion of permutation equivalence we recover, in the setting of linear computations,

the natural notion of equivalence induced by the process semantics: this is shown by one

of the main results, namely Thm 2.

For the sake of generality, and also motivated by our case study based on typed at-

tributed graph transformation systems, we consider transformation sequences with gen-

eral (i.e. possibly non-monic) matches, and we introduce a new kind of NACs called

NAC-schemata, which allows us to reduce the number of classical NACs significantly.

Interestingly, we show in our first main result (Thm. 1) that permutation equivalence of

transformation sequences using general matches and NAC-schemata can be reduced to

permutation equivalence of sequences using only matches inM (calledM-matches) and

classical NACs. This allows us to reduce also the analysis of permutation equivalence to

the case of transformation sequences with M-matches and classical NACs.

The main practical analysis problem for permutation equivalence is to construct for

a given transformation sequence the set of all permutation-equivalent transformation

sequences. The brute-force method would be to construct all switch-equivalent sequences

disregarding NACs and then to filter out the NAC-consistent ones. However, our case

study shows that this brute-force approach is in general very inefficient. In this paper, we

show how to analyse permutation equivalence using subobject transformation systems

(STSs) and Petri nets leading to much more efficient solutions.

For this purpose, we exploit the notion of process of a transformation sequence, which

consists of an STS with an embedding into the original transformation system: this con-

struction is based on and generalises results in (Corradini et al.2008; Hermann2009) for

STSs over adhesive transformation systems with NACs. Our second main result (Thm. 2)

shows that the constructed process of a given transformation sequence exactly charac-

terizes the equivalence class of permutation-equivalent transformation sequences.

For improving the efficiency of the analysis of permutation equivalence we provide the

construction of a dependency net for a given process of a transformation sequence with

NACs. This net is given by a standard P/T Petri net which includes a complete account

of the causal dependencies and NAC-dependencies among transformation steps. Our fur-

ther main results (Thms. 3 and 4) show that complete firing sequences of the dependency

net are one-to-one with transformation sequences that are permutation-equivalent to the

given one. This allows us to derive the complete set of permutation-equivalent transfor-

mation sequences from a simple analysis of a Petri net. Furthermore, the constructed P/T

Petri net can be used to derive specific permutations without generating the complete

set first.
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Concepts and results of this paper generalize those presented in (Hermann et al.2010)

for graph transformation to the more abstract and general framework of M-adhesive

transformation systems with general matches. Sec. 2 reviewsM-adhesive categories and

presents the main concepts of transformation systems with NACs and of permutation

equivalence. Thereafter, Sec. 3 introduces the framework of Subobject Transformation

Systems (STSs) with NACs and the process construction forM-adhesive transformation

systems. The analysis of the process via the construction of the dependency net given

by a Petri net is presented in Sec. 4. Thereafter, Secs. 5 and 6 discuss related work and

provide a conclusion. Finally, App. A recalls the technical details of the M-adhesive

category of typed attributed graphs, App. B summarizes the definitions related to P/T

Petri nets, and App. C provides the proofs of some auxiliary facts, while the proofs of

the main results in Thms. 1-4 are given in the main part of the paper.

2. Transformation Systems and Permutation Equivalence

Most definitions and results of the Double Pushout (DPO) approach to transforma-

tion systems have been generalized to adhesive categories (Lack and Sobocinski2005),

(weak) adhesive HLR categories (Ehrig et al.2006), partial map adhesive categories (Hein-

del2010), and M-adhesive categories (Ehrig et al.2010) being the most general among

them. These frameworks require that pushouts along monos (or along a distinguished

subclass of monos, called M-morphisms) “behave well” with respect to pullbacks. Be-

cause of this, it is quite natural to present our contribution at this level of generality, by

referring all definitions and results to an arbitrary but fixed M-adhesive category C.

In this section we review M-adhesive categories together with some additional prop-

erties in Sec. 2.1,M-adhesive transformation systems with Negative Application Condi-

tions (NACs) in Sec. 2.2, and the notion of permutation equivalence on transformation

sequences of such systems in Sec. 2.3. Most of the definitions are illustrated with a run-

ning case study based on typed attributed graph transformation systems.

2.1. M-adhesive Categories and General Assumption

The abstract framework of M-adhesive categories unifies several important modelling

techniques for parallel and distributed systems.M-adhesive categories are slightly more

general than weak adhesive HLR categories (Ehrig et al.2006) and thus include different

kinds of graphs and Petri nets.

Definition 2.1 (M-adhesive category). A pair (C,M) consisting of a category C

and a class of morphism M is called an M-adhesive category if:

1M is a class of monomorphisms of C closed under isomorphisms, composition, and

decomposition (g ◦ f ∈M, g ∈M⇒ f ∈M).

2 C has pushouts and pullbacks alongM-morphisms, andM-morphisms are closed under

pushouts and pullbacks.

3 Pushouts in C along M-morphisms are “M-Van Kampen” (M-VK) squares, i.e. for

any commutative cube like (2) below where the bottom face (1) is a pushout along
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m ∈ M, the back faces are pullbacks, and b, c, d ∈ M, we have: The top face is a

pushout if and only if the front faces are pullbacks.
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As mentioned above, starting from (Lack and Sobociński2004) adhesivity as been de-

fined in several variants and sometimes in subtly different ways: For a recollection of such

notions and comparisons among them the reader is referred to (Ehrig et al.2010).

Example 2.2 (The category of typed attributed graphs). The M-adhesive cat-

egory of our case study is the category of typed attributed graphs (AGraphsATG ,M)

which is given by the slice category (AGraph↓ATG,M) of directed attributed graphs

over a type graph ATG . The distinguished class M contains all monomorphisms that

are isomorphisms on the data part. According to (Ehrig et al.2006), an attributed graph

consists of an extended directed graph for the structural part, called E-graph, together

with an algebra for the specification of the carrier sets of the value nodes (see App. A).

The objects of (AGraphsATG ,M) are attributed graphs with a typing morphism to a

fixed attributed graph ATG (called the type graph), and as arrows all attributed graph

morphisms preserving the typing. It follows from the results in (Ehrig et al.2006) that

this category is M-adhesive.

Several M-adhesive categories and results for M-adhesive transformation systems re-

quire the existence of epi-mono factorizations or more general E-M pair factorizations.

Similarly, we require in this paper that the underlyingM-adhesive categories provide ex-

tremal E-M factorizations. This allows us to analyse transformation systems with general

matches, i.e. matches that are possibly not in M.

Definition 2.3 (Extremal E-M factorization). Given an M-adhesive category

(C,M), the class E of all extremal morphisms with respect to M is defined by

E := {e ∈ C | for all m, f in C with m ◦ f = e : m ∈ M implies m isomorphism}.
For a morphism f : A → B in C an extremal E-M factorization of f is given by an

object B and morphisms (e : A� B) ∈ E and (m : B � B) ∈M , such that m ◦ e = f .

Remark 2.4 (Uniqueness of Extremal E-M Factorizations). As shown by Prop. 3

in (Braatz et al.2010), extremal E-M factorizations are unique up to isomorphism. The

class E is a generalization of the notion of extremal epimorphisms (Adámek et al.1990),

which coincides with the notion of cover (Freyd and Scedrov1990).

In the case of finitary M-adhesive categories, the extremal factorization can be per-

formed by constructing all factorizations and stepwise pullbacks of them as shown by

Prop. 4 in (Braatz et al.2010). An M-adhesive category is finitary, if each object A

is finite in the sense that there are finitely many M-subobjects [b : B � A], i.e.

finitely manyM-morphisms up to isomorphism with target A. A typed attributed graph
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AG = ((G,D), t) in (AGraphsATG ,M) with typing t : (G,D) → ATG is finite if the

graph part of G, i.e., all vertex and edge sets except the set VD of data vertices generated

from D, is finite, while the attributed type graph ATG or the data type part D may be

infinite, because M-morphisms are isomorphisms on the data type part. The restriction

of (AGraphsATG ,M) to finite objects forms a finitary category.

Example 2.5 (Extremal E-M factorization). Given a morphism f : G → H in

the finitary category of typed attributed graphs (AGraphsATG ,M), the factorization

f = m◦ e is constructed by performing the epi-mono-factorization on the graph part, i.e.

on all nodes and edges except the data value nodes VD, while for the data part fD we

derive eD : AG → AH with eD(x) = fD(x) and mD = id : AH → AH .

In order to efficiently analyse permutation equivalence in Secs. 3 and 4, we require

effective unions for the underlying category C, i.e. that the join of two subobjects can

be constructed as pushout in C.

Definition 2.6 (Effective Unions). Given an M-adhesive category (C,M) and two

B   g′

  

22
b

��

A
>>

f >>

  

g   

(1) D
d // Z

C
>> f ′

>>

,, c

GG

M-morphisms b : B → Z and c : C → Z, let (f, g) be obtained

as the pullback of (b, c) as depicted, and (f ′, g′) be obtained

as the pushout (1) of (f, g), with induced mediating morphism

d : D → Z. Pushout (1) is called effective, if d ∈ M. The M-

adhesive category (C,M) has effective unions, if for all pairs b, c

of M-morphisms pushout (1) is effective.

Remark 2.7 (Effective Unions in (AGraphsATG ,M)). The M-adhesive category

(AGraphsATG ,M) has effective unions, because by commutativity of the diagram in

Def. 2.6, the morphism d is an isomorphism on the data part.

General Assumption: In order to analyse transformation systems based on an M-

adhesive category (C,M) we base all our further constructions in this paper on the

general assumption that (C,M) provides an extremal E-M factorization (Def. 2.3) and

effective unions (Def. 2.6).

2.2. M-adhesive Transformation Systems with NACs

In the first part of this section we review basic notions of transformation steps and

transformation systems. A transformation rule specifies how a given object G can be

transformed into a resulting object H. Given a match m : L → G of the left hand side

of rule p = (L ←l− K −r→ R) into the object G such that p is applicable, the resulting

object H is intuitively derived by removing the parts that are in L but not in K and

by adding those that are in R but not in K. Negative application conditions (NACs)

extend a transformation rule in order to restrict the applicability of the rule by specifying

forbidden contexts in which the rule shall not be applied. Intuitively, a match m : L→ G

satisfies a NAC n : L → N for a rule p if the image of the left hand side L in G cannot

be extended to an image of the “forbidden context” N .
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In the present paper we do not consider nested application conditions (Habel and Pen-

nemann2009), but we plan to extend our results to this more general kind of application

conditions.

Definition 2.8 (NAC-consistent Transformation Steps for M-matches). Given

an M-adhesive category (C,M), a (transformation) rule p = (L ←l− K −r→ R), also

called production, is a pair of M-morphisms with the same source in |C|. A Negative

Application Condition (NAC) for a rule p is an M-morphism n : L � N , having the

left-hand side of p as source and a rule with NACs is a pair (p,N) where p is a rule and

N
""

q ""

Loo
noo

��

m
��

(1)

K

��

// r //ooloo

(2)

R

��

G D //oo H

N is a set of NACs for p. Given an M-morphism

m : L � G into an object G ∈ C, called match, m

satisfies the NAC n : L � N for p, written m |= n,

if there is no M-morphism q : N � G such that

q ◦ n = m. We say that there is a NAC-consistent transformation step from an object

G to H using a rule with NACs (p,N) and a match m : L � G, if (a) there are two

pushouts (1) and (2) in C, as depicted; and (b) m |= n for each NAC (n : L� N) ∈ N.

If condition (a) above is satisfied (and (b) possibly not, thus NACs are ignored) we say

that there is a transformation step disregarding NACs from G to H. In both cases we

write G =
p,m
==⇒ H.

The last definition considers transformation steps for M-matches only, but as we will

discuss now this is too restrictive for transformations in our sample category of typed

attributed graphs, and therefore in M-adhesive categories in general.

Remark 2.9 (Discussion on matches and NACs in (AGraphsATG ,M)). Requir-

ing that a match m : L → G is in M implies that the data part of L is isomorphic to

that of G. But this is much too restrictive because usually (see e.g. Ex. 2.12) the data

algebra of L is given by a term algebra with variables TOP (X), while the data algebra

of G is an arbitrary OP -algebra: in this situation the match m is determined, on the

data part, by an assignment ass : X → AG, and it might be neither injective (e.g. two

variables could be mapped to the same element of AG) nor surjective.

Therefore in this general setting we have to consider transformation steps with respect

to arbitrary matches. But this requires to revisit the basic definitions of NACs and their

satisfaction. Indeed, if match m : L→ G does not belong to M, from Def. 2.8 it follows

that m satisfies trivially n for any NAC n : L� N : in fact, n ∈M by definition, and if

there were a q ∈M such that q ◦n = m then m ∈M as well, leading to a contradiction.

For a meaningful notion of NAC satisfaction in presence of arbitrary matches several

options are possible. Firstly, one may drop the requirement on q being inM, saying that

m |= n if there is no morphism q : N → G such that q ◦ n = m. As discussed in (Habel

et al.1996) for the case of graph transformation, this notion of satisfaction has serious

limitations in the expressive power, because it cannot express natural constraints like

those involving cardinality (e.g., “there must be at least two A-labelled nodes in G”) or

injectivity (e.g., “the match cannot identify two given nodes of L”); thus we prefer to

avoid this solution.
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Alternatively, one may drop the requirement that NAC n : L → N has to be in M,

still requiring any q : N → G being inM. This is indeed the approach taken for example

in (Habel et al.1996), but we don’t consider it very satisfactory because it can lead to a

combinatorial explosion of the number of NACs. In fact, suppose for example that L is

a graph consisting of three B-labeled nodes, and that we want to forbid matches from

L to any graph G which contains an additional node labelled with A; thus node A is

a “forbidden context”. It is easy to see that we need five distinct NACs, one for each

possible different way of identifying subsets of the nodes of L with a match. Similarly,

consider again the category of typed attributed graphs, a match (m : L→ G) /∈ M and

a NAC (n : L → N) /∈ M. If the data algebra AN of N is not isomorphic to the data

algebra AG of G there cannot exist any q : N → G in M making the triangle commute

and thus m |= n trivially holds. This means that we need at least one different NAC for

each distinct algebra (up to isomorphism) that could be the data algebra of an attributed

graph to which the rule should not be applicable.

Motivated by this discussion, we introduce now NAC-schemata, a new notion of NACs

and NAC-consistency inspired by (Kastenberg et al.2006), that at the same time is mean-

ingful for general matches and avoids the combinatorial explosion in the number of NACs.

A NAC-schema is simply an M-morphism n : L � N , but NAC-satisfaction does not

require the absence of an M-morphism q : N � G, but of an M-morphism q : N ′ � G

with N ′ being obtained from N , intuitively, by performing the same identifications as

in the match f : L → G. This condition is formalized by a pushout over an extremal

E-M-factorization L −e→ L′ −m−→ G of the match f (see Def. 2.3).

Definition 2.10 (NAC-schemata and Satisfaction). Let p = (L ←l− K −r→ R) be a

N

�� (1)

Loo
noo

e����

f

zz

N ′��

q ..

L′oo
n′
oo

��
m��

G

rule, a NAC-schema for p is an M-morphism n : L � N . Let

f : L→ G be a general match of p, f = m ◦ e be its extremal

E-M-factorization and diagram (1) be constructed as pushout.

Then f satisfies the NAC-schema n : L � N , written f |= n, if

there is no q ∈ M with q ◦ n′ = m. In this case, the match f is

called NAC-consistent. If p′ = (p,N) is a rule with a set of NAC-schemata N, a match

satisfies N if it satisfies all n ∈ N.

It is worth noting that if match f : L → G is an M-morphism, then satisfaction of a

NAC-schema n : L → N coincides with classical satisfaction, because the factorization

is trivially f = f ◦ id .

A set of named transformation rules forms a transformation system and the naming

is specified by a mapping π : P → RULES (C,M) from the set of rule names P to the

set of rules in an M-adhesive category (C,M).

Definition 2.11 (M-adhesive Transformation System). An M-adhesive transfor-

mation system (TS) over (C,M) for general matches is a pair TS = (P, π) where P is

a set of rule names, and π maps each name p ∈ P to a rule π(p) = ((L←l− K −r→ R),NS)

with NAC-schemata NS . A NAC-consistent transformation sequence of TS is a sequence

G0 =
p1,m1
===⇒ G1 · · · =

pn,mn
====⇒ Gn, where p1, . . . , pn ∈ P and di = Gi−1 =

π(pi),mi
=====⇒ Gi is a
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transformation step with NAC-consistent match (see Def. 2.10) for i ∈ 1, . . . , n. Some-

times, we denote a transformation sequence as d = (d1; . . . ; dn), where each di denotes a

single transformation step.

An M-adhesive transformation system (TS) over (C,M) for M-matches is defined

as above, where, however, the set NS of NAC-schemata is replaced by a set of NACs N

with NAC-consistency according to Def. 2.8.

worksOn

Person

accessLevel:nat

Task

accessLevel:nat

started

R

:worksOn

1:Person

2:Task

K

1:Person

L

stopTask

ATG

Type Graph

R

:worksOn

1:Person

2:Task

K

1:Person

2:Task

L

:started

finishTask

2:Task

1:Person

2:Task

1:Person

2:Task

startTask

L K RNAC1

2:Task

accessLevel=lv

2:Task

accessLevel=lv

3:started:worksOn

2:Task

accessLevel=lv
2:Task

accesLevel=lv

1:Person

accessLevel=add(lv,x)

1:Person

accessLevel=add(lv,x)

1:Person

accessLevel=add(lv,x)

1:Person

accessLevel=add(lv,x)

continueTask

L K R

NAC2=R

3:started

NAC1

2:Task

accessLevel=lv

3:started

2:Task

accessLevel=lv

3:started:worksOn

2:Task

accessLevel=lv

3:started
:worksOn

2:Task

accesLevel=lv

:Person

1:Person

accessLevel=add(lv,x)

1:Person

accessLevel=add(lv,x)

1:Person

accessLevel=add(lv,x)

1:Person

accessLevel=add(lv,x)

3:started

Fig. 1. Typed attributed graph transformation system GTS

G1

w1:worksOn
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G0 G2 G3 G4

⇒

aL=accessLevel

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

w2:worksOn
4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

Fig. 2. Transformation sequence d of GTS
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Example 2.12 (Typed Attributed Graph Transformation System). The M-

adhesive transformation system for general matches of our case study is the typed at-

tributed graph transformation system GTS in Fig. 1. The type graph ATG specifies

persons and tasks: a task is active if it has a “:started” loop, and it can be assigned

to a person with a “:worksOn” edge. Moreover, the attribute “accessLevel” specifies

the required access level of tasks and the allowed maximal access level of persons. Rule

“startTask” is used to start a task, where the access level of the task can be at most

equal to the access level of the considered person and the NAC-schema ensures that the

task is not started already. Rules “stopTask” and “finishTask” removes the assignment

of a person, where “finishTask” additionally deletes the marker “:started” to specify that

the task has been completed. Finally, rule “continueTask” assigns an already started

task to a person. This rule contains two NAC-schemata which forbid the assignment

of persons to already assigned tasks – either if another person is already assigned to

that task (“NAC1”) or the person itself is already assigned (“NAC2”). Fig. 2 shows

a NAC-consistent transformation sequence d = (G0 =
continueTask,f1
==========⇒ G1 =

stopTask,f2
=======⇒

G2 =
continueTask,f3
==========⇒ G3 =

stopTask,f4
=======⇒ G4) of GTS . The first graph of the transformation

sequence contains exactly one task which is first assigned to node “1:Person”, and then,

after being stopped, to node “2:Person”. The NAC-schemata of rule “continueTask” are

checked at graphs G0 and G2. The constructed pushouts according to Def. 2.10 yield

instantiated NACs n′ : L � N ′ with N ′ containing an edge of type worksOn. Since

G0 and G2 do not contain an edge of this type there is no embedding q from N ′ into

these graphs, such that the NAC-schemata are satisfied by the matches. Therefore, the

transformation sequence is NAC-consistent, because the remaining steps do not involve

NACs. Note that the use of NAC-schemata and general matches is essential for our case

study. If we would useM-matches respectively classical NACs we would have to provide

specific rules and NACs for each possible variable assignment concerning persons with

different actual access levels (see also Rem. 2.9).

While general matches forM-adhesive transformation systems leads to extended con-

cepts for NACs and NAC satisfaction, we now show that we can reduce the analysis of

a concrete given transformation sequence to the case ofM-matches by instantiating the

rules and transformation diagrams along the given matches. Note in particular, that for

transformation steps along M-matches, the instantiated transformation steps coincide

with the given ones.

Definition 2.13 (Instantiated Rules and Transformation Sequences). Let

G =
p,f
=⇒ H be a NAC-consistent transformation step via a rule p = ((L� K � R),NS)

with NAC-schemata NS . Let f = m ◦ e be the extremal E-M factorization of match f .

The instantiated transformation step is given by G =
p′,m
==⇒ H with instantiated rule p′

derived via e and constructed as follows according to Fig. 3 below. Construct pullback

(PB) (5) leading to pushouts (POs) (3) and (5) by PB splitting and M-PO-PB decom-

position lemma (item 2 of Thm. 4.26 in (Ehrig et al.2006)). Construct PO (4) leading

to PO (6) by PO splitting. Instantiate each NAC-schema n : L � N in NS along mor-

phism e (Def. 2.10) leading to a new NAC n′ : L′ � N ′. Let N′ be the new set of NACs
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consisting of all NACs n′ : L′ � N ′ obtained from all n ∈ NS . The instantiated rule is

given by p′ = ((L′ � K ′ � R′),N′) and the instantiated transformation step is defined

by G =
p′,m
==⇒ H with m ∈M via DPO diagram ((5) + (6)).

Let d be a transformation sequence, then the instantiated transformation sequence dI
is derived by instantiating each transformation step as defined above.

N

��

Loo
noo

(7) e ���� f

��

(3)

Koooo // //

ke �� k

��

(4)

R

e∗ ��

f∗

��

N ′ L′oo
n′

oo
��

m
��

(5)

K′oooo // //
��

��
(6)

R′
��

m∗ ��

G Doooo // // H

Fig. 3. Construction of instantiated rules and transformation steps

The instantiation of rules ensures that transformation steps of the instantiated rule

are in one-to-one correspondence to those of the original rule.

Fact 2.14 (Compatibility of Applicability and NAC-consistency with Instanti-

ation). Let G1 =
p,f1
==⇒ H1 be a NAC-consistent transformation step, let G1 =

p′,m1
===⇒ H1 be

the instantiated step with extremal E-M-factorization f1 = m1 ◦e according to Def. 2.13

and letm2 : L′ → G2 be a match withm2 ∈M. Then, there is a NAC-consistent transfor-

mation step G2 =
p′,m2
===⇒ H2 via p′ if and only if there is a NAC-consistent transformation

step G2 =
p,f2
==⇒ H2 via p with f2 = m2 ◦ e.

The proofs of all the Facts stated along the paper, including the previous one, are collected

in App. C.

Example 2.15 (Instantiation of Transformation Sequence). In the case of typed

attributed graphs the instantiated rules are attributed via the algebra A of the trans-

formed objects G0 . . . Gn. As in most cases the algebra A in our case study is different

from the term algebra TOP (X). The instantiation of the transformation sequence d in

Fig. 2 via rules of Fig. 1 is performed according to Def. 2.13. We derive an instantiated

transformation sequence dI . By definition, the lower line of the DPO diagrams coincides

with the one of d in Fig. 2. The instantiated rules for the four steps are depicted in Figs 6

and 7 in Sec. 3.2 (rules “stop1”, “stop2”, “cont1”, and “cont2”) and they are used in the

following sections for the analysis of permutation-equivalence.

2.3. Permutation Equivalence of Transformation Sequences

The classical theory of the DPO approach introduces an equivalence among transforma-

tion sequences which relates those sequences that differ only in the order in which inde-

pendent transformation steps are performed leading to the notion of switch equivalence.

Given a transformation sequence d without NACs, then switch equivalence provides the

full set of all possible linearisations of the transformation steps of d (Baldan et al.2006;

Baldan et al.1999). As we will show in this section, there are transformation sequences
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with NACs, for which some linearisations cannot be obtained via the notion of switch

equivalence with NACs. In our example, we present a transformation sequence d consist-

ing of two subsequences that are independent, but each pair of single consecutive steps in

d is sequentially dependent. This effect is caused by the involved NACs. For this reason,

we introduce the more general notion of permutation equivalence. By definition, permu-

tation equivalence is obtained from the standard switch equivalence without NACs by

restriction to the NAC-consistent transformation sequences only. Using the completeness

result for transformation sequences without NACs mentioned above, this means that

permutation equivalence generates the full set of all NAC-consistent linearisations for

systems with NACs.

The switch equivalence is based on the notion of sequential independence and on the

local Church-Rosser theorem and closed under isomorphism “∼=” of transformation se-

quences. Informally, transformation sequences d and d′ are switch equivalent (d ∼= d′) if

they have the same length and there are isomorphisms between the corresponding objects

of d and d′ compatible with the involved morphisms.

Definition 2.16 (Sequential independence (disregarding NACs)). Let d1 =

K1

��

// // R1

f∗1
��

i
��

L2

f2

��
j
~~

K2

��

oooo

D1
// h1

// G1 D2
oog2oo

G0 =
p1,f1
===⇒ G1 and d2 = G1 =

p2,f2
===⇒ G2 be two transfor-

mation steps disregarding NACs. Then they are sequen-

tially independent if there exist arrows i : R1 → D2 and

j : L2 → D1 such that g2 ◦ i = f∗1 and h1 ◦ j = f2 (see the

diagram on the right, which shows a part of the transfor-

mation diagrams).

If d1 and d2 are sequentially independent, then according to the local Church-Rosser

theorem (Thm. 5.12 in (Ehrig et al.2006)) they can be “switched” obtaining transforma-

tion steps d′2 = G0 =
p2,f2
===⇒ G′1 and d′1 = G′1 =

p1,f1
===⇒ G2, which apply the two rules in the

opposite order.

Definition 2.17 (Switch Equivalence for Transformation Sequences). Let d =

(d1; . . . ; dk; dk+1; . . . ; dn) be a transformation sequence, where dk and dk+1 are two se-

quentially independent transformation steps, and let d′ be obtained from d by switching

them according to the Local Church-Rosser Theorem. Then, d′ is a switching of d, written

d
sw∼ d′. The switch equivalence, denoted

sw
≈ , is the smallest equivalence on transforma-

tion sequences containing both
sw∼ and the relation ∼= for isomorphic transformation

sequences.

Corresponding notions of parallel and sequential independence have been proposed for

graph transformation systems with NACs (Habel et al.1996; Lambers2009). However, the

derived notion of switch equivalence does not identify all intuitively equivalent transfor-

mation sequences with NACs. The reason is that, in presence of NACs, there might be

an equivalent permutation of the transformation steps that cannot be derived by switch

equivalence, which is indeed the case for our case study (see Ex. 2.19). This brings us

to the following notion of permutation equivalence of NAC-consistent transformation

sequences, first proposed in (Hermann2009). Note that for permutation-equivalent trans-
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formation sequences d
π
≈ d′ the sequence of rules used in d′ is a permutation of those

used in d.

Definition 2.18 (Permutation Equivalence of Transformation Sequences). Two

NAC-consistent transformation sequences d and d′ are permutation-equivalent, written

d
π
≈ d′ if, disregarding the NACs, they are switch-equivalent as for Def. 2.17. The equiv-

alence class of all permutation equivalent transformation sequences π-Equ(d) of d is given

by π-Equ(d) = {d′ | d′
π
≈ d}.

w2:worksOn

⇒ ⇒ ⇒

G0

⇒

aL=accessLevel

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

w1:worksOn
4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

4:started

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

G1’ G2’ G3’ G4

Fig. 4. Permutation-equivalent transformation sequence d′ of GTS

Example 2.19 (Permutation Equivalence). Fig. 4 shows a NAC-consistent trans-

formation sequence d′ = (G0 =
continueTask,f ′1==========⇒ G′1 =

stopTask,f ′2=======⇒ G′2 =
continueTask,f ′3==========⇒

G′3 =
stopTask,f ′4=======⇒ G4), which is permutation-equivalent to the transformation sequence

d of Fig. 2, by performing the following switchings of steps disregarding NACs (we de-

note by (d′i; d
′
j) the result of switching (dj ; di)): (d2; d3), (d1; d′3), (d′2; d4), (d′1; d′4). The

equivalent transformation sequences are not switch-equivalent with NACs, because there

is no pair of independent consecutive transformation steps in any of the transformation

sequences.

Remark 2.20 (Complexity of the Analysis). The brute-force method for generat-

ing all permutation-equivalent sequences would be to construct first all switch-equivalent

ones disregarding NACs and then filtering out the NAC-consistent ones. But as discussed

in (Hermann et al.2010), this is far too inefficient for realistic examples: given the trans-

formation sequence d of Fig. 2, the sequence d3 = (d; d; d) consisting of twelve steps would

lead to 7.484.400 switch-equivalent sequences disregarding NACs out of which only 720

are NAC-consistent and therefore permutation-equivalent. For this reason, we provide in

Sec. 4 a more efficient approach by generating directly the permutation-equivalent ones.

As shown in (Hermann2009) and (Hermann et al.2010), the construction of the derived

Petri net has polynomial time complexity.

Given a transformation sequence d via general matches, we now show in Thm. 1 that

we can reduce the analysis of permutation equivalence to M-matches. For this purpose

we first show by the following fact that there is a one-to-one correspondence between

sequential independence disregarding NACs for the instantiated steps and for the corre-

sponding original steps.
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Fact 2.21 (Sequential Independence disregarding NACs for Instantiated

Steps). Let (d1; d2) = (G0 =
p1,f1
===⇒ G1 =

p2,f2
===⇒ G2) be two transformation steps disre-

garding NACs and let (d1,I ; d2,I) = (G0 =
p′1,m1
===⇒ G1 =

p′2,m2
===⇒ G2) be their instantiated

steps according to Def. 2.13. Then, d1 and d2 are sequentially independent disregarding

NACs iff d1,I and d2,I are sequentially independent disregarding NACs.

Theorem 1 (Reduction of Permutation Equivalence for General Matches

to M-matches). Two transformation sequences d and d′ with general matches are

permutation-equivalent if and only if their instantiated transformation sequences dI and

d′I with M-matches are permutation-equivalent, i.e. d
π
≈ d′ ⇔ dI

π
≈ d′I .

Proof. First of all, we have by Fact 2.21 and Def. 2.17 that switch equivalence disregard-

ing NACs is implied for both directions. By Fact 2.14 we have that the transformation

steps and hence, also the transformation sequences, are additionally NAC consistent.

Therefore, d
π
≈ d′ ⇔ dI

π
≈ d′I .

d = (. . . di . . . ) oo
analysis

//
OO

Def. 2.13
��

d′ = (. . . d′k . . . )
OO

Def. 2.13
��

dI = (. . . di,I . . . ) oo
analysis

//��

Thm. 1

OO

d′I = (. . . d′k,I . . . )

d'k,I

d'kLi Ki Ri

L'i K'i R'i

G'k-1 D'k G'k

(3k) (4k)

(1) (2)

... ...

di,I

di Li Ki Ri

L'i K'i R'i

Gi-1 Di Gi

(3i) (4i)

(1) (2)

... ...

Fig. 5. Correspondence between transformation sequences and their instantiations

Remark 2.22 (Permutation Equivalence for General Matches). By the above

theorem we can base our analysis techniques in the following sections on the derived

transformation sequences withM-morphisms only as visualized in Fig. 5. Given a trans-

formation sequence d, we first instantiate d according to Def. 2.13, such that the lower

transformation diagrams form a new transformation sequence dI with M-matches only.

Thereafter, we can analyse permutation equivalence for dI and derive the analysis re-

sults for d via Thm. 1. In particular, the derived permutation-equivalent transformation

sequences d′I of dI can be composed with the upper DPO diagrams of the instantiation

leading to permutation-equivalent transformation sequences d′ of d.

General Assumption: As a consequence of the above remark, in the following sections

we will consider transformation sequences with M-matches only. In fact, for analysing

transformation sequences with general matches it is sufficient to analyse their instantiated

sequences, lifting back the results to the original sequences using Thm. 1.
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3. From Subobject Transformation Systems to Processes of M-adhesive

Transformation Systems

In the theory of Petri nets (Reisig1985), from a given firing sequence one can build a

deterministic process, which is a net which records all the transitions fired in the sequence,

together with their causal dependencies. Similar constructions have been proposed for

graph transformation (Corradini et al.1996) and for transformation systems based on

adhesive categories (Baldan et al.2006; Corradini et al.2008). In particular, in (Corradini

et al.2008) it is shown that starting with a transformation sequence (without NACs) in an

adhesive transformation system one can build a Subobject Transformation System (STS),

i.e. a system where the sequence can be simulated and where it is possible to analyse the

independence among steps of the sequence. In this section we generalize these results to

transformation systems with NACs, and we will consider the more general framework of

M-adhesive categories.

3.1. M-Subobject Transformation Systems

Subobject transformation systems are essentially double-pushout transformation systems

over the lattice of subobjects Sub(T ) of a given object T of an adhesive category C. We

revisit here the main definitions of (Corradini et al.2008) in the case of M-adhesive

categories, starting with the notion of M-subobject. In the following we assume that C

is an arbitrary but fixedM-adhesive category, unless specified differently, and by |C| we

denote the class of objects of C.

Definition 3.1 (Category ofM-Subobjects). Let T be an object of anM-adhesive

category C. Given two M-morphisms a : A� T and a′ : A′ � T , they are equivalent if

there exists an isomorphism φ : A→ A′ such that a = a′◦φ. AnM-subobject [a : A� T ]

of T is an equivalence class ofM-morphisms with target T . The category ofM-subobjects

of T , denoted SubM(T ), has the M-subobjects of T as objects. Furthermore, there is

an arrow from [a : A � T ] to [b : B � T ] if there exists a morphism f : A → B such

that a = b ◦ f ; in this case f is an M-morphism and it is unique (therefore SubM(T ) is

a partial order), and we write [a : A� T ] ⊆ [b : B � T ].

Usually we will denote an M-subobject [a : A � T ] simply by A, leaving the M-

morphism a implicit, and correspondingly we write A ⊆ B if [a : A� T ] ⊆ [b : B � T ]

and denote the corresponding embedding by f : A ↪→ B.

IfM is the class of all monomorphism of C, as for adhesive categories, then SubM(T )

for T ∈ |C| is the standard category of subobjects of T . The following notions of “inter-

section” and “union” will be used in the definition of direct derivations of an STS.

Definition 3.2 (Intersection and Union in SubM(T )). Let A,B ∈ |SubM(T )| be

two M-subobjects, with T ∈ |C|. The product of A and B in SubM(T ) will be called

their intersection, denoted A∩B. The coproduct of A and B in SubM(T ) will be called

union, denoted A ∪B.
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In the case of adhesive categories, as shown in (Lack and Sobocinski2005), intersec-

tions and unions exist, unions are effective, and Sub(T ) is a distributive lattice for any

T ∈ C. We show that also for M-adhesive categories SubM(T ) is a distributive lattice

if unions are effective. Since unions are not effective in general, we require this property

by our general assumption in Sec. 2.1.

Fact 3.3 (Intersection in SubM(T )). Let T ∈ |C| and

A,B ∈ SubM(T ). The intersection A ∩ B exists and it

is given by the pullback (1) in C with the M-morphism

i : A ∩B −a ◦ pA−−−−→ T .

A ∩B �
� pA //

� _
pB �� (1)

A� _
a��

B �
�

b
// T

Remark 3.4 (Unions in SubM(T ) for (AGraphsATG ,M)). According to Rem. 2.7

in Sec. 2.1 the category of typed attributed graphs (AGraphsATG ,M) has effective

unions, i.e. the union A ∪ B of two M-subobjects A and B can be constructed as the

pushout over the intersection A ∩B in C.

In contrast to (AGraphsATG ,M), the category of simple graphs provides an example

of anM-adhesive category which has unions, but where unions are not effective. A simple

graph is a pair (A,N) where N is a set of nodes and A ⊆ N × N is a set of arcs. A

morphism f : (N,A) → (N ′, A′) is a function f : N → N ′ such that (n1, n2) ∈ A ⇒
(f(n1), f(n2)) ∈ A′. Such a morphism is regular if it is injective and also the opposite

implication holds.

The category of simple graphs with the classM of all regular monomorphism is shown

to be a partial-map adhesive category in (Heindel2010), and therefore it is M-adhesive

by the results in (Ehrig et al.2010). But it is well-known that unions are not effective in

this category: given the graph G = ({n, n′}, {(n, n′)}), the pushout built over the regular

subobjects ({n}, ∅) and ({n′}, ∅) is ({n, n′}, ∅), which is not a regular subobject of G.

Fact 3.5 (Distributivity). Let C be an M-adhesive category with effective unions

and T be an object of C, then the union and intersection constructions in SubM(T ) are

distributive, i.e. (i) : A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and

(ii) : A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Based on the notion of M-subobjects and the distributivity law for intersection and

union we now present subobject transformation systems (STSs) as a formal framework for

the concurrent semantics ofM-adhesive transformation systems. This concept generalises

the notion of elementary nets, which form the category of process nets for P/T Petri

nets, in the way that STSs form the category of process transformation systems for M-

adhesive transformation systems. The typical effect occurring in elementary nets – namely

the situation of contact – also appears in the setting of STSs and forms an additional

application condition for the transformation rules. Thus, we first introduce the general

setting of STSs on which we base the construction of the process of a transformation

sequence thereafter.

Definition 3.6 (STS with NACs). A Subobject Transformation System with NACs

S = (T, P, π) over an M-adhesive category C with effective unions consists of a super

object T ∈ C, a set of rule names P – also called productions – and a function π,
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which maps each rule name q ∈ P to a rule with negative application conditions (NACs)

((L,K,R),N), where L,K, and R are objects in SubM(T ), K ⊆ L, K ⊆ R and its

NACs N are given by N = (N, ν) consisting of a set N of names for the NACs together

with a function ν mapping each NAC name i ∈ N to a NAC ν(i), which is given by a

subobject ν(i) = Ni ∈ SubM(T ) with L ⊆ Ni ⊆ T . The short notation N[i] refers to a

NAC Ni of rule p with ν(i) = Ni.

Direct derivations (G =
q⇒ G′) with NACs in an STS correspond to transformation steps

with NACs in M-adhesive TS, but the construction is simplified, because morphisms

between two subobjects are unique. There is no need for pattern matching and for this

reason, we use the notion of derivations within an STS in contrast to transformation

sequences in anM-adhesive TS and we use names {p1, . . . , pn} for rules in anM-adhesive

TS and {q1, . . . , qn} for rules in an STS.

Definition 3.7 (Direct Derivations in an STS). Let S = (T, P, π) be a Subobject

Transformation System with NACs, π(q) = ((L,K,R),N) be a production with NACs,

and let G ∈ |SubM(T )|. Then there is a direct derivation disregarding NACs from G to

G′ using q if G′ ∈ |SubM(T )| and there is an object D ∈ SubM(T ) such that:

(i) L ∪D = G; (ii) L ∩D = K;

(iii) D ∪R = G′, and (iv) D ∩R = K.

We say that there is a direct derivation with NACs from G to G′ using q, if in addition

to all the conditions above it also holds that N[i] * G for each N[i] in N. In both cases

we write G =
q⇒ G′.

It is instructive to consider the relationship between a direct derivation in an STS and

the usual notion of a dpo transformation step in an M-adhesive category. It is possible

to make this comparison, since one can consider a rule Lq ⊇ Kq ⊆ Rq as the underlying

span of M-morphisms in C. However, given an M-subobject G ∈ SubM(T ) such that

L ⊆ G, an additional condition has to be satisfied in order to guarantee that the result

of a double-pushout transformation in C using rule Lq ⊇ Kq ⊆ Rq and match L ⊆ G is

again an object in SubM(T ).

In fact, suppose that G∩R 6⊆ L. Intuitively, this means that part of theM-subobject

G is created but not deleted by the rule: if we were allowed to apply the rule at this

match via a dpo transformation step, the resulting object would contain the common

part twice and consequently the resulting morphism to T would not be anM-morphism;

i.e., the result would not be an M-subobject of T .

By analogy with a similar concept for elementary Petri nets, we shall say that there

is a contact situation for a rule (L,K,R) at an M-subobject G ⊇ L ∈ SubM(T ) if

G∩R 6⊆ L: as stated by the next result STS direct derivations and DPO transformation

steps coincide if there is no contact.
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Proposition 3.8 (STS Derivations are Contact-Free Double Pushouts). Let S =

L
��

m �� (1)

Koo
loo // r //
��

k�� (2)

R
��
n��

G Doo
f
oo //

g
// G′

(T, P, π) be an STS over an M-adhesive category C with effec-

tive unions, π(q) = (L,K,R) be a rule, and G ∈ |SubM(T )|.
Then G =

q⇒ G′ iff L ⊆ G, G ∩ R ⊆ L, and there is an object D

in C such that diagrams (1) and (2) are pushouts in C.

Proof. See the proof of Prop. 6 in (Corradini et al.2008).

As a consequence, every derivation d = (G0 =
q1
=⇒ . . . =

qn
=⇒ Gn) in an STS S over an

M-adhesive category C determines a diagram in category C, consisting of a sequence

of (conflict-free) double pushouts. We shall denote trafoS(s) this diagram in C, where

s = 〈q1, . . . , qn〉.

3.2. Processes of M-adhesive Transformation Systems

Based on the notion and construction of processes for adhesive transformation systems

without NACs in (Baldan et al.2006) and (Corradini et al.2008), this section presents the

construction of processes for a transformation sequence of anM-adhesive transformation

systems with NACs. The first step is to construct the STS for a given transformation

sequence d with matches inM due to the general assumption in Sec. 2.3 based on Thm. 1.

Definition 3.9 (STS of a Transformation Sequence with M-matches). Let d =

(G0 =
p1,m1
===⇒ . . . =

pn,mn
====⇒ Gn) be a NAC-consistent transformation sequence in an M-

adhesive TS with matches inM. The STS with NACs generated by d is given by STS (d) =

(T, P, π) and its components are constructed as follows. T is an arbitrarily chosen but

fixed colimit of the sequence of DPO-diagrams given by d; P = {i | 0 < i ≤ n} is a set of

natural numbers that contains a canonical rule occurrence name for each rule occurrence

in d. For each k ∈ P , π(k) is defined as π(k) = ((Lk,Kk, Rk),Nk), where each component

X of production pk (X ∈ {Lk,Kk, Rk}) is regarded as a subobject of T via the natural

embedding inT (X). Furthermore, for each k ∈ {1, . . . , n} the NACs Nk = (Nk, ν) are

constructed as follows. Let JNk
be the set of subobjects of T which are possible images

of NACs of production (pk,Nk), with respect to the match inT : Lk � T ; namely,

JNk
= {[j : N � T ] ∈ SubM(T ) | ∃ (n : Lk � N) ∈ Nk ∧ j ◦ n = inT (Lk)}

Then the NAC names Nk are given by Nk = {i | 0 < i ≤ |JNk
|} and the function

ν is an arbitrary but fixed bijective function ν : Nk → JNk
mapping NAC names to

corresponding subobjects.

When analysing permutation equivalence in concrete case studies we consider only

transformation sequences such that the colimit object T is finite, i.e. has finitely many

M-subobjects, in order to ensure termination. Finiteness is guaranteed if each rule of TS

has finite left- and right-hand sides, and if the start object of the transformation sequence

is finite. For typed attributed graphs, this means that T is finite on the structural part,

but the carrier sets of the data algebra for the attribution component may by infinite

(M-morphisms in AGraphsATG are isomorphisms on the data part).
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Remark 3.10. Note that during the construction of STS (d) the set of instantiated

NACs for a NAC of a rule p applied in d may be empty, which means that the NAC n

cannot be found within T . This would be the case for rule continueTask , if we replace

the variably lv within the NACs by the constant 4, i.e. the NAC pattern would never

be present in the transformation sequence. Furthermore, if we require T to be finite, the

sets of NACs in STS (d) are finite.

R

w2:worksOn

2:Person

3:Task

K

2:Person

3:Task

L

2:Person

4=stop2

R

w1:worksOn

1:Person

3:Task

K

1:Person

3:Task

L

1:Person

2=stop1

T

Super Object

w1:worksOn

4:started

w2:worksOn

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

3:Task 3:Task

Fig. 6. Super object T and two rules of process Prc(d)

1=cont1

L K R

NAC2=R

4:started

NAC1

3:startedw2:worksOn

3:Task

aL=3

1:Person

aL=52:Person

aL=4

1:Person

aL=5

3:Task

aL=3

4:startedw1:worksOn

1:Person

aL=5

3:Task

aL=3

4:started

1:Person

aL=5

3:Task

aL=3

3=cont2

L K R

NAC2=R

4:started

NAC1

3:startedw1:worksOn

3:Task

aL=3

1:Person

aL=5

2:Person

aL=4

3:Task

aL=3

4:startedw2:worksOn

3:Task

aL=3

4:started

3:Task

aL=3

2:Person

aL=4
2:Person

aL=4

2:Person

aL=4

Fig. 7. Further rules of STS STS (d)

Example 3.11 (Derived STS STS (d)). For the transformation sequence in Fig. 2 the

construction of the STS leads to the STS as shown in Figs. 6 and 7. The transformation

sequence d involves the rules “continueTask” and “stopTask” and thus, the derived STS

contains the rule occurrences “cont1”, “cont2”, “stop1” and “stop2”.
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Table 1. Relations on rules in an STS

Name Notation Condition

Read Causality q1 <rc q2 R1 ∩K2 * K1

Write Causality q1 <wc q2 R1 ∩ L2 * K1 ∪K2

Deactivation q1 <d q2 K1 ∩ L2 * K2

Independence q1 ♦ q2 (L1 ∪R1) ∩ (L2 ∪R2) ⊆ K1 ∩K2

Weak NAC Enabling q1<wen[i] q2 0 < i ≤ |N2| ∧ L1 ∩N2[i] * K1 ∪ L2

Weak NAC Disabling q1<wdn[i] q2 0 < i ≤ |N1| ∧ N1[i] ∩R2 * L1 ∪K2

The process of a transformation sequence d consists of the STS derived from d ac-

cording to Def. 3.9 together with an embedding v relating the STS with the TS of the

given transformation sequence. A process of d induces the complete equivalence class of

transformation sequences with respect to permutation equivalence, which we show by

Thm. 2 below.

Definition 3.12 (Process of a Transformation Sequence with NACs). Let d =

(G0 =
q1,m1
===⇒ . . . =

qn,mn
====⇒ Gn) be a NAC-consistent transformation sequence in an M-

adhesive transformation system TS = (PTS , πTS ). The process Prc(d) = (STS (d), µ)

of d consists of the derived STS STS (d) = (T, P, π) of d together with the mapping

µ : STS (d)→ TS given by µ : P → PTS , µ(i) = qi for each step i of d.

Note that the mapping µ induces a function µπ : π(P ) → πTS (PTS ) mapping each

rule in STS (d) to the corresponding rule in TS , where µπ(π(q)) = πTS (µ(q)). Given the

process Prc(d) = ((T, P, π), µ) of a derivation d, often we will denote by seq(d) ∈ P ∗

the sequence of production names of Prc(d) that corresponds to the order in which

productions are applied in d; from the canonical choice of production names in P (see

Def. 3.9) if follows that seq(d) = (1, 2, . . . , n), where n is the length of d.

The notion of processes for transformation sequences corresponds to the notion of

processes for Petri nets given by an occurrence net together with a Petri net morphism

into the system Petri net. Moreover, as shown in (Corradini et al.2008) the process

construction yields a pure STS meaning that no rule deletes and produces again the

same part of a subobject, i.e. L∩R = K. This terminology is borrowed from the theory

of Elementary Net Systems, where a system which does not contain transitions with a

self-loop is called “pure”. Therefore, the class of pure STSs can be seen as a generalisation

of elementary nets to the setting of M-adhesive transformation systems and thus, as a

generalisation of the Petri net class of occurrence nets.

The following relations between the rules of an STS with NACs specify the possible

dependencies among them: the first four relations are discussed in (Corradini et al.2008),

while the last two are introduced in (Hermann2009).

Definition 3.13 (Relations on Rules). Let q1 and q2 be two rules in an STS S =

(T, P, π) with π(qi) = ((Li,Ki, Ri),Ni) for i ∈ {1, 2}. The relations on rules are defined

on P as shown in Tab. 1.
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In words, q1 <rc q2 (read: “q1 causes q2 by read causality”) if q1 produces an element,

which is used but not consumed by q2. Analogously, q1 <wc q2 (read: “q1 causes q2 by

write causality”) if q1 produces an element, which is consumed by q2 and q1 <d q2 (read:

“q1 is deactivated by q2”) precisely when q1 preserves an element, which is consumed

by q2, meaning that q1 is not applicable afterwards. Furthermore q1 ♦ q2 if they overalp

only on items that are preserved by both. Finally, q1<wen[i]q2 (read: “q1 weakly enables

q2 at i”) if q1 deletes a piece of the NAC N[i] of q2; instead q1 <wdn[i] q2 (“q2 weakly

disables q1 at i”) if q2 produces a piece of the NAC N[i] of q1. It is worth stressing that

the relations introduced above are not transitive in general.

Example 3.14 (Relations of an STS). The rules of STS (d) in Ex. 3.11 are related by

the following dependencies. For write causality we have “cont1 <wc stop1” and “cont2

<wc stop2”. The further dependencies are shown below:

Weak Enabling Weak Disabling

stop1<wen[1] cont1 stop2<wen[2] cont1 cont1<wdn[1] cont1 cont2<wdn[2] cont2

stop1<wen[1] cont2 stop2<wen[2] cont2 cont2<wdn[1] cont1 cont1<wdn[2] cont2

Definition 3.15 (STS-Switch Equivalence of Sequences disregarding NACs).

Let S = (T, P, π) be an STS , let d be a derivation in S disregarding NACs and let

s = 〈q1, . . . , qn〉 be its corresponding sequence of rule occurrence names. If qk ♦ qk+1,

then the sequence s′ = 〈q1, . . . , qk+1, qk, . . . , qn〉 is STS-switch-equivalent to the sequence

s, written s
sw∼S s′. Switch equivalence

sw
≈S of rule sequences is the transitive closure

of
sw∼S .

In order to characterise the set of possible permutations of transformation steps of

a given transformation sequence, we now define suitable conditions for permutations of

rule occurrences. We call rule sequences s of a derived STS STS (d) legal sequences, if

they are switch-equivalent without NACs to the sequence of rules seq(d) of d and if the

following condition concerning NACs holds. For every NAC N[i] of a rule qk, either there

is a rule which deletes part of N[i] and is applied before qk, or there is a rule which

produces part of N[i] and is applied after qk−1. In both cases N[i] cannot be present

when applying qk, because the STS STS (d) is a sort of “unfolding” of the transformation

sequence, and every subobject is created at most once and deleted at most once (see

(Corradini et al.2008)). Note that the first condition already ensures that each rule name

in P occurs exactly once in a legal sequence s.

Definition 3.16 (Legal Sequence). Let d = (d1; . . . ; dn) be a NAC-consistent transfor-

mation sequence in an M-adhesive TS, and let STS (d) = (T, P, πN ) be its derived STS.

A sequence s = 〈q1; . . . ; qn〉 of rule names of P is locally legal at position k ∈ {1, . . . , n}
with respect to d, if the following conditions hold:

1 s
sw
≈STS(d) seq(d)

2 ∀ NAC Nk[i] of qk :

(
∃ e ∈ {1, . . . , k − 1} : qe<wen[i]qk or

∃ l ∈ {k, . . . , n} : qk<wdn[i]ql.

)
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A sequence s of rule names is legal with respect to d, if it is locally legal at all positions

k ∈ {1, ..., n} with respect to d.

Definition 3.17 (STS-Equivalence of Rule Sequences). Let d be a NAC-consistent

transformation sequence of an M-adhesive TS and let Prc(d) = (STS (d), µ) be its de-

rived process. Two sequences s, s′ of rule names in STS (d) are STS-equivalent, written

s ≈STS(d) s′, if they are legal sequences with respect to d. The set of all STS-equivalent

sequences of Prc(d) is given by Seq(d) = {s | s ≈STS(d) seq(d)}. Moreover, the specified

class of transformation sequences of Seq(d) is given by Trafo(s) = [trafoSTS(d)(s)]∼= for

single sequences and Trafo(Seq(d)) =
⋃
s∈Seq(d) Trafo(s) for the complete set.

Theorem 2 (Characterization of Permutation Equivalence Based on STSs).

Given the process Prc(d) of a NAC-consistent transformation sequence d.

1 The class of permutation-equivalent transformation sequences of d coincides with the

set of derived transformation sequences of the process Prc(d) of d:

π-Equ(d) = Trafo(Seq(d))

2 The mapping Trafo defines a bijective correspondence between STS-equivalent se-

quences of rule names and permutation-equivalent transformation sequences:

Trafo : Seq(d) −∼−→ (π-Equ(d))/∼=

Proof. Let d be a NAC-consistent transformation sequence in an M-adhesive TS and

let Prc(d) = (S, µ) be the process of d with S = (T, P, π). We have to show that each

STS-equivalent rule sequence s′ of seq(d) in S defines a permutation-equivalent trans-

formation sequence trafoSTS(d)(s
′) of d and vice versa, for each permutation-equivalent

transformation sequence d′ of d there is an STS-equivalent rule sequence s′ of seq(d) in

S such that d′ ∼= trafoSTS(d)(s
′).

∀ s′ ∈ P ∗ : s′ ≈STS(d) seq(d) ⇒ trafoSTS(d)(s
′)

π
≈ d (1)

∀ d′ : d′
π
≈ d ⇒ ∃ s′. s′ ≈STS(d) seq(d) ∧ trafoSTS(d)(s

′) ∼= d′ (2)

The proof of Thm. 1 in (Hermann2009) shows the results (1) and (2) for the case

of adhesive transformation systems with NACs and monomorphic matches using the

operations intersection and union on subobjects and distributivity. The operations are

available forM-adhesive transformation systems with effective unions, which we require

by our general assumption in Sec. 2.1, intersection is given by Fact 3.3 and distributivity

is shown by Fact. 3.5. Thus, (1) and (2) hold for M-adhesive transformation systems

with M-matches.

Finally, by Def. 3.17 we have that d′ ∈ Trafo(Prc(d)) is equivalent to d′ ∼=
trafoSTS(d)(s

′) and s′ ≈STS(d) seq(d). Using (1) and (2) above together with Def. 2.18

we derive π-Equ(d) = Trafo(Prc(d)).

According to Thm. 2, the construction of the process Prc(d) of a transformation

sequence d specifies the equivalence class of all transformation sequences which are

permutation-equivalent to d. In the next section, we present an efficient analysis technique

for processes based on Petri nets.
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4. Analysis of Permutation Equivalence Based on Petri Nets

Based on the process of a transformation sequence given by an STS, we now present

the construction of its dependency net, given by a P/T Petri net which specifies only

the dependencies between the transformation steps. All details about the internal struc-

ture of the objects and the transformation rules are excluded, allowing us to increase

the efficiency of the analysis of permutation equivalence (see Rem. 2.20). The names of

the generated places of the dependency net are composed of constant symbols and num-

bers, where constant symbols s are denoted by s. In this section we use the monoidal

notation of P/T Petri nets according to (Meseguer and Montanari1990) and ISO/IEC

15909-1:2004 (ISO/IEC2004), which is equivalent to the classical notation of P/T Petri

nets (Reisig1985). For a brief review of both notations see App. B.

Definition 4.1 (Dependency Net DNet of a Transformation Sequence). Let d be

a NAC-consistent transformation sequence of anM-adhesive TS, let STS (d) = (T, P, π)

be the generated STS of d and let s = seq(d) = 〈q1, . . . , qn〉 be the sequence of rule names

in STS (d) according to the steps in d. The dependency net of d is given by the following

marked Petri net DNet(d) = (Net ,M), Net = (PL,TR, pre, post):

— TR = P = {i | 1 ≤ i ≤ |P |}
— PL = {p(q) | q ∈ TR} ∪ {p(q′<xq) | q, q′ ∈ TR, x ∈ {rc, wc, d}, q′ <x q}

∪ {p(q,N[i]) | q ∈ TR, π(q) = ((Lq,Kq, Rq),N), 0 < i ≤ |N|, q ≮wdn[i] q}

— pre(q) = p(q) ⊕
∑
q′<xq

x∈{rc,wc,d}

p(q′<xq) ⊕
∑

q′<wdn[i] q

q′ 6=q

p(q′,N[i]) ⊕
∑

p(q,N[i])∈PL

p(q,N[i])

— post(q) =

∑
q<xq

′

x∈{rc,wc,d}

p(q<xq
′) ⊕

∑
q<wen[i] q′

p(q′,N[i]) ⊕
∑

p(q,N[i])∈PL

p(q,N[i])

— M =

∑
q∈TR

p(q) ⊕
∑

q′<wdn[i] q

p(q′,N[i])∈PL

p(q′,N[i])

Figure 8 shows how the dependency net is constructed algorithmically. The construc-

tion steps are performed in the order they appear in the table. Each step is visualized

as a rule, where gray line colour and plus-signs mark the elements to be inserted. The

matched context that is preserved by a rule is marked by black line colour, e.g. in step 2

the new place “p(q <x q
′)” is inserted between the already existing transitions q and q′.

The tokens of the initial marking of the net are represented by bullets that are connected

to their places via arcs. In the first step, each rule q of the STS is encoded as a transition

and it is connected to a marked place, which prevents the transition to fire more than

once. In step 2, between each pair of transitions in each of the relations <rc, <wc and

<d, a new place is created in order to enforce the corresponding dependency. The rest

of the construction is concerned with places which correspond to NACs and can contain
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STS(d) = (T,P,¼) DNet(d) = ((PL,TR,pre,post),M)

1. For each q ∊ P

2. For all q,q' ∊ P, q <x q', x ∈ {rc,wc,d }

3. For all q∊P with NACs N and

for all 0< i≤ |N| with q≮wdn[i] q

a) For N[i] of q

b) For all q' ∊ P: q' <wen[i] q

c) For all q' ∊ P: q <wdn[i] q'

p(q<xq' ) q'
+ ++

q

p(q,N[i]) q
++

p(q,N[i])q'
+

q'
+ +

p(q,N[i])

p(q) q
+ +

+
+

+

+

Fig. 8. Visualization of the construction of the Petri net

several tokens in general. Each token in such a place represents the absence of a piece of

the NAC; therefore if the place is empty, the NAC is complete.

In this case, by step (3a) the transition cannot fire. Consistently with this intuition,

if q′<wen[i]q, i.e. transition q′ consumes part of the NAC N[i] of q, then by step (3b) q′

produces a token in the place corresponding to N[i]. Symmetrically, if q<wdn[i]q
′, i.e. q′

produces part of NAC N[i] of q, then by step (3c) q′ consumes a token from the place

corresponding to N[i]. Notice that each item of a NAC is either already in the start

graph of the transformation sequence or produced by a single rule. If a rule generates

part of one of its NACs, say N[i] (q<wdn[i]q), then by the acyclicity of Prc(d) the NAC

N[i] cannot be completed before the firing of q: therefore we ignore it in the third step

of the construction of the dependency net. Examples of such weakly self-disabling rules

are rules (1 = cont1 ) and (3 = cont2 ) in Fig. 7, where the specific NACs coincide with

the right hand sides of the rules (NAC2 = R).

Note that the constructed net in general is not a safe one, because the places for the

NACs can contain several tokens. Nevertheless it is a bounded P/T net. The bound is

the maximum of one and the maximal number of adjacent edges at a NAC place minus

two.

1 3

2 4

p(1<wc 2)

p(2)

p(1,N[2])

p(1) p(3)

p(3<wc 4)
p(3,N[1])

p(4)

(cont1)

(stop1)

(cont2)

(stop2)

Fig. 9. Dependency Net DNet(d) as Petri Net
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Example 4.2 (Dependency Net). Consider the transformation sequence d in Fig. 2

from Ex. 2.12 and its derived STS in Ex. 3.11. The marked Petri net in Fig. 9 is the

dependency net DNet(d) according to Def. 4.1. The places encoding the write causality

relation are “p(1 <wc 2)” and “p(3 <wc 4)”. For the NAC-dependencies we have the

places p(1,N[2]) for the second instantiated NAC in the first transformation step of d

and p(3,N[1]) for the third transformation step and its first instantiated NAC. The other

two instantiated NACs are not considered, because the corresponding rules are weakly

self-disabling (q<wdn[i] q). At the beginning, transitions 1 and 2 (cont1 and cont2) are

enabled. The firing sequences according to the transformation sequences d and d′ in

Figs. 2 and 4 can be executed and they are the only complete firing sequences of this

net. Thus, the net specifies exactly the transformation sequences which are permutation-

equivalent to d.

We now show that we can exploit the constructed Petri net DNet(d) to characterize

STS-equivalence of sequences of rule occurrences by Thm. 3. Note that according to

Def. 4.1 each sequence s of rule names in the STS of Prc(d) can be interpreted as a

sequence of transitions in the derived marked Petri net DNet(d), and vice versa. This

correspondence allows us to transfer the results of the analysis of the dependency net

back to the STS. Notice that the construction of the dependency net (Def. 4.1) ensures

that each transition can fire at most once by construction.

Definition 4.3 (Transition Complete Firing Sequences). A firing sequence of a

Petri net is called transition complete, if each transition of the net occurs exactly once.

The set of transition complete firing sequences of a dependency net DNet(d) is denoted

by FSeq(DNet(d)).

Theorem 3 (Characterization of STS-Equivalence Based on Petri nets). Given

the process Prc(d) and the dependency net DNet(d) of a NAC-consistent transforma-

tion sequence d of an M-adhesive transformation system with M-matches, the class of

STS-equivalent sequences of seq(d) coincides with the set of transition complete firing

sequences in the dependency net DNet(d), i.e. Seq(d) = FSeq(DNet(d)).

Remark 4.4 (Bijective Correspondence). Analogous to Thm. 2, there is also a

bijective correspondence between STS sequences and transition complete firing sequences,

which is in this case directly given by the identity function id : Seq(d) −∼−→ FSeq(DNet(d)).

In order to prove Thm. 3 we first proof Fact 4.5, which shows that STS-switch equiv-

alence disregarding NACs of rule sequences respects the partial order of the relations

“<rc, <wc” and “<d”, and vice versa. This is important to show that the causal de-

pendencies are correctly reflected within the dependency net, where firing sequences

correspond to linearisations.

Fact 4.5 (Linearisation). Let d be a NAC-consistent transformation sequence of an

M-adhesive TS, let S = STS (d) be the generated STS of d, and let s = 〈s1, . . . , sn〉 be

a permutation of seq(d). Then

s
sw
≈S seq(d) if and only if ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : si <x sj ⇒ i < j.
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Proof of Thm. 3 Let Prc(d) = (STS (d), µ) and S = STS (d), we have to show that

s ≈STS(d) seq(d) iff s is a transition complete firing sequence of DNet(d). Let seq(d) =

〈q1, . . . , qn〉 and s = 〈s1, . . . , sn〉.
Direction “⇒”: By Def. 3.17 s is a legal sequence with respect to d in STS (d). We

show that s is a transition complete firing sequence of DNet(d). Since s is a permutation

of seq(d) in STS (d) we know (∗) : each transition occurs exactly once in s. Consider

the transition name tr = sm in s and the claimed firing step Mm −tr−→ Mm+1. We check

the activation of tr in Mm, i.e. Mm ≥ pre(tr) according to Def. 4.1. Now, let pre(tr) =∑
pl∈PL λpl · pl . For each pl we have:

— case pl = p(q): this implies that tr = q and λpl = 1. By definition this place is

initially marked with one token and there is no other transition connected to this

place. Since each transition occurs exactly once in s (∗) this token is available in Mm.

— case pl = p(q<xq
′), x ∈ {rc, wc, d}: this implies that tr = q′ and λpl = 1. By Def.

4.1 we then have post(q) ≥ pl and pl is not in the pre domain of any other transition

than tr = q′. By Fact 4.5 we have that q occurs before q′ in s and by (∗) we know

that q′ was not fired already. Thus, Mm ≥ pl .

— case pl = p(q, N[i]): For the initial marking M we know by Def. 4.1 that M ≥
d · pl with d being the amount of weak disabling causes, i.e. d = |DC|, DC = {ql |
q, q′ ∈ P,q<wdn[i]ql}. Moreover, by Def. 4.1 we know that q≮wdn[i]q.
1 case q 6= tr : Let q′ = tr . By Def. 4.1 we have that λpl = 1 and q<wdn[i] q

′. The

only transition tr ′ in TR\DC with pre(tr ′) ≥ pl is q and q consumes and produces

one token. Each of the transitions in DC consumes exactly one token and in sum

they consume exactly d tokens and each transition occurs exactly once in s (∗).
Therefore, Mm ≥ pl , because tr = q′ was not fired already according to (∗).

2 case q = tr : Thus, λpl = 1. Let sk = q, i.e., q occurs in s at position k. By Def.

3.16 there is one preceding rule occurrence q′ = se in s with q′ = se<wen[i]sk = q

or there is one subsequent rule occurrence q′ = sl in s with q = sk<wdn[i]sl = q′

(because q≮wdn[i] q). Using (∗), this means that for the first case: Mm ≥ d · pl +

1− d · pl = pl and for the second case: Mm ≥ d · pl − (d− 1)pl = pl .

Direction “⇐”: Assume that s is a transition complete firing sequence of DNet(d).

We show that s is a legal sequence with respect to d in STS (d). First of all, s is a

transition complete firing sequence implies that each transition tr occurs exactly once.

We show that the two conditions in Def. 3.16 hold:

— condition 1: s
sw
≈S seq(d)

By Fact 4.5 this condition is equivalent to

(∗) : ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : si <x sj ⇒ i < j. According to Def.

4.1 there is exactly one initially unmarked place pl = p(q<xq
′) for each pair (q, q′)

with q <x q
′, x ∈ {rc, wc, d}. This implies that for si = q and sj = q′ the transition

si produces exactly one token and sj consumes exactly one token from this place

and there is no other transition connected to this place. Therefore, the condition is

ensured, because transition sj is not activated before si has been fired.

— condition 2: ∀ NAC s Nk[i] of sm = qk :

(
∃ e ∈ {1, . . . ,m− 1} : se<wen[i]sm or

∃ l ∈ {m, . . . , n} : sm<wdn[i]sl.

)
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Consider a NAC Nk[i] of qk = sm.

1 case qk<wdn[i]qk : Thus, we have l = m for the above condition.

2 case qk ≮wdn[i] qk : Thus, there is the place p(k,N[i]), such that the transition

sm = qk consumes exactly one token from that place. Consider the firing step

Mm −sm−→ Mm+1 according to s. Since sm = qk has fired according to this step

there was a token on p(k,N[i]) in the marking Mm. The initial marking contains

d tokens for this place, where d is the amount of weak disabling causes, i.e. d =

|DC|, DC = {ql′ | qk<wdn[i]ql′}. Let EC = {qe′ | qe′<wen[i]qk} be the set of weak

enabling causes of qk for Nk[i]. Assume that condition 2 of Def. 3.16 does not hold.

We then have that all ql′ in DC occur before qk in s and there is no qe′ in EC that

occurs before qk in s. This implies that each transition of DC has consumed a

token from p(k,N[i]) and none of the transitions that precede qk have produced

a token on this place. Therefore, there is no token left on p(k,N[i]), which is a

contradiction to the firing of sm = qk and thus, condition 2 holds.

In order to solve the challenge of computing the set of all permutation-equivalent

transformation sequences for a given one, we can now combine the presented results

leading to our forth main result by Thm. 4 below, where we show that the analysis of

permutation equivalence can be completely performed on the dependency net DNet(d).

Theorem 4 (Analysis of Permutation Equivalence Based on Petri Nets). Given

the process Prc(d) and the dependency net DNet(d) of a NAC-consistent transformation

sequence d.

1 The class of permutation-equivalent transformation sequences of d coincides with the

set of derived transformation sequences using DNet(d):

π-Equ(d) = Trafo(FSeq(DNet(d)))

2 The mapping Trafo according to Def. 3.17 defines a bijective correspondence between

transition complete firing sequences and permutation-equivalent transformation se-

quences:

Trafo : FSeq(DNet(d)) −∼−→ (π-Equ(d))/∼=

Proof. By combining the characterisations of Thms. 2 and 3 we derive the equal-

ity π-Equ(d) = Trafo(FSeq(DNet(d))) and the bijection Trafo : FSeq(DNet(d)) −∼−→
(π-Equ(d))/∼= is given by Trafo : Seq(d) −∼−→ (π-Equ(d))/∼= of Thm. 2 with Seq(d) =

FSeq(DNet(d)) in Thm. 3.

Remark 4.6 (Analysis of Permutation Equivalence). We now describe how the

presented results can be used for an efficient analysis of permutation equivalence, i.e. for

the generation of the complete set of permutation equivalent transformation sequences

for a given one and for checking permutation equivalence of specific ones. Given a NAC-

consistent transformation sequence with general matches and NAC-schemata we can first

reduce the analysis problem to the derived instantiated transformation sequence withM-

matches and standard NACs according to Thm. 1 and Rem. 2.22. According to Thm. 4,

we can perform the analysis of permutation equivalence based on Petri nets by first con-

structing the dependency net DNet(d). For the generation of all permutation-equivalent
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sequences we construct the complete reachability graph of DNet(d), where each path

specifies one permutation-equivalent transformation sequence up to isomorphism. If only

specific reorderings of the transformation steps shall be checked, then the corresponding

firing sequences are checked to be executable in DNet(d).

The dependency net DNet(d) is a compact representation of the equivalence class

π-Equ(d) specified by the process of a transformation sequence d. Moreover, the analysis

of permutation equivalence based on the dependency net shows significant advantages

with respect to efficiency as shown in Rem. 2.20.

5. Related Work

Transformation systems based on the double pushout (DPO) approach (Rozenberg1997;

Ehrig et al.1999) with negative application conditions (NACs) (Habel et al.1996; Ehrig

et al.2006) are a suitable modelling framework for several application domains in the area

of distributed and concurrent systems. The behaviour of these systems is formalized by an

operational semantics given by a graph transformation system, where each transformation

rule can simulate a step of the modelled system.

Processes of graph transformation systems based on the DPO approach are introduced

in (Corradini et al.1996) and characterized as occurrence grammars in (Baldan2000).

These concepts generalise the notion of processes available for the classical formal mod-

els in this context – namely Petri nets (Reisig1985) – which can be completely defined by

restricted graph transformation systems (GTSs), while general GTSs are more expressive.

In (Baldan et al.2006), processes of graph transformation systems are lifted to the ab-

stract setting of adhesive rewriting systems in order to generalise the process construction

and analysis. This way, the analysis techniques can be instantiated for transformation

systems based on arbitrary adhesive categories (Lack and Sobocinski2005), such as typed

graphs, graphs with scopes and graphs with second order edges.

The concept and analysis of processes of transformation systems with negative appli-

cation conditions (NACs) is more complex. The direct extension of switch equivalence to

the case with NACs (Habel et al.1996; Lambers et al.2008; Lambers2009) is based on se-

quential independence of transformation sequences with NACs. The concurrent semantics

of this notion means that only consecutive independent steps and the derived consecutive

independent steps can be interleaved. However, as presented by the case study, there are

interleavings which cannot be derived in this way. The reason is that an inhibiting pattern

for a step di can occur at point a and disappear again at another point b within the full

transformation sequence. Thus, di is not executable between a and b, but possibly before

a or after b. As shown for the provided example, several switchings of NAC-dependent

steps have to be performed in order to derive a new transformation sequence that is

again NAC-consistent. The derived transformation sequences in between are not NAC-

consistent. Practically, this means that the analysis of all such interleavings cannot be

performed locally by pairwise checking sequential independence with NACs, but requires

a global condition for NACs. This global point of view is reflected in the notion of per-
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mutation equivalence by simply requiring NAC-consistency for the full transformation

sequences.

Based on processes for adhesive transformation systems (Baldan et al.2006), we ex-

tended the construction and analysis of processes to the more general framework of

M-adhesive transformation systems, which includes the important category of typed at-

tributed graphs. Furthermore, the developed techniques are extended to transformation

sequences with general match morphisms, i.e. matches are not required to be injective as

in the cases before. The provided process construction is based on the notion of subobject

transformation systems (STSs), which generalises the concept of elementary Petri nets

(Rozenberg and Engelfriet1996) being the class of process models for P/T Petri net pro-

cesses, such that STSs form the class of process models for arbitrary M-adhesive trans-

formation systems. As pointed out in Sec. 2.1, the concept of extremal E-M-factorization

has been introduced in (Braatz et al.2010), which is important for NAC-consistency of

our new concept of NAC-schemata for transformation rules. Furthermore, several results

concerning finite objects and finitary categories in (Braatz et al.2010) will be useful for

further application domains and application scenarios.

Some of the problems addressed in this paper are similar to those considered in the

process semantics (Kleijn and Koutny2004) and unfolding (Baldan et al.2004; Braatz

et al.2004) of Petri nets with inhibitor arcs, and actually we could have used some sort

of inhibitor arcs to model the inhibiting effect of NACs in the process skeleton of a

derivation. However, we would have needed some kind of “generalised” inhibitor nets,

where a transition is connected to several (inhibiting) places and can fire if at least one

of them is unmarked. To avoid the burden of introducing yet another model of nets,

we preferred to stick to a direct encoding of the process of a derivation into a standard

marked P/T nets.

6. Conclusion

In this paper, we introduce the concept of permutation equivalence for transformation

systems with negative application conditions (NACs) in M-adhesive categories. Permu-

tation equivalence generalises switch equivalence with NACs and has interesting applica-

tions in the area of business processes (Brandt et al.2009). Formally, we are able to define

processes ofM-adhesive transformation systems based on subobject transformation sys-

tems inspired by processes for Petri nets (Rozenberg and Engelfriet1996) and adhesive

rewriting systems (Baldan et al.2006).

In our main results we show that processes can be represented by equivalence classes

of permutation-equivalent transformation sequences. Moreover, they can be analysed

efficiently by complete firing sequences of a Petri net, which can be constructed effectively

as a dependency net of a given transformation sequence. Most constructions and results

are illustrated by a case study of a typed attributed graph transformation system using

the new concept of NAC-schemata. Tool support for the analysis is available by the tool

AGT-M (Hermann et al.2010; Brandt et al.2009) based on Wolfram Mathematica and

provides the construction of the STS, the dependency net and the generation of the

reachability graph for a given transformation sequence.
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We are currently developing and analysing the interleaving semantics of processes of

M-adhesive transformation systems from a more algebraic point of view based on the con-

struction and decompostion of concurrent transformation steps with NACs. First results

indicate that the notion of permutation-equivalence can be characterized by the underly-

ing equivalence of these algebraic compositions and decompositions. Future work will also

include the study of non-deterministic processes of transformation systems with NACs,

which will be based on incomplete firings of the constructed P/T Petri net and suitable

side conditions. Furthermore, the notion of permutation equivalence can be extended

to the more general case of nested application conditions (Habel and Pennemann2009)

leading probably to an extended concept for processes based on STSs including nested

application conditions. Further improvements of efficiency could be obtained by observ-

ing the occurring symmetries in the P/T Petri net, and applying symmetry reduction

techniques on it. Additionally, the space complexity of the analysis could be reduced by

unfolding the net and then representing all permutation-equivalent derivations in a more

compact, partially ordered structure.
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Appendix A. Category of Typed Attributed Graphs

In this appendix, we review the main constructions for theM-adhesive category of typed

attributed graphs (AGraphsATG ,M) according to (Ehrig et al.2006). An attributed

graph consists of an extended directed graph for the structural part – called E-graph –

together with an algebra for the specification of the carrier sets of the value nodes. An

E-graph extends a directed graph by additional attribute value nodes and edges for the

attribution of structural nodes and edges.

Definition A.1 (E-graph and E-graph morphism). An E-graph G with G =

(VG, VD, EG, ENA, EEA, (sourcej , targetj)j∈{G,NA,EA}) consists of the sets

— VG and VD , called the graph and data nodes (or vertices), respectively;

— EG, ENA , and EEA called the graph, node attribute, and edge attribute edges, re-

spectively; and the source and target functions

— sourceG : EG → VG, targetG : EG → VG for graph edges;

— sourceNA : ENA → VG, targetNA : ENA → VD for node attribute edges; and

— sourceEA : EEA → EG, targetEA : EEA → VD for edge attribute edges:

EG
sourceG --
targetG

11 VG
EEA

targetEA
--

sourceEA 33
ENA

targetNA
qq

sourceNAkk

VD
Consider the E-graphs G1 and G2 with Gk = (V kG , V

k
D, E

k
G, E

k
NA, E

k
EA, (sourcekj ,

targetkj )j∈{G,NA,EA}) for k = 1, 2. An E-graph morphism f : G1 → G2 is a tuple

(fVG
, fVD

, fEG
, fENA

, fEEA
) with fVi

: V 1
i → V 2

i and fEj
: E1

j → E2
j for i ∈ {G,D},

j ∈ {G,NA,EA} such that f commutes with all source and target functions, for example

fVG
◦ source1

G = source2
G ◦ fEG

.

The carrier sets of attribute values that form the single set VD of an E-graph are defined

by an additional data algebra D, which also specifies the operations for generating and

manipulating data values. The carrier sets Ds of D contain the data elements for each

sort s ∈ S according to a data signature DSIG = (SD,OPD). These carrier sets are

combined by disjoint union and form the set VD of data elements.

Definition A.2 (Attributed Graph and Attributed Graph Morphism). Let

DSIG = (SD,OPD) be a data signature with attribute value sorts S′D ⊆ SD. An at-

tributed graph AG = (G,D) consists of an E-graph G together with a DSIG-algebra D

D1
s

fD,s //
� _

�� (1)

D2
s� _

��
V 1
D

fG,VD
// V 2

D

such that ·∪s∈S′DDS = VD. For two attributed graphs AG1 =

(G1, D1) and AG2 = (G2, D2), an attributed graph morphism

f : AG1 → AG2 is a pair f = (fG, fD) with an E-graph morphism

fG : G1 → G2 and an algebra homomorphism fD : D1 → D2 such

that (1) commutes for all s ∈ S′D, where the vertical arrows are

inclusions.

The category of typed attributed graphs AGraphsATG has as objects all attributed

graphs with a typing morphism to the attributed graph ATG (type graph), and as arrows

all attributed graph morphisms preserving the typing. The category (AGraphsATG ,M)
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is shown in (Ehrig et al.2006) to be an adhesive HLR category, where the distinguished

class of monomorphisms M contains all monomorphisms that are isomorphisms on the

data part. For this reason, all results for adhesive HLR transformation systems pre-

sented in (Ehrig et al.2006) are valid. Since M-adhesive categories (Ehrig et al.2010)

are a slight generalisation of weak adhesive and adhesive HLR categories the category

(AGraphsATG ,M) is an M-adhesive category.

Appendix B. Petri Nets in Monoidal Notation

In this section we briefly recall the classical notion of place/transition nets (P/T Petri

nets) according to (Reisig1985) and its equivalent representation in monoidal notation

according to (Meseguer and Montanari1990). We use the monoidal notation in Sec. 4

for the construction of the dependency net of a transformation sequence. Note that this

notation forms a special case of the monoidal notation for the more general high-level

Petri nets according to ISO/IEC 15909-1:2004 (ISO/IEC2004).

Petri nets are a formal and graphical formalism for the specification of parallel and

distributed systems and are used for the analysis of the concurrent behaviour of such

systems. The main idea is that places specify locations, tokens on places specify resources

available at these locations or, alternatively, control events while transitions specify the

possible actions of the system that are dependent on the resources and control conditions.

Definition B.1 (P/T Petri Net in Classical Notation). A P/T Petri net in classical

notation is given by a tuple N = (P, T, F,K,W ), consisting of a set of places P , a set of

transitions T , a flow relation F ⊆ (P × T ) ] (T × P ), a capacity function K : P → Nω
specifying the (possibly unbounded) capacity for each place, and the weight function

W : F → N+ assigning with each edge of the flow relation its weight.

A markingM for a P/T Petri netN = (P, T, F,K,W ) is given by a functionM : P → N
assigning each place an amount of token, where M(p) ≤ K(p) for each place p. For any

transition t ∈ T of a P/T-Petri net N = (P, T, F,K,W ), the pre domain is denoted by

•t = {p | (p, t) ∈ F} and the post domain by t• = {p | (t, p) ∈ F}. A transition t ∈ T is

M -activated, if ∀ p ∈ •t : M(p) ≥W (p, t) and ∀ p ∈ t• : M(p) +W (t, p) ≤ K(p).

Finally, a firing step M −t→ M ′ of N with initial marking M exists if transition t is

M -activated. The resulting marking M ′ is given by

M ′(p) =


M(p)−W (p, t) for p ∈ •t \ t•,
M(p) +W (t, p) for p ∈ t• \ •t,
M(p)−W (p, t) +W (t, p) for p ∈ t• ∩ •t,
M(p), otherwise.

According to (Meseguer and Montanari1990) and ISO/IEC 15909-1:2004 (ISO/IEC2004),

P/T Petri nets can be specified equivalently using the monoidal notation. This notation

is based on a power set or monoid construction. Note that capacities are not explicitly

specified, but can be encoded by corresponding complementary places. The main idea

of the monoidal notation is to specify the pre and post domain of each transition by a

multi set of places using the concept of monoid.
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Definition B.2 (P/T Petri Net in Monoidal Notation). A P/T Petri net in

T
pre
//

post
// P⊕

monoidal notation is given by N = (P, T, pre, post) consisting of a set

P of places, a set T of transitions and the mappings pre, post : T → P⊕

specifying the pre and post domain of each transition, where (P⊕,⊕, λ) is the free com-

mutative monoid over P .

A marking M for a P/T Petri net N = (P, T, pre, post) is given by an element M ∈ P⊕
of the carrier set P⊕ of the monoid (P⊕,⊕, λ). A transition t ∈ T is M -activated, if

pre(t) ≤M . Finally, a firing stepM −t→ M ′ ofN with initial markingM exists if transition

t is M -activated and the resulting marking M ′ is given by M ′ = M 	 pre(t)⊕ post(t).

For an example of a place/transition net and its firing behaviour see Ex. 4.2 in Sec. 4.

Appendix C. Proofs of Technical Results

In this section we provide proofs for Facts 2.14, 2.21, 3.3, 3.5 and 4.5.

Fact 2.14 (Compatibility of Applicability and NAC-consistency with Instan-

tiation).

Proof. Without considering the NACs we have that the transformation step via p′ can

L
e ���� f2

��

(3)

Koooo // //

ke ��

��

(4)

R

e∗ ��

f∗2

��

L′
��

m2 ��
(5)

K ′oooo // //
��

��
(6)

R′
��

m∗2 ��

G2 D2
oooo // // H2

be composed with the diagrams (3) and (4) acc.

to Def. 2.13 leading to a transformation step

via p and match f2. Vice versa, for a trans-

formation step via p and match m2 we can

conclude that K ′ is isomorphic to the pullback

of (L′ � G2 � D2) using the M pushout-

pullback lemma (item 2 of Thm. 4.26 in (Ehrig et al.2006)) and uniqueness of pushout

complements for rules inM-adhesive transformation systems and we derive pushouts (3)

and (5). The comatch m∗2 of the instantiated rule is induced by pushout (4). Finally, (6)

is a pushout by pushout decomposition. We now consider the NACs and a transformation

diagram with step G2 =
p′,m2
===⇒ H2. For a NAC-schema n ∈ NS we have by Def. 2.10 for

the satisfaction of NAC-schemata that a NAC occurrence q′ : N ′ � G2 of the instanti-

ated rule p′ defines a NAC occurrence of n ∈ NS and vice versa, a violation of n ∈ NS

induces a NAC occurrence q′ : N ′ � G2 of the instantiated rule p′.

Fact 2.21 (Sequential Independence disregarding NACs for Instantiated

Steps).

Proof. First of all, a mediating morphism j′ : L′ → D1 of the instantiated

DPO diagrams directly induces a mediating morphism j : L2 → D1 for the orig-

inal DPO diagrams by j = j′ ◦ e2. The case of i′ : R′ → D2 is dual. Now,

given a mediating morphism j : L2 → D1 we show that there is a mediating

morphism j′ : L′ → D1 for the instantiated DPO diagram. The dual case with
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K1

��

// // R1 L2

f2

��

j

��

e2
}}}}

je

zzzz

K2

��

oooo

L′′
}}

j1}}

L′
��

m2 ��

∼oo

D1
// g1 // G1 D2

oooo

morphism i : R1 → D2 is again analo-

gous. By Def. 2.13 we have the extremal

E-M factorization f2 = e2 ◦m2. Now, we

construct the extremal E-M factorization

j = j1 ◦ je : L2 � L′′ � D1. By unique-

ness of extremal E-M factorizations and

commutativity g1 ◦ j = f2 we have that L′′ ∼= L′ via iso and m2 = g1 ◦ j1 ◦ iso. Therefore,

j1 ◦ iso : L′ → D1 is compatible with m2, i.e. m2 = g1 ◦ j1 ◦ iso.

Fact 3.3 (Intersection in SubM(T )).

Proof. Let A,B ∈ |SubM(T )| and construct pullback (1) in C using a ∈ M
X

x1

yy
h��

x2

%%
x

ss

A s�
a
%%

A ∩B pB //pAoo

i��

BkK
b

yy
T

leading toM-morphisms pA and pB , because a, b ∈M.

Furthermore, pA, pB are morphisms in SubM(T ) by

commutativity of the pullback. Now, a comparison ob-

ject X for the product A ∩ B in SubM(T ) is also a

comparison object for the pullback A ∩ B in C. Thus,

there is a unique morphism h satisfying the universal

property. Furthermore, h ∈M by decomposition of x1 and h is a morphism in SubM(T )

by the commutativity of the diagram on the right.

Fact 3.5 (Distributivity).

Proof. Property (i) : The proof is analogous to the one for Cor. 5.2 in (Lack

and Sobocinski2005) concerning adhesive categories and we lift it to M-adhesive

categories. Let A,B,C ∈ |SubM(T )|, then (1) is pushout in C by the general

A ∩B ∩ C
**qq

(1)A ∩B
++

A ∩ C
qq

(A ∩B) ∪ (A ∩ C)

A ∩B ∩ C ++qq

��

A ∩B ++

��

A ∩ C
qq

��

A ∩ (B ∪ C)

��
B ∩ C

++qqB ,, C
qqB ∪ C

assumption that C has effective

unions. The cube is commutative,

because all diagrams in SubM(T )

commute and A∩C ⊆ A∩(B∪C),

because C ⊆ B ∪ C. The bot-

tom face is a pushout in C along

an M-morphism, because C has

effective unions. The back faces

are pullbacks in C according to

Fact 3.3. The front left face of the

A ∩B //

�� (2)

A ∩ (B ∪ C) //

�� (3)

A

��
B // B ∪ C // A ∪B ∪ C

cube is a pullback by pullback decomposition

of the pullback (2 + 3). For the analogous rea-

son, the front right face of the cube is a pull-

back. By the VK-property ofM-adhesive cat-

egories we derive that the top face of the cube is a pushout and by uniqueness of pushouts

we deduce property (i) and by duality in lattices we also have property (ii).
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Fact 4.5 (Linearisation).

Proof. Let (∗) : ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : si <x sj ⇒ i < j.

Direction “⇒”: Let s
sw
≈S seq(d) and seq(d) = 〈q1, . . . , qn〉. We show that (∗) holds.

— We first show the property for s = seq(d), i.e.

(∗∗) : ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : qi <x qj ⇒ i < j.

⇔ ∀ i, j ∈ {1, . . . , n}, x ∈ {rc, wc, d} : i ≥ j ⇒ qi ≮x qj .
Let π(qi) = (〈Li,Ki, Ri〉,Ni) and π(qj) = (〈Lj ,Kj , Rj〉,Nj).

For i = j the condition is fulfilled directly, because ∀ k ∈ {1, . . . , n} : Lk ∩Rk = Kk

according to Prop. 30 in (Corradini et al.2008), where the proof can be directly

lifted to the case of M-adhesive categories via the provided results (constructions

intersection and union as well as distributivity and VK-property for the case that all

morphisms are in M).

Now, consider i > j.

– Case x = rc:

By definition we have that qi ≮rc qj ⇔ Ri ∩Kj ⊆ Ki.

We can build up the colimit of the instantiated transformation sequence dI of d (see

Def. 2.13) by stepwise pushouts. Let Ti−1 be the colimit of the steps d1, . . . , di−1.

Then we have that (1) : Kj ⊆ Ti−1. Let T ′i be the colimit of transformation step

di, and therefore, T ′i is given by the pushout (2) of Gi−1 ← Di → Gi. We perform

a pushout (3) of Ti−1 and T ′i and obtain Ti. We compose the pushouts (2) and (3)

with the pushout (4) : Di ← Ki → Ri → Gi of the transformation step di. This

is also a pullback and thus, Ri ∩ Ti−1 ∼= Ki. Using (1) this implies Ri ∩Kj ⊆ Ki.

– Case x = wc:

By definition we have that qi ≮wc qj ⇔ Ri ∩ Lj ⊆ Ki ∪Kj .

Considering the construction from before, we additionally derive Lj ⊆ Ti−1 and

thus, the equation holds.

– Case x = d:

By definition we have that qi ≮wc qj ⇔ Ki ∩ Lj ⊆ Kj .

Considering the construction from before, we can additionally compose the

pushout (5) : Dj ← Kj → Lj → Gj−1 of the transformation step dj with the

pushouts of the stepwise construction of Ti−1 and finally derive Lj ∩ Ti−1 ∼= Kj .

Furthermore, we have Ki ⊆ Ti−1 from (1) and thus, the above equation holds.

— We now show that the condition (∗) holds for every sequence s that is STS-switch-

equivalent to seq(d) disregarding NACs. By (∗∗) we know that the condition holds for

seq(d). Furthermore, each sequence s is derived from seq(d) by switchings according

to
sw
≈S . It remains to show that each switching preserves the condition (∗). Now,

STS-switch equivalence of sequences
sw
≈S is based on (qi ♦ qj), which is equivalent

to (qi ≮rc qj ∧ qi ≮wc qj ∧ qi ≮d qj) according to Thm. 32.2 in (Corradini et al.2008).

Thus, the condition is not affected by any switching.

Direction “⇐”: By contraposition we show ¬(s
sw
≈S seq(d)) ⇒ ¬(∗). Since s is a

permutation of seq(d) the condition ¬(s
sw
≈S seq(d)) means that s can be derived by

switching neighbouring steps of seq(d), where at least on switching is performed on a pair



Analysis of Permutation Equivalence in M-adhesive Transformation Systems 37

(qi; qj) of steps that is dependent, i.e. ¬(qi ♦ qj), which is equivalent to (qi <x qj) for

one or more x ∈ {rc, wc, d} according to Thm. 32.2 in (Corradini et al.2008) as above.

Thus, this pair would violate the condition (∗) in the new order. Since s is assumed to

be not STS-switch equivalent to seq(d) there is at least one such pair, where the final

position of qj is in front of qi in s.
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