Introduction to
Optimization

Second Order Optimization Methods

Marc Toussaint
U Stuttgart

Planned Outline

e Gradient-based optimization (1st order methods)
— plain grad., steepest descent, conjugate grad., Rprop, stochastic grad.
— adaptive stepsize heuristics

Constrained Optimization
— squared penalties, augmented Lagrangian, log barrier
— Lagrangian, KKT conditions, Lagrange dual, log barrier <+ approx. KKT

2nd order methods
— Newton, Gauss-Newton, Quasi-Newton, (L)BFGS
— constrained case, primal-dual Newton

Special convex cases
— Linear Programming, (sequential) Quadratic Programming
— Simplex algorithm
— relation to relaxed discrete optimization

Black box optimization (“Oth order methods”)
— blackbox stochastic search
— Markov Chain Monte Carlo methods
— evolutionary algorithms
2/24

So far we relied on gradient-based methods only, in the unconstrained
and constrained case

Today: 2nd order methods, which approximate f(x) locally
— using 2nd order Taylor expansion (Hessian V2f(z) given)
— estimating the Hessian from data

2nd order methods only work if the Hessian is everywhere
positive definite < f(z) is convex

Note: Approximating f(x) locally or globally is a core concept also in
black box optimization

3/24

Why can 2nd order optimization be better than
gradient?

e Better direction:

Zo

Plain Gradient

Caonjugate Gradient

o Better stepsize:
— a full step jumps directly to the minimum of the local squared approx.
— often this is already a good heuristic
— additional stepsize reduction and dampening are straight-forward

4/24

Outline: 2nd order method

o Newton
Gauss-Newton

e Quasi-Newton
BFGS, (L)BFGS

Their application on constrained problems

5/24

2nd order optimization
e Notation:
objective function: f: R" - R
-
gradient vector: Vf(z) = [a%f(x)} eR”
Hessian (symmetric matrix):

s (@) i) - gl f(a)
2 .
Vi = BT?TWJC(:C) : c R™*"
ﬁf@) #Zw”f(m)

Taylor expansion:

e Problem:
min f(x)

where we can evaluate f(z), Vf(x) and V?f(z) for any x € R" 6/24

Newton method

e For finding roots (zero points) of f(z)

y=Fx)
 Tangent stz
/’ Tengemt s,
pa T T — /()
L f'(x)

’» 7_77_,,,_77-""""" XV A %o
e
/
yd

o For finding optima of f(x) in 1D:

f'(x)
[(@)

T < T —

For x € R™:
z <z — V3 (2)'Vf(2)

7/24

Newton method with adaptive stepsize o

Input: initial z € R, functions f(z), Vf(z), V2f(x), tolerance 6

Output: =

1: initialize stepsize oo = 1 and damping A = 10~ 1°

2: repeat

3: compute A to solve (V2f(z) + A1) A = —Vf(z)

4 repeat // “line search”

5: y < x+ al

6: if f(y) < f(z) then // step is accepted

7: Ty

8: a+ afb // increase stepsize towards o = 1

9: else // step is rejected
10: a <+ 0.1a // decrease stepsize
11: end if

12: until step accepted or (in bad case) a|A]so < 6/1000
13: until Ao < 0

¢ Notes:
— Line 3 computes the Newton step A = V2f(z)' Vf(z),
use special Lapack routine dposv to solve Az = b (using Cholesky decomposition)

— \is called damping, makes the parabola more “steep” around current

for A — co: A becomes colinear with —Vf(z) but |[A] =0 8/24

Newton method with adaptive damping A
(Levenberg-Marquardt)

e | usually use stepsize adaptation instead of Levenberg-Marquardt

Input: initial z € R™, functions f(x), Vf(z), V2f(x), tolerance ¢

Output: =
1: initialize damping A = 1010
2: repeat
3: compute A to solve (V2f(z) + \I) A = —Vf(x)
4 if f(x+ A) < f(z) then // step is accepted
5 r+—x+ A
6 A+ 0.2\ // decrease damping
7: else // step is rejected
8 A < 10X // increase damping
9 end if

10: until A < 1 and Ao < 6

9/24

Computational issues

o Let
C'y be computational cost of evaluating f(x) only
Ceval be computational cost of evaluating f(x), Vf(z), V3f(z)
Ca be computational cost of solving (V3f(z) + A\I) A = —Vf(x)

o If Cova > Cy — proper line search instead of stepsize adaptation
If Ca > Cy — proper line search instead of stepsize adaptation

e However, in many applications (in robotics at least) Ceya = C¢ > Ca

e Often, V?f(z) is banded (non-zero around diagonal only)
— Az = b becomes super fast using dpbsv (Dynamic Programming)

(If V2f(x) is a “tree”: Dynamic Programming on the “Junction Tree”)

10/24

Demo

11/24

Gauss-Newton method

e Problem:
min f(z) where f(z) = ¢(z) ¢ (z)
and we can evaluate ¢(x), Vg(z) for any z € R”

e ¢(x) € R?is a vector; each entry contributes a squared cost term to f(z)
e Vo(x) is the Jacobian (d x n-matrix)

@fl ¢1() %%(m) afn $1()
Vo(z) = 7, 92(2) : € R
331 ¢a(z) afn ¢a(z)

with 1st-order Taylor expansion ¢(z') = ¢(z) + V(z)(z' — z)
12/24

Gauss-Newton method

e The gradient and Hessian of f(z) become

f(z) = ¢(z) p(x)
Vf(z) = 2V (z) ¢(x)
V3 (z) = 2Vo(2) Vg(z) + 2¢(2) V()

The Gauss-Newton method is the Newton method for
f(z) = ¢(x)"¢(z) with approximating V% (z) ~ 0

The approximate Hessian 2V (z) Vo (z) is always semi-pos-def!

¢ In the Newton algorithm, replace line 3 by

3: compute A to solve (Vo (x) Ve (x) + AI) A = —Vé(x) é(z)

13/24

Quasi-Newton methods

14/24

Quasi-Newton methods

e Let's take a step back: Assume we cannot evaluate Vf(x).
Can we still use 2nd order methods?

e Yes: We can approximate V2f(z) from the data {(x;, Vf(z;))}5_; of
previous iterations

15/24

Basic example

e We've seen already two data points (z1, Vf(z1)) and (z2, Vf(x2))
How can we estimate V2f(x)?

e In1D:
Vf(@2) — Vf(21)

T2 — I

Vef(z) ~

e INR™: lety =Vf(z2) — Vf(x1), Az =9 — 11

VQf(x) Az = y Az = V2f(:r)*1y
T T
2 Yy 2 -1 _ AzAz

Convince yourself that the last line solves the desired relations
[Left: how to update V2f(x). Right: how to update directly V2f(z)™.]

16/24

BFGS

e Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

Input: initial x € R™, functions f(z), Vf(x), tolerance 6
Output: =

1: initialize H! =1,

2: repeat

3:

4
5
6
7:
8
9:

until [A] < 0

compute A = —H1Vf(x)
perform a line search min,, f(z + aA)

A+ aA
y < Vf(z+ A) — Vf(z)
r+x+ A .
-1 N 1 y AT AAT
update H1 « <I - yNy) H (I — JATy) + 3

e Notes:

— The blue term is the H*-update as on the previous slide
— The red term “deletes” previous H*-components

17/24

Quasi-Newton methods

e BFGS is the most popular of all Quasi-Newton methods
Others exist, which differ in the exact H-'-update

e L-BFGS (limited memory BFGS) is a version which does not require to
explicitly store H™! but instead stores the previous data
{(z4, Vf(z;))}¥_, and manages to compute A = —H'Vf(x) directly
from this data

e Some thought:
In principle, there are alternative ways to estimate H-! from the data
{(z4, f(x:), Vf(z:))}r_,, e.g. using Gaussian Process regression with

derivative observations

— Not only the derivatives but also the value f(x;) should give information on H (z) for
non-quadratic functions

— Should one weight ‘local’ data stronger than ‘far away’?
(GP covariance function)

18/24

2nd Order Methods for Constrained Optimization

19/24

2nd Order Methods for Constrained Optimization

e No changes at all for
— log barrier
— augmented Lagrangian
— squared penalties

Directly use (Gauss-)Newton/BFGS — will boost performance of these
constrained optimization methods!

20/24

Primal-Dual interior-point Newton Method

e Reconsider slide 03-33 (Algorithmic implications of the Lagrangian
view)

e A core outcome of the Lagrangian theory was the shift in problem
formulation:

find z to min, f(z) st g(x) <0

— find z to solve the KKT conditions

21/24

Primal-Dual interior-point Newton Method
e The first and last modified (=approximate) KKT conditions
Vf(x) + 3235 AiVgi(x) = 0
Vit gi(z) <0
Vit Aigi(z) = —p

can be written as the n + m-dimensional equation system

o ey [V@) + XT()
@ =0, sy = TEXEE)

(“force balance”)
(primal feasibility)
(dual feasibility)

(

complementary)

o Newton method to find the root r(z,A\) =0

(i) — (i) — Vr(z, \) (2, \)

r(x = VQf(x) + 21 Alv2 Z(x) VQ(I)T (n+m)x(n+m)

Vi) (—diag()) Vg (x) diag(g(x))) <K /
22/24

Primal-Dual interior-point Newton Method

e The method requires the Hessians V2f(z) and V?;(x)
— One can approximate the constraint Hessians VZg;(x) ~ 0
— Gauss-Newton case: f(x) = ¢(x)"é(x) only requires Vo(x)

e This primal-dual method does a joint update of both
— the solution z
— the lagrange multipliers (constraint forces) A
No need for nested iterations, as with penalty/barrier methods!

e The above formulation allows for a duality gap x; choose u = 0 or
consult Boyd how to update on the fly (sec 11.7.3)

e The feasibility constraints g;(x) < 0 and \; > 0 need to be handled
explicitly by the root finder (the line search needs to ensure these
constraints)

23/24

Planned Outline

e Gradient-based optimization (1st order methods)
— plain grad., steepest descent, conjugate grad., Rprop, stochastic grad.
— adaptive stepsize heuristics

Constrained Optimization
— squared penalties, augmented Lagrangian, log barrier
— Lagrangian, KKT conditions, Lagrange dual, log barrier <+ approx. KKT

2nd order methods
— Newton, Gauss-Newton, Quasi-Newton, (L)BFGS
— constrained case, primal-dual Newton

Special convex cases
— Linear Programming, (sequential) Quadratic Programming
— Simplex algorithm
— relation to relaxed discrete optimization

Black box optimization (“Oth order methods”)
— blackbox stochastic search
— Markov Chain Monte Carlo methods
— evolutionary algorithms
24/24

