

Introduction to Optimization

Second Order Optimization Methods

Marc Toussaint U Stuttgart

Planned Outline

- Gradient-based optimization (1st order methods)
 - plain grad., steepest descent, conjugate grad., Rprop, stochastic grad.
 - adaptive stepsize heuristics

Constrained Optimization

- squared penalties, augmented Lagrangian, log barrier
- Lagrangian, KKT conditions, Lagrange dual, log barrier ↔ approx. KKT

2nd order methods

- Newton, Gauss-Newton, Quasi-Newton, (L)BFGS
- constrained case, primal-dual Newton

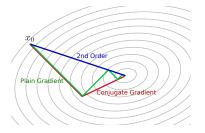
Special convex cases

- Linear Programming, (sequential) Quadratic Programming
- Simplex algorithm
- relation to relaxed discrete optimization
- Black box optimization ("0th order methods")
 - blackbox stochastic search
 - Markov Chain Monte Carlo methods
 - evolutionary algorithms

- So far we relied on gradient-based methods only, in the unconstrained and constrained case
- Today: 2nd order methods, which approximate f(x) locally
 - using 2nd order Taylor expansion (Hessian $\nabla^2 f(x)$ given)
 - estimating the Hessian from data
- 2nd order methods only work if the Hessian is everywhere positive definite $\ \leftrightarrow \ f(x)$ is convex
- Note: Approximating f(x) locally or globally is a core concept also in black box optimization

Why can 2nd order optimization be better than gradient?

Better direction:



- Better stepsize:
 - a *full step* jumps directly to the minimum of the local squared approx.
 - often this is already a good heuristic
 - additional stepsize reduction and dampening are straight-forward

Outline: 2nd order method

- Newton
- Gauss-Newton
- Quasi-Newton
- BFGS, (L)BFGS
- Their application on constrained problems

2nd order optimization

Notation:

objective function: $f: \mathbb{R}^n \to \mathbb{R}$ gradient vector: $\nabla f(x) = \left[\frac{\partial}{\partial x} f(x)\right]^{\top} \in \mathbb{R}^n$

Hessian (symmetric matrix):

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2}{\partial x_1 \partial x_1} f(x) & \frac{\partial^2}{\partial x_1 \partial x_2} f(x) & \cdots & \frac{\partial^2}{\partial x_1 \partial x_n} f(x) \\ \frac{\partial^2}{\partial x_1 \partial x_2} f(x) & & & \vdots \\ \vdots & & & & & \vdots \\ \frac{\partial^2}{\partial x_n \partial x_1} f(x) & \cdots & \cdots & \frac{\partial^2}{\partial x_n \partial x_n} f(x) \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Taylor expansion:

$$f(x') = f(x) + (x' - x)^{\top} \nabla f(x) + \frac{1}{2} (x' - x)^{\top} \nabla^2 f(x) (x' - x)$$

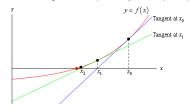
Problem:

$$\min f(x)$$

where we can evaluate f(x), $\nabla f(x)$ and $\nabla^2 f(x)$ for any $x \in \mathbb{R}^n$

Newton method

• For finding roots (zero points) of f(x)



$$x \leftarrow x - \frac{f(x)}{f'(x)}$$

• For finding optima of f(x) in 1D:

$$x \leftarrow x - \frac{f'(x)}{f''(x)}$$

For $x \in \mathbb{R}^n$:

$$x \leftarrow x - \nabla^2 f(x)^{-1} \nabla f(x)$$

Newton method with adaptive stepsize α

```
Input: initial x \in \mathbb{R}^n, functions f(x), \nabla f(x), \nabla^2 f(x), tolerance \theta
Output: x
 1: initialize stepsize \alpha = 1 and damping \lambda = 10^{-10}
 2: repeat
         compute \Delta to solve (\nabla^2 f(x) + \lambda \mathbf{I}) \Delta = -\nabla f(x)
 3:
                                                                                     // "line search"
         repeat
 4:
              y \leftarrow x + \alpha \Delta
 5:
              if f(y) < f(x) then
                                                                                // step is accepted
 6.
 7.
                   x \leftarrow u
                   \alpha \leftarrow \alpha^{0.5}
                                                         // increase stepsize towards \alpha = 1
 8:
                                                                                 // step is rejected
           else
 9:
                                                                             // decrease stepsize
                   \alpha \leftarrow 0.1\alpha
10:
11.
              end if
         until step accepted or (in bad case) \alpha \|\Delta\|_{\infty} < \theta/1000
12:
13: until \|\Delta\|_{\infty} < \theta
```

Notes:

- Line 3 computes the Newton step $\Delta = \nabla^2 f(x)^{-1} \nabla f(x)$, use special Lapack routine dposy to solve Ax = b (using Cholesky decomposition)
- $-\lambda$ is called **damping**, makes the parabola more "steep" around current x for $\lambda \to \infty$: Δ becomes colinear with $-\nabla f(x)$ but $|\Delta| = 0$

Newton method with adaptive damping λ (Levenberg-Marquardt)

I usually use stepsize adaptation instead of Levenberg-Marquardt

```
Input: initial x \in \mathbb{R}^n, functions f(x), \nabla f(x), \nabla^2 f(x), tolerance \theta
Output: x
 1: initialize damping \lambda = 10^{-10}
 2: repeat
         compute \Delta to solve (\nabla^2 f(x) + \lambda \mathbf{I}) \Delta = -\nabla f(x)
 3:
 4: if f(x + \Delta) \le f(x) then
                                                                              // step is accepted
 5: x \leftarrow x + \Delta
             \lambda \leftarrow 0.2\lambda
                                                                            // decrease damping
 7· else
                                                                                // step is rejected
              \lambda \leftarrow 10\lambda
                                                                             // increase damping
 8.
         end if
10: until \lambda < 1 and \|\Delta\|_{\infty} < \delta
```

Computational issues

- Let $C_f \text{ be computational cost of evaluating } f(x) \text{ only } \\ C_{\text{eval}} \text{ be computational cost of evaluating } f(x), \nabla f(x), \nabla^2 f(x) \\ C_{\Delta} \text{ be computational cost of solving } (\nabla^2 f(x) + \lambda \mathbf{I}) \ \Delta = -\nabla f(x)$
- If $C_{\text{eval}} \gg C_f \to \text{proper line search instead of stepsize adaptation}$ If $C_{\Delta} \gg C_f \to \text{proper line search instead of stepsize adaptation}$
- However, in many applications (in robotics at least) $C_{\text{eval}} \approx C_f \gg C_{\Delta}$
- Often, $\nabla^2 f(x)$ is banded (non-zero around diagonal only) $\to Ax = b$ becomes super fast using dpbsv (Dynamic Programming)

(If $\nabla^2 f(x)$ is a "tree": Dynamic Programming on the "Junction Tree")

Demo

Gauss-Newton method

Problem:

$$\min_{x} f(x) \qquad \text{where } f(x) = \phi(x)^{\!\top} \! \phi(x)$$

and we can evaluate $\phi(x)$, $\nabla \phi(x)$ for any $x \in \mathbb{R}^n$

- $\phi(x) \in \mathbb{R}^d$ is a vector; each entry contributes a squared cost term to f(x)
- $\nabla \phi(x)$ is the **Jacobian** $(d \times n\text{-matrix})$

$$\nabla \phi(x) = \begin{pmatrix} \frac{\partial}{\partial x_1} \phi_1(x) & \frac{\partial}{\partial x_2} \phi_1(x) & \cdots & \frac{\partial}{\partial x_n} \phi_1(x) \\ \frac{\partial}{\partial x_1} \phi_2(x) & & \vdots \\ \vdots & & & \vdots \\ \frac{\partial}{\partial x_1} \phi_d(x) & \cdots & \cdots & \frac{\partial}{\partial x_n} \phi_d(x) \end{pmatrix} \in \mathbb{R}^{d \times n}$$

with 1st-order Taylor expansion $\phi(x') = \phi(x) + \nabla \phi(x)(x'-x)$

Gauss-Newton method

• The gradient and Hessian of f(x) become

$$\begin{split} f(x) &= \phi(x)^\top \phi(x) \\ \nabla f(x) &= 2 \nabla \phi(x)^\top \phi(x) \\ \nabla^2 f(x) &= 2 \nabla \phi(x)^\top \nabla \phi(x) + 2 \phi(x)^\top \nabla^2 \phi(x) \end{split}$$

The Gauss-Newton method is the Newton method for $f(x) = \phi(x)^T \phi(x)$ with approximating $\nabla^2 \phi(x) \approx 0$

The approximate Hessian $2\nabla \phi(x)^{\mathsf{T}} \nabla \phi(x)$ is always semi-pos-def!

• In the Newton algorithm, replace line 3 by

3: compute
$$\Delta$$
 to solve $(\nabla \phi(x)^{\top} \nabla \phi(x) + \lambda \mathbf{I}) \Delta = -\nabla \phi(x)^{\top} \phi(x)$

Quasi-Newton methods

Quasi-Newton methods

- Let's take a step back: Assume we *cannot* evaluate $\nabla^2 f(x)$. Can we still use 2nd order methods?
- Yes: We can approximate $\nabla^2 f(x)$ from the data $\{(x_i, \nabla f(x_i))\}_{i=1}^k$ of previous iterations

Basic example

- We've seen already two data points $(x_1, \nabla f(x_1))$ and $(x_2, \nabla f(x_2))$ How can we estimate $\nabla^2 f(x)$?
- In 1D:

$$\nabla^2 f(x) \approx \frac{\nabla f(x_2) - \nabla f(x_1)}{x_2 - x_1}$$

• In \mathbb{R}^n : let $y = \nabla f(x_2) - \nabla f(x_1)$, $\Delta x = x_2 - x_1$

Convince yourself that the last line solves the desired relations [Left: how to update $\nabla^2 f(\mathbf{x})$. Right: how to update directly $\nabla^2 f(x)^{-1}$.]

BFGS

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

```
Input: initial x \in \mathbb{R}^n, functions f(x), \nabla f(x), tolerance \theta Output: x

1: initialize H^{-1} = \mathbf{I}_n

2: repeat

3: compute \Delta = -H^{-1}\nabla f(x)

4: perform a line search \min_{\alpha} f(x + \alpha \Delta)

5: \Delta \leftarrow \alpha \Delta

6: y \leftarrow \nabla f(x + \Delta) - \nabla f(x)

7: x \leftarrow x + \Delta

8: update H^{-1} \leftarrow \left(\mathbf{I} - \frac{y\Delta^{\mathsf{T}}}{\Delta^{\mathsf{T}}y}\right)^{\mathsf{T}} H^{-1} \left(\mathbf{I} - \frac{y\Delta^{\mathsf{T}}}{\Delta^{\mathsf{T}}y}\right) + \frac{\Delta\Delta^{\mathsf{T}}}{\Delta^{\mathsf{T}}y}

9: until \|\Delta\|_{\infty} < \theta
```

- Notes:
 - The blue term is the H⁻¹-update as on the previous slide
 - The red term "deletes" previous H⁻¹-components

Quasi-Newton methods

- ullet BFGS is the most popular of all Quasi-Newton methods Others exist, which differ in the exact H^{-1} -update
- **L-BFGS** (limited memory BFGS) is a version which does not require to explicitly store H^{-1} but instead stores the previous data $\{(x_i, \nabla f(x_i))\}_{i=1}^k$ and manages to compute $\Delta = -H^{-1}\nabla f(x)$ directly from this data
- · Some thought:
 - In principle, there are alternative ways to estimate $H^{\text{-}1}$ from the data $\{(x_i,f(x_i),\nabla\!f(x_i))\}_{i=1}^k$, e.g. using Gaussian Process regression with derivative observations
 - Not only the derivatives but also the value $f(x_i)$ should give information on H(x) for non-quadratic functions
 - Should one weight 'local' data stronger than 'far away'? (GP covariance function)

2nd Order Methods for Constrained Optimization

2nd Order Methods for Constrained Optimization

- No changes at all for
 - log barrier
 - augmented Lagrangian
 - squared penalties

Directly use (Gauss-)Newton/BFGS \rightarrow will boost performance of these constrained optimization methods!

Primal-Dual interior-point Newton Method

- Reconsider slide 03-33 (Algorithmic implications of the Lagrangian view)
- A core outcome of the Lagrangian theory was the shift in problem formulation:

find
$$x$$
 to $\min_{x} f(x)$ s.t. $g(x) \leq 0$

 \rightarrow find x to solve the KKT conditions

Primal-Dual interior-point Newton Method

• The first and last modified (=approximate) KKT conditions

$$abla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) = 0$$
 ("force balance")
 $\forall_i: g_i(x) \leq 0$ (primal feasibility)
 $\forall_i: \lambda_i \geq 0$ (dual feasibility)
 $\forall_i: \lambda_i g_i(x) = -\mu$ (complementary)

can be written as the n+m-dimensional equation system

$$r(x,\lambda) = 0$$
, $r(x,\lambda) := \begin{pmatrix} \nabla f(x) + \lambda^{\top} \nabla g(x) \\ -\operatorname{diag}(\lambda)g(x) - \mu \mathbf{1}_n \end{pmatrix}$

• Newton method to find the root $r(x, \lambda) = 0$

$$\begin{pmatrix} x \\ \lambda \end{pmatrix} \leftarrow \begin{pmatrix} x \\ \lambda \end{pmatrix} - \nabla r(x,\lambda)^{-1} r(x,\lambda)$$

$$\nabla r(x,\lambda) = \begin{pmatrix} \nabla^2 f(x) + \sum_i \lambda_i \nabla^2 g_i(x) & \nabla g(x)^\top \\ -\operatorname{diag}(\lambda) \nabla g(x) & -\operatorname{diag}(g(x)) \end{pmatrix} \in \mathbb{R}^{(n+m)\times(n+m)}$$

Primal-Dual interior-point Newton Method

- The method requires the Hessians $\nabla^2 f(x)$ and $\nabla^2 g_i(x)$
 - One can approximate the constraint Hessians $\nabla^2 q_i(x) \approx 0$
 - Gauss-Newton case: $f(x) = \phi(x)^{T}\phi(x)$ only requires $\nabla \phi(x)$
- This primal-dual method does a joint update of both
 - the solution x
 - the lagrange multipliers (constraint forces) λ No need for nested iterations, as with penalty/barrier methods!
- The above formulation allows for a duality gap μ ; choose $\mu = 0$ or consult Boyd how to update on the fly (sec 11.7.3)
- The feasibility constraints g_i(x) ≤ 0 and λ_i ≥ 0 need to be handled explicitly by the root finder (the line search needs to ensure these constraints)

Planned Outline

- Gradient-based optimization (1st order methods)
 - plain grad., steepest descent, conjugate grad., Rprop, stochastic grad.
 - adaptive stepsize heuristics

Constrained Optimization

- squared penalties, augmented Lagrangian, log barrier
- Lagrangian, KKT conditions, Lagrange dual, log barrier ↔ approx. KKT

2nd order methods

- Newton, Gauss-Newton, Quasi-Newton, (L)BFGS
- constrained case, primal-dual Newton

Special convex cases

- Linear Programming, (sequential) Quadratic Programming
- Simplex algorithm
- relation to relaxed discrete optimization

Black box optimization ("0th order methods")

- blackbox stochastic search
- Markov Chain Monte Carlo methods
- evolutionary algorithms